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ABSTRACT 

In this paper we have proposed an evolutionary method to 

optimize the task time of robot manipulators. Tasks can be 

planned in joint space with respect to robot joints or in 

Cartesian space with respect to robot end effector under 

kinodynamic constraints. Genetic algorithm is implemented to 

optimize the parameters associated with the selected motion 

trajectory profile. These optimized results were then taken as 

the training data to train an artificial neural network which is 

used to obtain task time, velocity, accelerations and torques 

required by each motor to perform a given task. The method 

adopted in this study can be applied to any serial redundant or 

non-redundant manipulator that has rigid links and known 

kinematic and dynamic models with free motions or motions 

along specified paths with obstacle avoidance. The robot 

kinematic and dynamic models and the optimization method 

are developed in MATLAB. 
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1. INTRODUCTION 
The robotic arm is used to pick and place object at the 

specified locations in a given hemispherical 3-D space. The 

pick and place operation finds it applications in the field of 

pharmaceutical industry, electronics industry, food industry 

and consumer goods industry. For industrial profitability, 

manipulators that have the ability to perform these operations 

in the shortest possible cycle time are required. Till now, two 

main parallel mechanism families have been used in industry 

to perform such motions at high speed (more than 10m/s) and 

high acceleration (10g). 

The industrial robots are often required to be highly 

productive, of high quality and adaptability as the result of 

competitive manufacturing. Since high productivity can be 

obtained by finding a minimum time planning strategies for 

the manipulators, the execution time of a specific task attains 

high value for commercial robot manipulators.  

However, the highly non-linear multi-input dynamics of robot 

manipulators complicates the process of finding true 

minimum time [1]. Khan and Roth [2] used the linearization 

technique to introduce the time-optimal control of robotic 

manipulators for the first time. The first efficient algorithm for 

finding the optimal trajectory was developed independently in 

1985 by Bobrow et al. and Shin and McKay [3, 4] based on 

the possibility of parameterising the path with a single scalar 

variable. Pfeiffer &Johanni and Shiller [5, 6] later on 

modified and simplified this algorithm. A time optimal 

control in an unknown environment was proposed by Shiller 

and Dubowsky [7] using a numerical approximation. 

The time optimal motion along the path was formally proven 

to be bang-bang in acceleration by Chen & Desrochers [8]. 

Sontag and Sussmann [9, 10] have done more indepth 

investigation of the properties of the optimal control using 

Pontryagin minimum principle. Fourquet[11] classified the 

singular trajectories to simplify the results of the time optimal 

control. More details on time optimal control can also be 

found in many references such as [12, 13]. 

On the other hand, design optimization based on simulation is 

becoming extremely important due to the vast development in 

hardware and simulation methods. Simulating the robot 

performance allows different candidates of robot motion 

profiles to be evaluated a large number of times before 

undergoing the real manufacturing process. Then, these 

candidates can be optimized based on the simulation results 

using an optimization method. Basically there are two groups 

of optimization methods used in engineering applications, the 

gradient-based and non-gradient-based methods.  

The gradient based methods have a fast asymptotic 

convergence and an accurate approximation but they require 

accurate calculations of derivatives which are a cumbersome 

task in many engineering optimization problems [14]. To 

calculate optimal values of design parameters the non-linear 

programming [15] or stochastic optimization technique [16] 

can be used. 

In this paper, we have designed and developed a robot 

manipulator which is used for pick and place task in joint 

space and Cartesian space. This robot manipulator can be 

activated by entering coordinates in the PC which are then 

transferred to the onboard microcontroller and thereby trigger 

motion of the arm [17].  

Further, Genetic algorithm method is applied to optimize the 

task time of serial robot manipulators for particular 

applications. The considered parameters are candidates of the 

selected motion trajectory. The kinematic and dynamic 

models of the manipulator are symbolically derived to allow 

the use of different candidates in the simulation program. The 

objective function is set to be a balance between the total task 

time and the quadratic average of joint torques.  

After obtaining the optimized parameters from the genetic 

algorithm method proposed by Hatim and Jha [18] , we have 

trained an artificial neural network with the optimized data 

and created a neural network that gives the optimized task 

time, Eaand Eb as the output in response to the input data of 

initial and the final positions of the four joints of robot 

manipulator in the joint space.  

The paper is divided into the following sections: Section 2 

discusses the previous works that have been used to optimize 

the task time duration and other parameters using genetic 

algorithms and artificial neural networks. Section 3 discusses 

the design of the proposed 4 degree of freedom robotic 

manipulator and the kinematics of the robot manipulator. 
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Section 4 describes the implementation of the genetic 

algorithm and artificial neural network on our work. Section 5 

shows the test results of the task time optimization using the 

genetic algorithm and artificial neural network. Section 6 

concludes the work and discusses the future aspects of the 

work.  

2. Mechanism 

2.1 Genetic Algorithms: 
Genetic algorithm approaches (GAs) were introduced by 

Goldberg. The basic idea of Genetic Algorithms is the 

mechanics of natural genetics and natural selection. Each 

optimization parameter is coded into a gene as for example a 

real number or a string of bits. The corresponding genes for 

all parameters form a chromosome, which describes each 

individual. A chromosome can be represented as an array 

consisting of real numbers, a binary string or a set of 

components of a database, depending on the specific problem. 

Each individual represents a possible solution, and a set of 

individuals form a population. In the genetic algorithm, the 

individual which has the highest fitness value has the highest 

probability of getting selected for generation of next 

individuals. The generation of the next individuals is done 

using Crossover, where genes from different parents are 

combined to produce a child. Then there is also the possibility 

that a mutation might occur. Finally, the children fitness is 

compared to the parent fitness, and if the children fitness 

value is more than the parents’, the children are inserted into 

the population to form a new generation. Applications of GAs 

in the field of robot trajectory planning have been carried out 

by several researchers. Parker et. al. [19] presented a genetic 

algorithm approach which allows additional constraint to be 

easily specified. Davidor [20] generated the robot trajectory of 

a predefined end-effector robot by finding the inverse 

kinematics using Genetic Algorithm. A new method for 

optimum motion planning based on an genetic algorithm was 

proposed by Yun and Xi [21] which incorporates kinematics 

constraints, dynamics constraints as well as control 

constraints. In 1996, Hirakawa and Kawamura [22] proposed 

a combination of B-spline trajectory generation and steepest 

gradient optimization to design an optimal motion planning 

for redundant manipulators. McAvoy et al. [23] used genetic 

algorithms for optimal point-to-point motion planning for 

kinematically redundant manipulators to satisfy both the 

initial conditions and some other specified criteria. Tian and 

Collins [24] proposed a genetic algorithm using a floating 

point representation to search for optimal end-effector 

trajectory for a redundant manipulator. 

2.2 Artificial Neural Networks (ANN) 

An artificial neural network (ANN) is an intelligent 

computing method that utilizes the concept of structure and 

functional aspects of biological neural networks. A neural 

network is an interconnected group of artificial neurons which 

processes information using a connectionist approach to 

computation. ANN can be considered as an adaptive system 

which whose final outputs change according to the internal 

and external information that are fed to the neural network 

during the training. Modern neural networks are mainly used 

to find the relationship between the inputs and the outputs as 

non-linear statistical data modeling tools and identify the 

patterns in the data. In 1969 Marvin Minsky and Seymour 

Papert[25] published a book in which some of the limitations 

of the Perceptron model were discussed. Paul Werbos[26] 

worked to improve the earlier Perceptron model and created 

the now popular back-propagation network. Hopfield's 

approach [27] was not simply to create models but to develop 

technologies that could be applied to real life problems. 

The artificial neural networks were first used by Kawato, 

Uno, Isobe and Suzuki in 1988 [28] when physiological 

information and previous models of neural network were used 

to drive the motors of a robot manipulator. Ciliz and Isik [29] 

developed a four layer feed forward neural network which 

mapped the position of the system to the optimal control 

actions. Safaric and Jezernic [30] applied two neural networks 

on a two DOF Scara type robot which were joint space neural 

network and task space neural network. Zhao-Hui Jiang Ishida 

[31] proposed a control scheme where two parallel 

subsystems were applied of which one neural network 

controller which calculated force and the torque required by 

the robot manipulator.  

3. Design of the Proposed Mobile Robot 

Model 
Our proposed mobile robotic manipulator has been designed 

for the purpose of the pick and place task [32]. The robot 

manipulator has total four links. All the actuators used in this 

project, are servo motors. Servo motors are very light weight, 

accurate and provide large standing torque even at low 

voltage ratings.  They require a specific PWM signal for 

operation.  By varying the duty cycle of the PWM signal the 

shaft of the motors can be rotated accordingly. 

The motor used in the robotic arm are the four mega torque 

quarter scale servo which provide extreme torque of 20kg.cm 

at 4.8V and 25kg.cm at 6V. The robotic arm has been made of 

aluminum sheets which are light weight and provide optimum 

support to the motors. 

The base of the robot manipulator has been made by using 

fiber glasses which has the dimensions of 30x22 cms and have 

been separated by a distance of 4.6 cms. There are four 

wheels which are connected to the base to provide the 

mobility to the manipulator have a diameter of 3 cms. The 

distance between the two wheels on one side is approximately 

10 cms. These wheels are connected to High Torque DC 

Geared Motor 300RPM, massive torque of 30Kgcm to make 

the wheels rotate providing the mobility to the manipulator. 

The robotic manipulator has a general purpose robotic gripper 

which has the ability to be used with 2 servo motors for 

gripper open/close and wrist rotate. This robotic arm can grip 

and lift up to 200 gm of load in form of small objects. All the 

servo motors attached to the robotic arm and the dc motors 

attached to the wheels are driven by the Rhino control board 

controller which contains ATMega16 microcontroller, used to 

control any servo based robot. The details of the links of the 

robot arms are as follows: 

Table I. Parameters of the mobile robot manipulator. 

 Link Length Link 

Masses 

Link Center of 

Mass [x,y,z] 

L1 11.4 cm. 145 gm. [1.0, 1.0, 1.0] 

L2 11.7 cm. 201 gm. [4.5, 2.0, 2.0] 

L3 11.3 cm. 234 gm. [5.6, 3.0, 3.0] 

L4 1 cm. 32 gm. [0.5, 0.5, 0.5] 

 

3.1 Kinematics of the robot manipulator: 
For serial robot manipulator with n degrees of freedom (DoF), 

the kinematic model can be extracted from the wellknown D-

H convention [33]. The governing equations of motions can 
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be derived using Newton-Euler method or Lagrange-Euler 

method [1]. The equations of motion without considering the 

friction effects and motor inertia effects appear in the form:  

  ( )  ∑      ̈   ∑ ∑      ̇   ̇       

where τi(t) is the joint torque vector; Mij is the symmetric 

inertia matrix; hijk are the centrifugal and Coriolis force 

coefficients; Gi is the gravity force vector; and q(t), q(t), q 

(t)are the joint position, velocity, acceleration vectors, 

respectively. The robot is required to move from the initial 

point Pi to a destination point Pf, both can be specified in 

Cartesian space or joint space coordinates. The task time is 

calculated as T and the torques to be exerted at the robot joints 

at each time step are τi(t). The cost function implemented in 

this study is a balance between the task time T and the 

quadratic average of actuator efforts τi(t) [14], i.e. 
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Calculations of τi are straight forward at each time step using 

these equations. 

3.2 Calculations of Task Time: 
To facilitate the stochastic optimization method the 

normalization of the time scale is introduced where the 

problem is solved for fixed final time [13], i.e. for q (x), 0 ≤ x 

≤ 1 . Equation (1) becomes: 
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This process allows us to translate the geometric, kinematic, 

and dynamic constraints into bounds on admissible values of 

the optimal transfer time Tq of the parameter (x), for instance, 
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Where Tv and Ta are the minimum task time due to bounds of 

joints velocities and accelerations, respectively. TLand TR are 

the left and right time bounds due to torques and calculated 

based on the values of τai(x) , τbi(x) , and Hi(x)given in Table 

1, where 
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The minimum task time Tq of the selected trajectory q(x) 

should satisfy 

      ,    , and    [     ] 

Applying this method inside an optimization algorithm allows 

us to test different trajectory candidates and efficiently scan 

the solution space for the optimization objective. 

3.3 Trajectory Planning: 
The motion of a robot can be classified into motion along 

predefined paths like those in the seam welding or coating 

applications or free point to point motions such as those of 

pick and place applications. In both cases the trajectory 

describes the positions, velocities, and accelerations of either 

the end effector of a robot manipulator in the Cartesian space 

or the robot joints in the joint space for each time step during 

the task. The planned trajectory must satisfy the geometric, 

kinematic, and dynamic constraints. In free point to point 

motions the shape of the trajectory can be freely selected 

while meeting the constraints on the beginning and end of the 

task with other constraints on maximum velocities and 

accelerations. There are considerable research works in the 

area of robot trajectory planning and many planners have been 

suggested such as cubic trajectory, quintic trajectory, 

trapezoidal trajectory, smooth trapezoidal trajectory, or cubic 

spline etc. The equations governing the smoothed trapezoidal 

velocity profile (STVP) are given next as an example of the 

suggested trajectories. STVP will be used in the optimization 

algorithm and the numerical example discussed next; 

however, other trajectories can be satisfactorily applied to the 

proposed method.  
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The variables in this trajectory are xa and xb which define the 

shape and characteristics of the trajectory profile while x is 

the current time in the scaled period  

4. Implementation: 
The parameters for the elitist GA used in our example are 

listed in Table II. In this application a repair algorithm is 

developed to make sure that only valid chromosomes are 

generated after crossover, i.e. the constraints and bounds are 

fulfilled before valuating the chromosome. If an individual 
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violates any constraint, it is modified in a random fashion 

until it is no longer violating any constraints. 

Table II. Genetic Algorithm Parameters 

Population size 10 

Chromosome length 10 

Generations 100 

Fitness selection Rank 

Crossover 0.7 

Mutation probability 0.1 

 

 

We applied the proposed genetic algorithm to our designed 

robot manipulator. The parameters that constitute robot 

kinematics are given in Table I. The motors' weights and 

inertias are neglected.  

The proposed artificial neural network uses the optimized data 

generated by the genetic algorithm proposed in this paper and 

gives the optimal time, torques, velocities and accelerations 

for the given task. The neural network algorithm used is the 

conjugate gradient back propagation with Fletcher-Reeves 

updates. The training of the robot was done by a neural 

network whose structure is defined as follows: number of 

inputs: 8, number of inputs hidden layers: 3, number of inputs: 

8, number of output layers: 3, number of neurons in hidden 

layers: (33, 23 and 9), activation function for the three layers: 

poslin, tansig, tansig, purelin. The proposed neural network 

was trained by a training set of 400 data while the testing was 

performed on 100 datasets. Explanation of the Inputs: The 

inputs in this neural network are the initial position and the 

final position of the four motor of the robot manipulator 

expressed in Cartesian space. The input positions are 

expressed in terms of radians where the first joint can move 

from an angle of 0 Degree to 180 degrees, second joint can 

move from an angle of 0 Degree to 120 degrees, third joint 

can move from an angle of 0 Degree to 120 degrees and 

fourth joint can move from an angle of 0 Degree to 180 

degrees. 

Explanation of the outputs: The number of outputs of this 

neural network is 3. The first output denotes the optimal time 

that will be needed by the robotic manipulator to move for an 

initial position to a final position. The other two ouput denote 

Xa and Xb, the points where the joints attain their maximum 

velocity for the longest possible period. 

5. Results: 
In our experiment, we moved the robotic manipulator from 

the initial position of [0 0 0 0] to [1.9 2 .9 1.8] and tracked 

down the time, velocity, torque and accelerations of the four 

joints which were needed to complete the task. In first case, 

when we used un-optimized results, the time taken by the 

robotic manipulator in completing this task was 2.12 seconds 

while in the second case, when we used the proposed genetic 

algorithm, the task time was reduced to 1.0046 seconds. Thus 

we found out that optimizing the task-time of the robotic 

manipulator had a significant effect on the parameters of the 

robotic manipulator which are used to drive the manipulator 

from one place to the other for a task. 

Table IV shows the corresponding motion profile using STVP 

(position, velocity, and acceleration). In the first column, the 

graphs show the results which were generated without using 

genetic algorithms while in the second column, the graphs 

show the trend of the velocity, acceleration, torque and 

positions of the four joints with respect to the optimized time 

which is generated by the genetic algorithm.  

The joint torques with respect to time is depicted in Table IV. 

It was also observed that time between xa and xb when time T 

is optimized is longer than un-optimized case. This allows the 

manipulator to move in its maximum velocity for the longest 

possible period which eventually leads to minimizing the task 

time. If the task is given in Cartesian space then the inverse 

kinematic problem has to be solved to convert to the joint 

space coordinates before starting the optimization loop. 

If the task in Cartesian space coordinates includes a required 

orientation of the robot's end effector then this has also to be 

treated before conversion to the joint space coordinates using 

for example a rotation about a vector in space an angle of 

alpha. Then, the selected trajectory can be applied to alpha. In 

case the path is predefined through some via points, then these 

via points can be treated as constraints and other freely 

selected points can be adjusted to minimize the cost function 

in the same way. 

After obtaining the optimized time through genetic 

algorithms, the proposed neural network was applied and the 

optimized time was used as the testing data for the neural 

network. Based on the optimal time period given by the neural 

network, the results generated by the applied genetic 

algorithm indicate that the accuracy of the neural network is 

approximately 97% as compared to the optimal results that 

has been produced by the genetic algorithms. The table V 

denotes the initial position and final position of the robot 

manipulator, the optimized time generated by the genetic 

algorithm, the time generated by the artificial neural network 

and the accuracy of the data generated by the artificial neural 

network as compared to the optimized data generated by 

genetic algorithm. Figure 1 shows the graph of the velocities, 

accelerations and the torques that have been generated by our 

proposed artificial neural network for a given task. 

 

6. Conclusion and Future Works: 
In this study a four DOF robotic manipulator has been 

optimized by a genetic algorithm and artificial neural network 

under kinematic and dynamic constraints. The required path 

along which robot moves can be described in joint space with 

respect to robot joints or in Cartesian space with respect to 

robot end effector. The smoothed trapezoidal velocity profile 

is given in this paper as an example of free motion trajectory 

between two points; however, other profiles of free motion or 

motion along via points can be applied to the optimization 

method as well. The result obtained from this method are the 

task time, velocity, accelerations and the torques that can be 

applied to each link of the robot manipulator to optimize the 

task. The method discussed in this paper can also be applied 

to optimize robot design parameters along with task time for a 

given task. 
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Table III. The result and variation of the Velocity, Acceleration and Torques after applying Genetic Algorithm on the Robotic 

Manipulator 

 

 
Fig 2.1. Position vs Time Graph 

 
Fig 2.5. Position vs Time Graph 

 
Fig 2.2. Velocity vs Time Graph 

 
Fig 2.6. Velocity vs Time Graph 

 
Fig 2.3. Acceleration vs Time Graph 

 
Fig 2.7. Acceleration vs Time Graph 

 
Fig 2.4. Torque vs Time Graph 

 
Fig 2.8. Torque vs Time Graph 
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Table IV. Comparison and Accuracy of the result generated by Artificial Neural Network and Genetic Algorithm

Serial 

No. 

Initial Position of the four 

motors in Cartesian space 

Final Position of the four 

motors in Cartesian 

space 

Optimized time 

using GA(in 

seconds) 

Task Time 

generated by 

proposed ANN (in 

seconds) 

Percentage 

accuracy of result 

produced by 

ANN 

1. [0.0 0.0 0.0 0.0] [2.7 2.0 1.9 2.1] 1.5013 1.5533 96.53% 

2. [0.0 0.0 0.0 0.0] [1.5 1.5 1.5 1.5] 0.7058 0.7172 98.38% 

3. [2.0 1.5 1.6 1.7] [0.0 0.0 0.0 1.2] 1.2789 1.2954 98.73% 

4. [0.0 0.0 0.0 0.0] [0.5 1.0 1.5 2.0] 0.5210 0.5334 97.61% 

5. [1.0 1.0 1.0 1.0] [2.0 2.0 2.0 2.0] 0.7979 0.7816 97.95% 

6. [0.8 0.5 0.2 0.1] [2.5 2.0 1.5 2.1] 1.2073 1.1906 98.61% 

7. [1.1 1.1 0.0 2.1] [2.0 2.0 0.5 2.0] 1.1589 1.1065 95.45% 

8. [1.5 1.5 1.5 1.5] [2.5 2.0 2.0 2.5] 0.8196 0.8249 99.53% 

9. [0.5 0.5 0.5 0.5] [2.0 2.1 2.2 2.3] 0.9867 0.9824 99.56% 

10. [0.2 0.3 0.4 0.5] [1.8 1.9 2.0 2.1] 1.0945 1.0889 99.45% 

11. [2.0 1.5 1.5 2.0] [0.0 0.0 0.0 0.0] 2.4789 2.4549 99.03% 

12. [2.0 1.5 1.5 2.0] [1.00.5 1.1 1.2] 0.9871 0.9639 97.64% 

13. [2.1 1.9 1.8 1.7] [0.5 0.6 0.7 0.8] 1.0781 1.0118 93.85% 

14. [2.1 1.9 1.6 1.5] [0.1 0.2 0.3 0.4] 2.1970 2.2587 93.83% 

15. [0.3 0.4 0.5 0.6] [2.0 2.1 2.1 2.5] 0.9458 0.9065 95.84% 

16. [0.00.5 1.1 1.8 ] [2.0 0.0 0.0 3.1] 2.1426 2.0123 93.91% 

17. [1.0 0.8 0.7 0.6] [1.2 1.9 2.1 3.1] 0.3158 0.2540 80.43% 

18 [0.0 0.1 0.2 0.3] [1.9 2.0 2.1 2.2] 0.9967 1.0656 93.08% 

19. [0.0 1.0 0.1 0.0] [2.9 1.0 1.1 1.0] 1.5074 1.2626 83.76% 

20. [1.0 2.4 1.1 0.5] [2.3 0.3 2.1 0.0] 1.0541 1.1330 92.51% 

21 [2.9 1.5 0.1 0.5] [0.3 0.3 2.1 2.9] 1.9987 2.0801 95.92% 

22. [0.9 1.0 1.1 1.5] [2.3 1.8 2.1 2.9] 1.0050 0.9743 96.94% 

23. [0.5 0.6 0.7 0.8] [2.7 1.5 1.6 1.7] 0.8995 0.9280 96.83% 

24. [1.1 1.9 1.7 1.6] [2.4 0.5 1.7 0.1] 0.8004 0.7724 96.50% 

25. [0.7 0.6 0.5 0.4] [1.9 2.0 1.7 2.0] 0.9471 0.9001 95.03% 

26. [0.1 0.2 0.3 0.4] [1.8 1.9 2.0 2.1] 1.1247 1.0472 93.10% 

27. [2.1 1.9 0.5 1.6] [0.0 0.5 1.9 0.1] 1.0159 1.0028 98.71% 
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28. [1.1 1.2 1.9 2.0] [0.0 2.1 2.0 0.5] 0.9136 0.8651 94.69% 

29. [0.7 0.8 2.0 2.1] [1.5 1.5 1.5 1.5] 0.7784 0.7925 98.18% 

30. [0.1 0.8 0.9 1.4] [1.4 1.8 0.0 1.5] 0.7851 0.7412 94.40% 

31. [2.0 2.0 2.0 2.0] [0.5 0.5 0.5 0.5] 1.2914 1.0231 79.22% 

32. [1.4 1.9 1.7 1.6] [2.1 1.0 1.5 0.0] 0.8176 0.8033 98.25% 

33. [2.0 1.5 1.5 2.0] [0.4 0.9 1.0 0.1] 0.9612 0.9441 98.22% 

34. [0.3 0.4 0.5 0.6] [2.1 2.0 1.9 1.8] 1.1584 1.0619 91.66% 

35. [1.5 1.4 1.6 1.1] [0.0 1.9 2.1 0.4] 1.1008 1.0769 97.82% 

36. [2.4 1.7 1.6 1.5] [0.1 0.2 0.3 0.4] 1.4007 1.4603 95.74% 

37. [0.4 0.6 0.8 1.0] [2.4 1.9 1.4 2.1] 0.8984 0.8554 95.21% 

38. [0.7 0.8 1.5 1.6] [2.1 1.5 1.7 2.9] 0.9983 0.9707 97.23% 

39. [2.1 2.0 1.9 1.8] [0.3 0.2 1.0 0.1] 1.2971 1.2765 98.41% 

 

 

Figure1. The Velocity, Acceleration and Torques graphs after applying the neural network on the Robotic Manipulator for 

moving the manipulator from initial position of [0 0 0 0] to [2.7 2.0 1.9 2.1]
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