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ABSTRACT 

The techniques Conformal Eigenmap and Neighborhood 

Preserving Embedding (NPE) have been proposed as 

extensions of local non-linear techniques. Many of the 

commonly used non-linear dimensionality reduction, such as 

Local Linear Embedding (LLE) and Laplacian eigenmap are 

not explicitly designed to preserve local features such as 

distances or angles. In first proposed Conformal Eigenmap 

technique, a low dimensional embedding is constructed that 

maximally preserves angles between nearby data points. The 

embedding is derived from the bottom eigenvectors of LLE 

by solving an additional problem in Semidefinite 

Programming (SDP). In second proposed method, NPE 

minimizes the cost function of a local nonlinear technique for 

dimensionality reduction under the constraint that the 

mapping from the high-dimensional to the low-dimensional 

data representation is linear. The idea is to modify the LLE by 

introducing a linear transform matrix. The effectiveness of the 

proposed methods is demonstrated on synthetic datasets. 

Experimental results on several data sets demonstrate the 

merits of proposed techniques.  

Keywords 

Dimension reduction; Manifold Learning; Conformal 

Eigenmap; Neighborhood Preserving Embedding; Local 

Linear Embedding; Laplacian Eigenmap 

1. INTRODUCTION 
Dimensionality reduction is important in many domains, since 

it mitigates the curse of dimensionality and other undesired 

properties of high-dimensional spaces [1-2]. As a result, 

dimensionality reduction facilitates, among others, 

classification, visualization, and compression of high-

dimensional data. Traditionally, dimensionality reduction was 

performed using linear techniques such as Principal 

Components Analysis (PCA), Linear Discriminant Analysis 

(LDA) and Multidimensional scaling (MDS). These 

techniques generate faithful low dimensional representations 

when the high dimensional input patterns are mainly confined 

to a low dimensional subspace. PCA, the most frequently used 

dimension reduction method seeks a projection that best 

represent the data in a least-squares sense [3]. MDS finds an 

embedding that preserves the interpoint distances, equivalent 

to PCA when those distances are Euclidean [4]. LDA, a 

supervised learning algorithm selects a transform matrix in 

such a way that the ratio of the between-class scatter and the 

within-class scatter is maximized [3]. If the input patterns are 

distributed more or less throughout this subspace, the Eigen 

value spectra from these methods also reveal the data set’s 

intrinsic dimensionality. A more interesting case arises, 

however, when the input patterns lie on or near a low 

dimensional sub manifold of the input space. In this case, the 

structure of the data set may be highly non-linear, and linear 

methods are bound to fail.  

In the last decade, a large number of non-linear techniques for 

dimensionality reduction have been proposed [5-10]. 

Recently, several manifold-embedding-based nonlinear 

approaches were developed such as locally linear embedding 

(LLE) [11], isometric feature mapping (Isomap) [12] and 

Laplacian Eigenmap (LEM) [13]. They all utilized local 

neighborhood relation to learn the global structure of 

nonlinear manifolds. But they have quite different motivations 

and objective functions.  In contrast to the traditional linear 

techniques, the non-linear techniques have the ability to deal 

with complex non-linear data. On the other hand, such 

approaches also has several limitations: (i) the solutions do 

not yield an estimate of the underlying manifold’s 

dimensionality; (ii) the geometric properties preserved by 

these embedding are difficult to characterize; (iii) the resulting 

embeddings sometimes exhibit an unpredictable dependence 

on data sampling rates and boundary conditions. Moreover, 

the original LLE, Isomap and Laplacian Eigenmap cannot 

deal with the out-of-sample problem [14] directly. Out-of-

sample problem states that only the low dimensional 

embedding map of training samples can be computed but the 

samples out of the training set (i.e. testing samples) cannot be 

calculated at all. 

An extension of Isomap was proposed to learn conformal 

transformations [15]; like Isomap, however, it relies on the 

estimation of geodesic distances, which can lead to spurious 

results when the underlying manifold is not isomorphic to a 

convex region of Euclidean space [16]. Hessian LLE is a 

variant of LLE that learns isometrics, or distance-preserving 

embeddings, with theoretical guarantees of asymptotic 

convergence [17].  

In this paper, an extended analysis has been provided to 

remedy the key deficiencies of LLE and Laplacian Eigenmap. 

It is shown how to construct a more robust, angle-preserving 

embedding from the spectral decompositions of these 

algorithms as well as linear approximations to local non-linear 

techniques. 

The rest of this paper is organized as follows: Section 2 

described the proposed methods, Conformal Eigenmap and 

NPE. Experimental results are shown in Section 3. Finally, 

conclusions are drawn in Section 4. 
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2. EXTENSIONS OF LOCAL NON-

LINEAR TECHNIQUES 
The capability of local non-linear techniques to successfully 

identify complex data manifolds has led to the proposal of its 

several extensions. The original LLE, Isomap and Laplacian 

Eigenmap cannot deal with out of sample problem and cannot 

preserve local feature such as angle. To overcome the 

limitations of existing methods, extensions of local non-linear 

techniques have been discussed in this section. The difference 

between these methods lies in their different motivations and 

objective functions. 

2.1 Conformal Eigenmap  
A conformal mapping is a transformation that preserves the 

angles between neighboring datapoints when reducing the 

dimensionality of the data [18]. Conformal Eigenmap are 

based on the observation that local non-linear techniques for 

dimensionality reduction do not employ information on the 

geometry of the data manifold that is contained in discarded 

eigenvectors that correspond to relatively small Eigen values. 

Conformal Eigenmap initially perform LLE (or alternatively, 

another local nonlinear technique for dimensionality 

reduction) to reduce the high-dimensional data D to a dataset 

of dimensionality m. Conformal Eigenmap use the resulting 

intermediate solution in order to construct a d-dimensional 

embedding (where d < m < D) that is maximally angle-

preserving. 

A conformal map is a low-dimensional embedding where the 

angles formed by three neighboring points in the original high 

dimensional dataset are equal to the angles between those 

same three points in the embedding. Consider the point xi and 

its neighbors xj and xk in d-dimensional space. Also, consider 

zi, zk and zj to be the images of those points in the final 

embedding. If the transformation were a conformal map then 

the triangle formed by the x points would have to be similar to 

that formed by the z points. In the triangle formed by the x 

points the expression |xj − xk| represents the length of one side 

of the triangle while the expression |zj − zk| represents the 

corresponding side in the embedding. Since the triangles are 

similar there must exist si such that: 

x x x xx xj k i ji k
si

z z z zjz z i k ij k

 
  

 
                  (1)            

2 22

2 2 2

x x x xx xj k i ji k
si

z z z zjz z i k ij k

 
  

 

                   (2) 

It is usually not possible to find a perfect embedding where all 

of the triangles are exactly similar to each other. Therefore, 

the goal is to find a set of z coordinates such that the triangles 

are as similar as possible. This leads to the following 

minimization: 

2
2 2

min
, ,

z z s x xj k i j k
z s j ki

 
    

 
              (3) 

Where the xi represent the initial points and the zi denote the 

points in the final embedding. Let yi represent the points in the 

embedding produced by LLE (or LEM). The yi points 

represent an intermediate step in the algorithm and so go part 

of the way to solving for zi. Once LLE has produced, goal of 

the algorithm becomes a search for a transformation matrix L 

such that z Lyi where the zi value satisfy the minimization 

in Eq. (4)            

2
22

min
, ,

Ly Ly s x xi k i j k
L s j ki

 
    

 
                  (4) 

This should be done for all points xi and with the condition 

that the points xj and xk are the neighbors of xi. 

2
22

min
, ,

η η Ly Ly s x xij ik i k i j k
L s i j ki

 
     

 
   (5) 

Where η is an indicator variable and 1ηij  only if xj is 

neighbor of xi otherwise 0ηij  .The value for si can be 

calculated via least squares and the initial minimization (5) 

can be rewritten as: 

Minimize t   

   

. . 0,

( ) 1,

1 ( )
0,

( )

s t P

trace P

RVec P

T tRVec P



 
  

f

f

                           (6) 

Where 
TP L L , t is an unknown scalar, I and R are m2 X m2 

matrices: I denote the identity matrix, while R depends 

on ,
1

n
x yi i i

, but is independent of optimization variables P 

and t. The condition ( ) 1trace P  is added to avoid the trivial 

solution where P=0. The optimization is an instance of SDP 

over elements of unknown matrix P [19]. After solving the 

SDP, the matrix can be decomposed back into 
TL L and the 

final embedding can be found by z Lyi for all i. Conformal 

Eigenmap introduced the interesting idea of using spectral 

methods like LLE and LEM to find the low dimensional 

manifold and further modifying the output to produce a 

conformal map. The effectiveness of conformal map is limited 

by the computational complexity of SDP solvers. 

Another extension of local non-linear dimension reduction 

technique is discussed in the section that follows. 

2.2 Neighborhood Preserving Embedding  
Neighborhood Preserving Embedding (NPE) is the linear 

approximation to local non-linear technique [20]. In contrast 

to traditional linear techniques such as PCA, local non-linear 

techniques for dimensionality reduction are capable of 

successful identification of complex data manifolds such as 

Swiss roll. This capability is due to the cost functions that are 

minimized by local non-linear dimensionality reduction 

techniques, which aim at preserving local properties of the 

data manifold. However, in many learning settings, the use of 

a linear technique for dimensionality reduction is desired, e.g., 

when an accurate and fast out-of-sample extension is 

necessary, when data has to be transformed back into its 

original space, or when one wants to visualize the 

transformation that was constructed by the dimensionality 

reduction technique. NPE is a technique that aims at 

combining the benefits of linear techniques and local non-
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linear techniques for dimensionality reduction by finding a 

linear mapping that minimizes the cost function of LLE [11].  

NPE minimizes the cost function of a local non-linear 

technique for dimensionality reduction under the constraint 

that the mapping from the high-dimensional to the low-

dimensional data representation is linear.  

Similar to LLE, NPE starts with the construction of a nearest 

neighbor graph in which every datapoint is connected to its 

nearest neighbors. The weights of the edges in the graph are 

computed and subsequently solves the generalized eigen 

problem. 

Given a set of points { , ,....... },1 2X X X XN in R
D

, NPE 

attempts to seek an optimal transformation matrix P to map 

high-dimensional data X onto a low-dimensional 

data { , ,....... },1 2Y Y Y YN  in Rd (d << D) in which the local 

neighborhood structure of X can be preserved, namely, 

TY P X . 

NPE algorithm can be stated in three steps.  

Step 1: Compute the neighbors of each data point Xi . There 

are two ways to compute neighbors: 

 K nearest neighbors (KNN): Put a directed edge from 

node i to j if Xj  is among the K nearest neighbors of Xi . 

 ε neighborhood: Put an edge between nodes i and j if 

ε i jx x
 

The graph constructed by the first method is a directed graph, 

while the one constructed by the second method is an 

undirected graph. In many real world applications, it is 

difficult to choose a good ε . In this work, the KNN method is 

adopted to construct the adjacency graph. When 

computational complexity is a major concern, one may switch 

to ε neighborhood.   

Step 2: Compute the weights Wij that best reconstruct each 

data point from its neighbors. In this step, the weights on the 

edges are computed. Let W denote the weight matrix with 

Wij  having the weight of the edge from node i to node j, and 

0 if there is no such edge. The weights on the edges can be 

computed by minimizing the following objective function,                                                        

2

min Wij
i j

 X Xi ij                                                   (7) 

Where 1, 1,2,...,W j mij
j

  , is enforced to make sure 

that the reconstruction weight matrix W is invariant to 

translation of the data point.  

Step 3: Computing the projections Yi  of each data points Xi  

in space 
D

R  can be reconstructed by W, then the 

corresponding point by Yi  in space 
d

R can be reconstructed 

by W also. Therefore, the mapping transformation matrix P 

can be obtained by solving the following minimization 

problem: 

2

arg min

1

k
Wopt ij

i jP

 
 

   
 

 

Y Yi jP                 (8) 

 arg min T Ttr

A

P XMX P

 

 1, ( ) ( )T T TM I W I W   s.t.  P XMX P   

Where I represent the n x n identity matrix. Using Lagrange 

multiplier, the minimization problem of equation (8) becomes 

a generalized eigenvalue problem: 

T TλXMX P XX P                (9)   

Then, the column vectors of the transformation matrix P  are 

given by the bottom d eigenvectors of (9), which are ordered 

according to their eigenvalues ...0 1 1λ λ λd    . 

Therefore, and the projection can be obtained through the 

formula
TY P X . 

3. RESULTS 
In this section, some results of proposed algorithms are 

presented for a number of synthetic datasets.  The datasets are 

specifically selected to investigate how the dimensionality 

reduction techniques deal with data that lies on a low-

dimensional manifold.  

The synthetic datasets on which the algorithms are 

implemented are the swissroll dataset, the helix dataset and 

twinpeaks dataset. Figure 1 shows plots of the three artificial 

datasets. All artificial datasets consist of 5,000 samples. The 

experiments are run for parameter k (nearest neighbors of data 

point) ranges from 5 to 15. 

Figures 2-4 show the results of Conformal Map and NPE 

dimension reduction techniques on Swiss roll, helix and 

twinpeaks dataset respectively. From the results, it is clear 

that the angle preserving embedding more faithfully preserves 

the shape of the underlying manifold’s boundary. The 

maximally angle preserving embedding exploits structure in 

the few bottom eigenvectors of LLE, not just in the bottom 

two eigenvectors. The semidefinite programming (SDP) in 

Eq. (6) mixes all of the bottom eigenvectors from LLE or 

Laplacian Eigenmap to obtain the maximally angle-preserving 

embedding. 

Conformal transformations cast a new light on older 

algorithms, such as LLE and Laplacian Eigenmap. Viewing 

these bottom eigenvectors as a partial basis for functions on 

the data set, it is shown how to compute a maximally angle-

preserving embedding by solving an additional problem in 

SDP. At little extra computational cost, Conformal Eigenmap 

significantly extends the utility of LLE and Laplacian 

Eigenmap, yielding more faithful embeddings as well as a 

global estimate of the data’s intrinsic dimensionality.  

The proposed NPE is able to search a direction projected onto 

which neighborhood relations are preserved along the curve of 

the manifold. From Fig. 2(c), Fig. 3(c) and Fig.4(c), it is 
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Fig 1: Four artificial datasets (a) Swissroll (b) Helix (c) Twinpeaks   

 
Fig 2: Results of dimensionality reduction on Swiss roll dataset (a) Swiss roll (b) Conformal (c) NPE (d) LLE 

 

Fig. 3: Results of dimensionality reduction on Helix dataset (a) Helix (b) Conformal (c) NPE (d) LLE 
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Fig. 4: Results of dimensionality reduction on Twinpeaks dataset (a) Twinpeaks (b) Conformal (c) NPE (d) LLE 

 
 

 LLE Conformal NPE 

Speed Fast Slow Very Fast 

Handle 

Curvature 

Maybe Yes No 

Handles 

noise 

No Yes No 

Preserves 

angles 

No Yes No 

 

observed that NPE cannot always unfold the manifold as LLE 

can. Furthermore, many neighbors are collapsed into a single 

point in the low dimensional space. The reason is that NPE is 

a linear transform instead of non-linear one like LLE. 

Nevertheless, the NPE has favorable properties against other 

linear transform methods such as PCA. The techniques are 

compared based on various parameters such as speed, noise, 

non-convexity, curvature, non-uniform sampling.  First, it is 

observed for manifold geometry swissrollLLE is pretty slow, 

LLE and Laplacian can’t handle this data. Twin Peaks: fold 

up the corners of a plane. LLE will have trouble because it 

introduces curvature to plane. LLE distort the mapping the 

most. Add noise to the Helix sampling. LLE cannot recover 

the circle. When the sampling rate is changed along the torus, 

Laplacian starts to mess up and Hessian is completely thrown 

off. Hessian LLE code crashed frequently on this example. 

 

4. CONCLUSIONS 
Conformal Map and NPE build on LLE and Laplacian 

Eigenmap, thus inheriting their strengths as well as their 

weaknesses. Results show that the Conformal Map algorithm 

has the potential to preserve the angles from their high 

dimensional data. NPE, due to linear in nature, might not 

outperform as good as non-linear LLE, Isomap and Laplacian 

Eigenmap. However, it is a novel and useful linear dimension 

reduction method. However the effectiveness of conformal 

mapping is limited by the computational complexity of SDP 

solver. In future work, the algorithm can be developed that 

does not require SDP solution so that it can be applied to wide 

variety of datasets. 
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