
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.12, August 2012

35

RIDBE: A Lossless, Reversible Text Transformation

Scheme for better Compression

S. Senthil

Department of Computer Science,
 Vidyasagar College of

Arts and Science,
Udumalpet, Tamilnadu,

India

S. J. Rexiline
Department of Computer Science,

Loyola College,
Chennai,

Tamilnadu,
India

L. Robert
Computer Science & Info. System
Department, Community College in
Al-Qwaiya, Shaqra University, KSA

(Government Arts College,
Coimbatore)

ABSTRACT

In this paper, we propose RIDBE (Reinforced Intelligent

Dictionary Based Encoding), a Dictionary-based reversible

lossless text transformation algorithm. The basic philosophy

of our secure compression is to preprocess the text and

transform it into some intermediate form which can be

compressed with better efficiency and which exploits the

natural redundancy of the language in making the

transformation. In RIDBE, the length of the input word is

denoted by the ASCII characters 232 – 253 and the offset of

the words in the dictionary is denoted with the alphabets A-Z.

The existing or backend algorithm’s ability to compress is

seen to improve considerably when this approach is applied to

source text and it is used in conjunction with BWT. A

sufficient level of security of the transmitted information is

also maintained. RIDBE achieves better compression at the

preprocessing stage and enough redundancy is retained for the

compression algorithms to get better results. The experimental

results of this compression method are analysed. RIDBE gives

19.08% improvement over Simple BWT, 9.40% improvement

over BWT with *-encode, 3.20% improvement over BWT

with IDBE, 1.85% over BWT with EIDBE and about 1% over

IIDBE.

Keywords
Compression, Decompression, Preprocessing, Dictionary

methods

1. INTRODUCTION

It has been established through empirical research, which

believes in experiments rather than theories, that compression

algorithms can play a crucially central role in reducing

redundancy in data representation. The storage required for

data representation is decreased sizably by compression

algorithms. Another fruitful finding of the research is that

communication costs can be reduced considerably through

able and judicious administration of available bandwidth by

data compression. Research in the last ten years has triggered

an unprecedented explosion in the volume of digital data

transmitted over the Internet, representing text, images, video,

sound, computer programs etc. An era of even greater digital

data explosion can be envisioned if the momentum of research

is maintained in the same vein, and then, hopefully, much

improved algorithms, born of relentless research, will result in

a remarkably maximal compression of data through effective

use of available network bandwidth.

Developing different compression algorithms is envisaged as

one approach for attempting to attain better compression

ratios. Of the number of sophisticated algorithms already

available for lossless text compression , Burrows Wheeler

Transform (BWT) [5] and Prediction by Partial Matching [14]

prove to be much superior to the classical algorithms like

Huffman, Arithmetic and LZ families [25] of Gzip and Unix –

compress [24] in performance. While the ratio of compression

achieved by PPM is much higher than that of almost all

existing compression algorithms the main handicap of PPM is

that it is very slow and also consumes large amount of

memory to store context information. The cyclic rotations of a

block of data generating a list of every character and its

arbitrarily long forward context are lexicographically sorted

by BWT. It makes use of Move-To-Front (MTF) [1] and an

entropy coder as the backend compressor. Unceasing efforts

are on to improve the efficiency of PPM [8,9,17] and BWT

[1,3,19].

The main focus of this paper relates to an alternative approach

which seeks to perform a lossless, reversible transformation to

a source file before applying an existing compression

algorithm. The compression of the source file in a much easier

way is accomplished through the said transformation. The

input to the transformation is the source file whereas the

transformed text is the output. The output is fed to an existing

data compression algorithm and the outcome is an efficient

compression of the transformed text. A reversal of this

process is required to be done for decompression by first

invoking the appropriate decompression algorithm, and then

providing the resulting text to the inverse transform. The

preservation of the overall lossless text compression paradigm

without any compromise is totally dependent upon the exactly

reversible transformations. The data compression and

decompression algorithms are unmodified, so they do not

exploit information about the transformation while

compressing.

Figure 1 illustrates the paradigm.

Fig 1: Text compression paradigm incorporating a

lossless, reversible transformation.

The paradigm is used with the singular objective of enhancing

the compression ratio of the text in comparison with what

could have been achieved by using only the compression

algorithm. It has been observed that the preprocessing of the

text prior to conventional compression will improve the

compression efficiency much better.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.12, August 2012

36

The preprocessing of textual data is a subject of many

publications. In some articles, the treatment of textual data is

embedded within the compression scheme itself but can easily

be separated into two independent parts: a preprocessing

algorithm and a standard compression algorithm, which are

processed sequentially one after the other.

It is of utmost importance that the security aspects of the data

being transmitted while compressing it should be given top

priority as there is always an impending threat of the text data

transmitted over the internet being subjected to a host of

hostile attacks.

Our endeavour in this paper is to experiment and develop a

more efficient transformation yielding greater compression to

the text data. Our encoding method “Reinforced Intelligent

Dictionary Based Encoding (RIDBE)” is used as a

preprocessing stage so as to improve the compression ratio.

2. REVIEW OF LITERATURE
Burrows and Wheeler [5] describes a block sorting lossless

data compression known as Burrows Wheeler Transform

(BWT) that takes a block of data and reorders it using a

sorting algorithm. The resulting block of text contains the

same symbols as the original, but in a different order. The

transformation groups similar symbols, so the probability of

finding a character close to another instance of the same

character increases substantially. The resulting text can be

easily compressed with fast locally adaptive algorithms, such

as Move-to-Front coding combined with Huffman or

arithmetic coding preceded by a Run – Length Encoding

(RLE).

Kruse and Mukherjee [13,10] propose a special case of word

encoding known as star encoding. This encoding method

replaces words by a symbol sequence that mostly consist of

repetitions of the single symbol '*'. This requires the use of an

external dictionary that must be known to the receiver as well

as the sender. Inside the dictionary, the words are first sorted

by their length and second by their frequency in the English

language using information obtained from Horspool and

Cormack [11]. The requirement of an external dictionary

makes this method again language dependent. The

transformed text can now be the input to any available lossless

text compression algorithm, including Bzip2 where the text

undergoes two transformation, first the *-transform and then a

BWT transform.

Awan and Mukherjee [2] describe a Dictionary based

reversible, lossless text transformation called as Length Index

Preserving Transform (LIPT) which can be applied to a source

text to improve the ability to compress the existing algorithm.

LIPT encodes a word as a string that can be interpreted as an

index into a dictionary. BZIP2 with LIPT gives 5.24%

improvement in average BPC over BZIP2 without LIPT and

PPMD with LIPT gives 4.46% improvement in average BPC

over PPMD without LIPT for test corpus.

Robert and Nadarajan [16] present different reversible

preprocessing algorithms. In their paper they have described

about Dictionary Based Transformation (DBT) and Dynamic

Reversible Transformation (DRT). DBT reduces the total

number of possible byte values used in a text file. When DBT

is combined with Huffman an average of 1.2 BPC is saved. At

the same time when it is combined with Arithmetic coding an

average of 1.17 BPC is saved and when it is combined with

LZW an average of 0.58 BPC is saved. When DRT is

combined with Huffman reduction in BPC is observed. A

significant saving in BPC is noted, when it is combined with

Arithmetic coding. On the contrary, combination with LZW

does not provide best BPC for some of the test files because

LZW is an adaptive higher order data compression algorithm.

Chapin and Tate [6] and later Chapin [7] present

preprocessing methods, specialized for a specific compression

scheme. They describe several methods for alphabet

reordering prior to using the BWCA in order to place letters

with similar contexts close to one another. Since the Burrows-

Wheeler transformation (BWT) is a permutation of the input

symbols based on a lexicographic sorting of the suffices, this

reordering places areas of similar contexts at the BWT output

stage closer together, and these can be exploited by the latter

stages of the BWCA. The paper compares several heuristic

and computed reorderings where the heuristic approaches

always achieve a better result on text files than the computed

approaches. The average gain for BWCA using heuristic

reorderings over the normal alphabetic order was 0.4% on the

text files of the Calgary Corpus. Balkenhol and Shtarkov use a

very similar heuristic alphabet reordering for preprocessing

with BWCA [4]. Kruse and Mukherjee [12] describe a

different alphabet reordering for BWCA. It also describes a

bigram encoding method and a word encoding method which

is based on their star encoding.

Sun et al. [22] describe a dictionary based fast lossless text

transform algorithm called as StarNT, which utilizes ternary

search tree to expedite transform encoding. This new

transform achieves improvement not only in compression

performance but also in time complexity when compared with

LIPT. Facilitated with StarNT, bzip2 and PPMD achieves a

better compression performance in comparison to most of the

other recent efforts based on PPM and BWT. Experimental

results show that StarNT achieves an average improvement in

compression ratio of 11.2% over bzip2-9, 16.4% over gzip-9

and 10.2% over PPMD.

Shajeemohan and Govindan [21] propose an encoding

strategy called Intelligent Dictionary Based Encoding (IDBE)

which offers higher compression ratios and rate of

compression. According to them, IDBE involves two stages.

The first is the creation of an intelligent dictionary and the

next one is encoding the input text data. While creating a

dictionary, words are extracted from the input files and for the

fist 218 words ASCII characters 33-250 are assigned as the

code. For the remaining words permutation of two of the

ASCII characters in the range of 33-250 is assigned. For the

left out words, if any, permutation of three of the ASCII

characters for each word and if required permutation of four

of the ASCII characters is assigned. During encoding, the

length of the token is determined and the length is

concatenated with the code and is represented by the ASCII

characters 251-254 with 251 for a code of length 1, 252 for

length 2 and so on. While decoding the length proves to be the

end marker. A better compression is achieved by using IDBE

as the preprocessing stage for the BWT based compressor.

The time for transmission of files has also been reduced to a

greater extent.

In [18] we described an algorithm called “Enhanced

Intelligent Dictionary Based Encoding” (EIDBE) to

preprocess textual documents in order to improve the

compression ratio of different standard compression
algorithms. The basic idea of this preprocessing algorithm is

to replace words in the input text by a character encoding that

represents a pointer to an entry in a static dictionary. This

algorithm consists of two steps. First is the creation of

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.12, August 2012

37

intelligent dictionary and the second is encoding the input

data. Words are extracted from the input files and they are

categorised as two letter, three letter and so on up to twenty

two letter words. And the first 199 words in each segment

have single ASCII character representation (33-231) as the

code and a marker character. For the words remaining

permutation of two of the ASCII characters in the range of 33-

231 is assigned. For the left out words, if any, permutation of

three of the ASCII characters for each word and if required

permutation of four of the ASCII characters is assigned.

During encoding, the length of the token is determined and the

length is concatenated with the code and is represented by the

ASCII characters 232 - 253 with 232 for two letter word, 233

for three letter word and so on. The calculation reveals that

from a two letter word to a twenty two letter word, single

ASCII character representation could be achieved for 4179

words, which is phenomenal compared to IDBE.

In [19], we described an algorithm called “Improved

Intelligent Dictionary based Encoding” (IIDBE) which is a

reversible transformation that makes the text better

compressible by applying it to a source text that improve an

existing, or backend, algorithm’s ability to compress. This

algorithm has two steps. First one is the creation of the

dictionary and the second is encoding the input data. The

significant change in the creation of dictionary from EIDBE is

for the first 52 words, ASCII characters 65 – 90 and 97 – 122

are assigned as the code. However encoding process remains

the same.

3. REINFORCED INTELLIGENT

DICTIONARY BASED ENCODING

(RIDBE)

It is strongly felt that a more efficient encoding strategy,

offering higher compression ratios, rate of compression and

maintaining confidentiality of the data sent over the channel

by making use of the dictionary for encoding and decoding

will prove to be a much better alternative to the existing one,

by being more viable and useful.

The first stage of the preprocessing block of the proposed

compression scheme consists of two operations.

 The first operation is to transform text into some

intermediate form with Reinforced Intelligent Dictionary

Based Encoding (RIDBE) scheme.

 The encoding of the transformed text can then be carried

out with a BWT stage.

The preprocessed text is then piped through a Move-To-Front

encoder stage, then a Run Length Encode stage, and finally an

Entropy encoder, usually Arithmetic coding.

The present research of creation of RIDBE, a preprocessing

algorithm, involves two important steps namely creating a

dictionary and encoding the input data.

The process of dictionary creation includes extracting words

from the file and sorting them according to the length of the

word and frequency of occurrence. Finally a dictionary is

created by assigning codes to the words.

The techniques adopted in encoding are reading characters to

form tokens and checking the tokens for their length and

assigning an ASCII character which in turn serves to be the

marker character for decoding.

3.1 Dictionary Creation Algorithm
START

Create Dictionary with source files as input

1. Extract words from the input files one by one and check

whether they are already available in the table. If they are

already available, increment the number of occurrences by

one, otherwise add it and set the number of occurrence to

one.

2. Sort the table by the length of the words in the Ascending

order (Two letter words, Three letter words and so on).

3. Again sort the table by frequency of occurrences in

Descending order according to the length of the word.

4. Start assigning codes with the following method:

 Assign the first 26 (Two letter) words the characters

A – Z (ASCII characters 65 – 90) as the code.

 Now assign each of the remaining words permutation

of two of the characters in the range of A - Z taken in

order.

 If any words remain without being assigned characters,

assign each of them permutation of three of the

characters and finally, if required, permutation of four

of the characters.

5. Repeat the above procedure for three letter words, four

letter words and so on up to twenty two letter words

because the maximum length of an English word is 22

[15].

6. The created file which consists of only words and their

codes serves as the dictionary file.

STOP

3.2 Encoding Algorithm
Start encoding with input file

A. Read the Dictionary file

B. While input file is not empty

1. Read the characters from the input file and form

tokens.

2. If the token is longer than one character, then

i) Search for the token in the table

ii) If it is found,

a. Find the length of the token

b. The actual code consists of the length

concatenated with the code in the table and the

length serves as the end marker for decoding

and is represented by the ASCII characters

232 – 253 with 232 for two letter words, 233

for three letter words, … and 252 for twenty

two letter words and 253 for words which are

greater than twenty two letter words.

Else

a. If the character preceding the token is a space,

a marker character (ASCII 254) is inserted to

indicate the presence of a space and if it is not

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.12, August 2012

38

a space then a marker character (ASCII 255) is

added to indicate the absence of a space.

iii) Write the actual code into the output file.

iv) Read the next character and

 If it is a space followed by any alphanumeric

character, ignore the space.

 If it is a space followed by any non-

alphanumeric character, a marker character

(ASCII 254) is inserted to represent the

presence of a space and if it is not a space but

any other character, a marker character

(ASCII 255) to indicate the absence of a space

and the characters are written into the output

file till another space or an alphanumeric

character is encountered.

 Go back to B.

Endif

Else

i) Write the one character token.

ii) Before writing it, check the character preceding

the one character token. If it is a space, a marker

character (ASCII 254) is added to indicate the

presence of the space and if it is not a space, a

marker character (ASCII 255) is added to

represent the absence of the space.

iii) If the characters is one of the ASCII characters

(232 – 255), write the character once more so as to

represent that it is a part of the text and not a

marker character.

Endif

End (While)

C. Stop

3.3 Decoding algorithm
The compressed text received is first decoded using the same

compressor used at the sending end and the encoded text is

recovered.

Start decoding with the encoded file

A. Read the dictionary file

B. While encoded file is not empty

[Marker Characters: ASCII value of the character is

greater than or equal to 232 and less than or equal to 253]

1. Read the next character and

a. If the ASCII character is within the range of 65 –

90 then

 A word is formed till a marker character is

encountered.

 The word length is calculated and the word is

searched in the dictionary file in the respective

length block and at the respective position in

that block.

If it is found then

o The corresponding English word for the code

is found and it is written to the output file.

o Before writing it, if the ASCII value of the

character preceding the marker character is

255, a space is not inserted and if it is 254, a

space is inserted.

o Go back to 1.

Else

o Write it into the output file as such.

o Before writing it, if the ASCII value of the

character preceding the word / character is 255,

a space is not inserted and if it is 254, a space

is inserted.

o Go back to 1.

Endif

b. Else if the ASCII character is within the range of

1 – 64 and 91 – 231 then

 Write it into the output file as such.

 Before writing it, if the ASCII value of the

character preceding the word / character is 254,

a space is inserted and if it is 255, space is not

inserted.

 Go back to 1.

c. Else

 If the ASCII value of the character preceding

the word / character is 254, a space is inserted

and if it is 255, a space is not inserted.

 If the ASCII value of the character and its

preceding character is same (i.e., 232 – 255), it

is a part of the text and not a marker character

and it is represented only once and before

writing it check the third character to the left

of the character read, and if the ASCII value is

255, a space is not inserted and if it is 254, a

space is inserted.

 Go back to 1.

Endif.

End [While]

C. Stop

4. EXPERIMENTAL RESULTS
This section has as its main thrust a comparison of the

performance of RIDBE with six cases: Simple BWT, BWT

with Star encoding, BWT with IDBE, BWT with EIDBE and

BWT with IIDBE and BWT with our proposed algorithm

RIDBE. The measurements are centered around compression

results in terms of BPC (Bits Per Character). Benchmark files

from Calgary and Canterbury Corpuses are invariably used to

validate the performance of the compression scheme.

Performance of RIDBE in comparison with Simple BWT,

BWT with Star encoding, BWT with IDBE, BWT with

EIDBE and BWT with IIDBE in Calgary Corpus is shown in

Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.12, August 2012

39

It has been observed that, in most of the cases, a better

compression is achieved by using RIDBE as the preprocessing

stage for the BWT based compressor. Taking the average

BPC for all the text files the results can be summarised as

follows:

 An improvement of 19.08% is recorded when we take into

reckoning the comparison between the average BPC using

simple BWT which is 2.62 and using BWT with RIDBE

which is 2.12.

 The average BPC using BWT with *-encode is 2.34 and

with BWT with RIDBE the average BPC is 2.12, and so

the overall improvement is 9.40%.

 The average BPC using BWT with IDBE is 2.19, and with

BWT with RIDBE the average BPC is 2.12, which is 3.20%

improvement.

 An improvement of 1.85% is logged when we take into

account the comparison between the average BPC using

BWT with EIDBE which is 2.16 and using BWT with

RIDBE the average BPC is 2.12.

 The average BPC using BWT with IIDBE is 2.14, and

with BWT with RIDBE the average BPC is 2.12, which is

about 1% improvement.

The improvement in average BPC results of RIDBE in

comparison with Simple BWT, BWT with *-encoding, BWT

with IDBE, BWT with EIDBE and BWT with IIDBE is

shown in Figure 2.

5. CONCLUSION
It has been our earnest endeavor, in this paper, to propose a

reversible lossless text transformation called Reinforced

Intelligent Dictionary Based Encoding (RIDBE). The final

Table 1. BPC Comparison of RIDBE with Simple BWT, BWT with Star encoding, BWT With IDBE, BWT with EIDBE and

BWT with IIDBE in Calgary Corpus

File Names
File size

in bytes

Simple BWT
BWT With

* Encode

BWT with

IDBE

BWT with

EIDBE

BWT with

IIDBE

BWT with

RIDBE

BPC BPC BPC BPC BPC BPC

bib 1,11,261 2.11 1.93 1.69 1.76 1.76 1.74

book1 7,68,771 2.85 2.74 2.36 2.53 2.47 2.45

book2 6,10,856 2.43 2.33 2.02 2.18 2.15 2.13

news 3,77,109 2.83 2.65 2.37 2.52 2.49 2.48

paper1 53,161 2.65 1.59 2.26 2.19 2.17 2.14

Paper2 82,199 2.61 2.45 2.14 2.13 2.12 2.09

paper3 46,526 2.91 2.60 2.27 2.15 2.12 2.08

paper4 13,286 3.32 2.79 2.52 2.19 2.17 2.14

paper5 11,954 3.41 3.00 2.80 2.48 2.47 2.45

paper6 38,105 2.73 2.54 2.38 2.24 2.24 2.21

progc 39,611 2.67 2.54 2.44 2.32 2.33 2.31

progl 71,646 1.88 1.78 1.76 1.70 1.70 1.7

trans 93,695 1.63 1.53 1.46 1.70 1.68 1.7

Average BPC 2.62 2.34 2.19 2.16 2.14 2.12

Fig 2. Chart showing the efficient comparison of RIDBE representing BPC comparison of Simple BWT, BWT with *-Encode,

BWT with IDBE, BWT with EIDBE and BWT with IIDBE.

0

0.5

1

1.5

2

2.5

3

3.5

4

bib book1 book2 news paper1 Paper2 paper3 paper4 paper5 paper6 progc progl trans

File Names

B
P

C

Simple BWT

BWT with *-Encode

BWT with IDBE

BWT with EIDBE

BWT with IIDBE

BWT with RIDBE

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.12, August 2012

40

results as shown in Table 1 are a clear indicator to the fact that

there is a significant improvement in text data compression.

Also, the coding mechanism involved helps maintaining

confidentiality between the encoder and the decoder as the

dictionary used is known only to them. There will be a

reduction in the time of the transmission of data, which is due

to the marked improvement in data compression. The

employment of more efficient and reinforced dictionary is

seen to enhance the efficiency of sorting data before

compression through preprocessing stage. RIDBE shows an

improvement of 19.08% over Simple BWT, 9.40%

improvement over BWT with *-encode, 3.20% improvement

over BWT with IDBE, 1.85% over BWT with EIDBE and

about 1% over BWT with IIDBE. ASCII characters 65 to 90

are the codes used for words in the dictionary aiming towards

better compression and to exploit the natural redundancy of

the language. There are a few limitations to this area of

research, notwithstanding the advantages already enumerated.

It is identified that the scope for the successful compression is

achieved where majority of the characters are alpha numeric

and wherever the non alpha numeric characters are used the

compression rate is little less. There is a scope for further

research that may lead to improved Data compression.

6. REFERENCES
[1] Arnavut. Z, “Move-to-Front and Inversion Coding”,

Proceedings of Data Compression Conference, IEEE

Computer Society, Snowbird, Utah, March 2000, pp.

193- 202.

[2] Awan S, Mukherjee A, “LIPT: A Lossless Text

Transform to improve Compression”, IEEE, 2001,

pp.452-460.

[3] Balkenhol. B, Kurtz. S, and Shtarkov Y.M,

“Modifications of the Burrows Wheeler Data

Compression Algorithm”, Proceedings of Data

Compression Conference, IEEE Computer Society,

Snowbird Utah, March 1999,pp. 188-197.

[4] Balkenhol B and Shtarkov Y, “One attempt of a

compression algorithm using the BWT”, SFB343:

Discrete Structures in Mathematics, Faculty of

Mathematics, University of Bielefeld, Germany, 1999.

[5] Burrows M and Wheeler D.J, “A Block – sorting

Lossless Data compression Algorithm”, SRC Research

report 124, Digital Research Systems Research Centre,

1994.

[6] Chapin B., and Tate S, “Preprocessing Text to Improve

Compression Ratios”, Proceedings of the IEEE Data

Compression Conference 1998, Snowbird, p. 532.

[7] Chapin B, “Higher Compression from the Burrows–

Wheeler Transform with new Algorithms for the List

Update Problem”, Ph.D. dissertation, Department of

Computer Science, University of North Texas, 2001.

[8] Cleary J G., Teahan W J., and Ian H. Witten,

“Unbounded Length Contexts for PPM’, Proceedings of

Data Compression Conference, IEEE Computer Society,

Snowbird Utah, March 1995, pp. 52-61.

[9] Effros M, “PPM Performance with BWT Complexity: A

New Method for Lossless Data Compression”,

Proceedings of Data Compression Conference, IEEE

Computer Society, Snowbird Utah, March 2000,

pp. 203-212.

[10] Franceschini R, Mukherjee A, “Data Compression using

Encrypted Text”, IEEE Proceedings of ADL, 1996,

pp.130-138.

[11] Horspool N and Cormack G, “Constructing Word–Based

Text Compression Algorithms”, Proceedings of the IEEE

Data Compression Conference 1992, Snowbird,

pp. 62–71.

[12] Kruse H and Mukherjee A, “Improving Text

Compression Ratios with the Burrows–Wheeler

Transform”, Proceedings of the IEEE Data Compression

Conference 1999, Snowbird, p. 536.

[13] Kruse H, Mukherjee A, “Preprocessing Text to improve

Compression Ratios”, Proc. Data Compression

Conference, 1998, IEEE Computer Society Press, 1997,

p.556.

[14] Moffat A, “Implementing the PPM Data compression

scheme”, IEEE Transaction on Communications, Vol.

38, No. 11, 1917-1921, 1990.

[15] Radu Radescu, “Transform methods used in Lossless

compression of text files”, Romanian Journal of

Information Science and Technology”, Volume 12,

Number 1, 2009, 101 – 115.

[16] Robert L and Nadarajan R, “Simple lossless

preprocessing algorithms for better compression”, The

Institution of Engineering and Technology, IET Software

2009, vol 3, pp.37-45

[17] Sadakane K, Okazaki T, and Imai H, “Implementing the

Context Tree Weighting Method for Text Compression”,

Proceedings of Data Compression Conference, IEEE

Computer Society, Snowbird Utah, March 2000, pp. 123-

132

[18] Senthil S, Robert L, “Text Preprocessing using Enhanced

Intelligent Dictionary Based Encoding (EIDBE)”,

Proceedings of Third International Conference on

Electronics Computer Technology, April 2011,pp.451-

455.

[19] Senthil S, Robert L, “IIDBE: A lossless text transform

for better compression”, International Journal of Wisdom

based computing, August 2011, Volume1(2),pp.1-6.

[20] Seward J, “On the Performance of BWT Sorting

Algorithms”, Proceedings of Data Compression

Conference, IEEE Computer Society, Snowbird Utah,

March 2000, pp. 173-182.

[21] Shajeemohan B.S, Govindan V.K, ‘Compression

scheme for faster and secure data transmission over

networks’, IEEE Proceedings of the International

conference on Mobile business, 2005.

[22] Sun W., Zhang N., Mukherjee A. “Dictionary-based fast

transform for better compression”, proc. IEEE Int. Conf.

Information Technology: Coding and Computing, Las

vegas, 2003.

[23] Witten I H., Moffat A, Bell T, “Managing Gigabyte,

Compressing and Indexing Documents and Images”, 2nd

Edition, Morgan Kaufmann Publishers, 1999.

[24] Ziv J and Lempel A, "A Universal Algorithm for

Sequential Data Compression," IEEE Transactions on

Information Theory, pp. 3, 1977.

