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ABSTRACT 

In this paper, a reliability model of a system of two non-

identical units in which one main unit (called original) is 

initially operative and other is a substandard unit which is 

kept as spare in cold standby is examined probabilistically in 

detail under two weather conditions – normal and abnormal. 

Each unit has direct complete failure from normal mode. 

There is a single server who visits the system immediately 

whenever needed. The operation and repair of the units are 

not allowed in abnormal weather. However, operation and 

repair of the units are as usual in normal weather subject to 

the condition that duplicate unit will not work if main unit is 

available for working in the system. The distributions of 

failure time of the units and change of weather conditions 

follow negative exponential while that of repair time of the 

units are assumed as arbitrary with different probability 

density functions. All the random variables are mutually 

independent and uncorrelated. The expressions for some 

important measures of system effectiveness are derived in 

steady state using semi- Markov process and regenerative 

point technique. The graphical study of MTSF, availability 

and profit has also been made on the basis of numerical 

results obtained for a particular case. The results of the 

present paper has also been compared  with the model 

proposed by Malik and  Deswal [6]. 
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1. INTRODUCTION 
In view of their frequent and vital use in modern industry, the 

repairable systems of two or more identical units have been 

investigated stochastically in detail by several engineers and 

researchers including Gopalan and Naidu [1] and Singh [2] 

under strict control of environment conditions such as 

pollution, moisture, voltage and temperature. But in case of 

high cost of identical units, the non-identical unit (may be a 

substandard unit) might be kept as spare in cold standby not 

only to improve the reliability of the system but also to 

maintain performance of the system in emergency. Each unit 

is capable of performing the same kind of functions but their 

degree of reliability and desirability may differ from unit to 

unit. Singh and Chander [3] and Chander et al. [4] discussed 

standby systems of non-identical units with different failure 

and repair policies. Also, some time it is very difficult to keep 

the environmental conditions under control which may 

fluctuate due changing climate and other natural catastrophic.  

While considering this fact in mind, Malik and Barak [5] 

obtained reliability and economic measures of a single- unit 

system with no operation and repair activities in abnormal 

weather. Further, the cold standby systems of non-identical 

units under different weather conditions have not been studied 

so far by the researchers in the field of reliability. The 

application of the present work can be visualized in a system 

constituting of one unit as a power supply through electric 

transformer and other unit generator. 

Hence, in the present paper, a system of two non-identical 

units – one is original (called main unit) and other is a 

substandard unit (called duplicate unit) has been analyzed 

probabilistically in detail under two weather conditions – 

normal and abnormal. For this purpose a reliability model is 

developed. The environmental conditions when satisfied to 

the system correspond to normal weather; otherwise, it is 

supposed that the system is working under abnormal weather. 

Initially, the system is operative with main unit and duplicate 

unit is kept a spare in cold standby. Both units have direct 

complete failure from normal mode. Each unit is capable of 

performing the same set of functions with different degree of 

reliability and desirability. There is a single server who visits 

the system immediately whenever needed to do repair of the 

failed unit. The operation and repair of the units are not 

allowed in abnormal weather. However, operation and repair 

of the units are as usual in normal weather subject to the 

condition that duplicate unit will not work if main unit is 

available for working in the system.  

The distributions of failure time of the units and change of 

weather conditions follow negative exponential while that of 

repair times of the units are taken as arbitrary. All random 

variables are mutually independent and uncorrelated. The 

switch devices and repairs are perfect. The expressions for 

various measures of system effectiveness such as transition 

probabilities, mean sojourn times, mean time to system failure 

(MTSF), availability, busy period of the server and profit 

function in steady state are derived using semi-Markov 

process and regenerative point technique. The numerical 

results giving particular values to the parameters and various 

costs are obtained for MTSF, availability and profit to depict 
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their graphical behavior.   The MTSF and profit of the present 

model have also been compared with that of the model 

investigated by Malik and Deswal [6]. 

 

2. NOTATIONS 

E              :   The set of regenerative states 

MO/DO   :   Main/Duplicate unit is good and operative 

MWO  / 

DWO    :   Main/Duplicate unit is good but waiting for   

                    operation due to abnormal weather 

DCs         :   Duplicate unit is in cold standby mode 

λ / λ1
      

:   Constant failure rate of Original /Duplicate unit 

β / β1     :   Constant rate of change of weather from normal   

                   to abnormal/abnormal to normal weather
             

MFur/DFur   :   Main/duplicate unit failed and under repair 

MFUR/DFUR  :  Main/duplicate unit failed and under   

                            repair continuously from previous state  

MFwr/DFwr   :   Main/duplicate unit failed and waiting for   

                            repair 

MFWR/DFWR :  Main/duplicate unit failed and waiting   

                             for repair continuously from previous   

                                state 

MFwr  / 

DFwr   :   Main/Duplicate unit failed and waiting for   

                    repair due to abnormal weather 

MFWR  / 

DFWR   :  Main/Duplicate unit failed and waiting for   

                    repair continuously from previous state due to   

                    abnormal weather 

g(t)/G(t)      :   pdf/cdf of repair time of Original unit  

g1(t) / G1(t) :   pdf/cdf of repair time of Duplicate unit  

qij (t) / Qij (t) :  pdf/cdf of passage time from regenerative   

                           state i to a regenerative state j or to a   

                           failed state j without visiting any other   

                           regenerative state in (0,t] 

qij.kr (t) /  

Qij.kr (t)       :    pdf/cdf of direct transition time from    

                          Regenerative state i to a regenerative    

                          state j or  to a failed state j visiting state   

                          k,r once in (0,t]  

q ij.k,(r,s)n(t) 

/Qij.k,(r,s)n(t) :  pdf/cdf of direct transition time from   

                           regenerative state i to a regenerative state   

                           j or to a failed state j visiting state k once   

                           and n times states r and s. 

Mi(t)    :   Probability that the system is up initially in   

                 regenerative state Si at time t without visiting to   

                 any other regenerative state 

Wi(t)    :   Probability that the server is busy in state Si upto   

                 time t without making any transition to any   

                 other regenerative state or returning to the same   

                 via one or more non-regenerative states  

mij     :    The unconditional mean time taken by the system    

                to transits from any regenerative state Si Є S   

               when time is counted from epoch of entrance into   

               that state Sj. Mathematically, it can be written as    

               mij= ∫tQij(t)=-qij *'(0) 

μi       
:   The mean sojourn time in state Si  this is given by   

               μi =E(t)=∫P(T>t)dt=∑jmij,where T denotes the   

               time to system failure 

Ⓢ//©n   :   Symbol for Laplace Stieltjes      

                      Convolution / Laplace convolution / Laplace                                        

                      convolution n times    

~ / * :   Symbol for Laplace Steiltjes Transform (LST)/   

                    Laplace Transform (LT)  

' (desh) :   Used to represent derivative 

 

The following are the possible transition states of the system 

S0 = (MO, DCs), S1 = (MFur, DO), S2 = ( MWO  , DCs  ), 

S3=( MFwr  , DWO  ), 

S4 =(MFUR,DFwr),S5=(MO,DFur),  

S6=( MFwr  , DFWR  ), S7=(MFur,DFWR),  

S8=( MWO  , DFwr  ),S9=(MFwr,DFUR) 

,S10 =( MFWR  , DFwr  ), S11=(MFWR,DFur) 

The states S0, S1,S2,S3,S5,S8  are regenerative  while the 

 states S4,S6,S7,S9,S10,S11 are non -regenerative as shown in 

 figure1. 
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3. RELIABILITY INDICES 

3.1 Transition Probabilities and Mean 

Sojourn Times 

Simple probabilistic considerations yield the following 

expressions for the non-zero elements  

                                pij=Qij(∞)=∫qij

 
as 

p01=



 
 , p02=



 
 , p10=g*(β+λ1), 

p13=
1



 
(1-g*(β+λ1), p14=

1

1



 
(1-g*(β+λ1), 

 

 

 

 

p20=1,p31=1,p45 =g*(β), p46=1-g*(β),p50=g1*(β+λ), 

p58=



 
(1-g1*(β+λ)),p59=



 
(1-g1*(β+λ)), 

p67=1,p75=g*(β),p76=1-g*(β),p85=1,p91=g1*(β), 

p9,10=1-g1*(β),p10,11=1,p11,1= g1*(β),p11,10=  1-g1*(β) 

                                                                              (1)                                                                                                  

It can be easily verified that 

p01+p02=p10+p13+p14=p20=p31=p45+p46=p50+p58+p59=1, 

p67=p75+p76=p85=p91+p9,10=p10,11=p11,1+p11,10=1 

                                                                              (2) 

The mean sojourn times (μi)  in the state Si are  
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μ0 = 

1

 
 , μ1 = 

1

1

 
(1-g*(β+λ1)),μ2  

=

1

1


,μ3=

1

1


,μ4=

1


(1-g*(β)) 

,μ5=
1

 
(1-g1*(β+λ)), 

μ6=

1

1


,μ7=

1


(1-g*(β)),μ8=

1

1


, 

μ9=
1


(1-g1*(β)),μ10=

1

1


,μ11=

1


(1-g1*(β))       

                                                                                         (3)                                                                     

it can be observed that 

m01+m02= μ0 ,m10+m13+m14=μ1 ,m20=μ2,m31=μ3,  

m45+m46=μ4,  m50+m58+m59= μ5,   

m67=μ6,m75+m76=μ7,m85=μ8,m91+m9,10=μ9,m10,11=μ10,m11,

1+m11,10=μ11                                                      (4)                                                                                        

and  

μ1
'=m10+m13+m15.4+m15.4,(6,7)

n,μ5'=m50+m51.9+m51.9,(10,11)
n

+m58                                                                   (5)          

3.2 Reliability and Mean Time to 

System Failure (MTSF)           

Let i(t)  be the cdf of first passage time from 

regenerative state i to a failed state.  

Regarding failed state as absorbing state, we have 

following recursive relations for  i(t): 

 0(t) = Q01 (t)Ⓢ 1(t) + Q02(t)Ⓢ 2(t)  

 1(t) = Q10(t)Ⓢ 0(t)+Q13(t)Ⓢ 1(t)+Q14(t)  

 2(t) = Q20(t)Ⓢ 0(t) ,    3(t) =Q31(t)ⓈФ 1(t)  

                                                                               (6) 

Taking LST of above relation (6) and solving for )(
~

0 s  

We have  

R*(s)=
s

s)(
~

1 0

                                                      

                                                                               (7)               

 

The reliability of the system model can be obtained by 

taking Laplace inverse transform of (7).  

The mean time to system failure (MTSF) is given by 

      MTSF =
s

s

os

)(
~

1
lim 0


= 

1

1

N

D
  

                                           (8) 

where 

N1=p01(p13μ3+μ1)+(1-p13)(μ0+p02μ2) 

D1=p01p14                                                                                                                                                                                                    

3.3 Steady State Availability 

Let Ai(t) be the probability that the system is in up-state 

at instant ‘t’ given that the system  

entered regenerative state i at t = 0.The recursive 

relations for ( )iA t  are given as 

A0(t) = M0(t) +q01(t) © A1(t) + q02(t) © A2(t) 

A1(t) = M1(t) +q10(t)©A0(t)+ q13(t) © A3(t) 

+(q15.4(t)+q15.4,(6,7)
n(t)) ©A5(t) 

A2(t) = q20(t) © A0(t) , A3(t) =q31(t)©A1(t)  

A5(t)=   

M5(t)+q50(t)©A0(t)+(q51.9(t)+q51.9,(10,11)
n(t))©A1(t)+q58(t)

©A8(t) 

A8(t)=   q85(t)©A5(t)                                                                                                                 

(10)      

where Mi(t) is the probability that the system is up 

initially in state Si  E  is up at time t without  

visiting to any other regenerative state, we have 

M0(t)=e-(β+λ)t,   M1(t)=e-(β+λ
1
)t G(t)  ,    M5(t)=e-

(β+λ)t G1(t)                                                       (11) 

Taking LT of above relations (10) and solving for 

*

0 ( )A s . The steady state availability is  

given by  

     

*

0 0
0

( ) lim ( )
s

A sA s


  2

2

N

D


              (12)                                                                                                               

where  

N2=μ0((1-p13)(1-p58)-p14p59)+μ1p01(1-p58)+p01p14μ5    

and 

D2=(1-

p58)(p01(μ'1+p13μ3)+m01p10)+p14(p01(μ'5+p58μ8)+m01p50)+(

m02+p02μ2)((1-p58)(1-p13)-p14p59)       

                                                                                     (13) 

3.4 Busy period analysis for server 

Let Bi(t)  be the probability that the server is busy in 

repairing the unit at an instant 
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‘t’ given that the system entered regenerative state i at 

t=0.The recursive relations for  Bi(t) are as follows: 

B0(t)=q01(t)©B1(t)+q02(t)©B2(t) 

B1(t)=W1(t)+q10(t)©B0(t)+q13(t)©B3(t)+(q15.4(t) 

+q15.4,(6,7)
n(t))©B5(t) 

B2(t)=q20(t)©B0(t),B3(t)=q31(t)©B1(t) 

B5(t)=W5(t)+q50(t)©B0(t)+(q51.9(t)+q51.9,(10,11)
n(t)) 

©B1(t)+q58(t)©B8(t) 

B8(t)=q85(t)©B5(t)                                         (13)
 

where ( )iW t  be the probability that the server is busy 

in state Si due to  failure upto time t without making any 

transition to any other regenerative state or returning to 

the same via one or more non-regenerative states . 

so, 

W1(t)=e-(β+λ
1
)t G(t)  +(λ1e

-(β+λ
1
)t©1) G(t)  ,W5(t)=e-

(β+λ)t G1(t)  +(λe-(β+λ)t©1) G1(t)                (14) 

Taking LT of above relations (13) . And, solving for B0* 

(s), the time for which server is busy due to repair is 

given by 

B0*(∞)= 0
*(s) =

3

2

N

D
 

where 

N3=p01(W1*(0)(1-p58)+p14W5*(0)) 

and 2D  is already mentioned. 

3.5 Expected number of visits by the 

server 

Let  Ni(t) be the expected number of visits by the server 

in (0,t] given that  the system entered 

the regenerative state i at t=0. The recursive relations for 

Ni(t) are given as : 

N0(t) = Q01(t) Ⓢ[1+N1(t)] + Q02(t) ⓈN2(t) 

N1(t)=Q10(t)ⓈN0(t)+Q13(t) 

ⓈN3(t)+(Q15.4(t)+Q15.4,(6,7)
n(t))ⓈN5(t) 

N2(t)=Q20(t)ⓈN0(t) , N3(t)=Q31(t)ⓈN1(t) 

N5(t)=Q50(t)ⓈN0(t)+(Q51.9(t)+Q51.9,(10,11)
n(t))ⓈN5(t)+Q58

(t)ⓈN8(t) 

N8(t)=Q85(t)ⓈN5(t)                                          (15) 

Taking LST of relations (15) and solving for
0 ( )N s% . 

The expected number of visits per unit time by the server 

is given by 

0 0
0

( ) lim ( )
s

N sN s


  % = 4

2

N

D
                                (16) 

where  

N4= p01((1-p13)(1-p58)-p14p59) 

and D2 is already specified. 

 

3.6 Profit Analysis 

The profit incurred to the system model in steady state can be 

obtained as 

Pi=K0A0-K1B0-K2N0 

where 

K0=Revenue per unit up-time of the system 

K1=Cost per unit for which server is busy 

K2= Cost per unit visit by the server and A0,B0,N0  are already 

defined.               

4. CONCLUSION 

Giving some particular values to the parameters and various 

costs, the numerical results for MTSF, availability and profit 

function are obtained to depict their graphical behavior with 

respect to normal weather rate (β1) keeping fixed values of 

other parameters as shown in figures 2, 3 and 4 respectively. 

From figure 2, it is observed that MTSF declines with the 

increase of normal weather rate (β1) and failure rates (λ, λ1) of 

the units. But MTSF increases with increase of abnormal 

weather rate (β) and repair rate (α) of the main unit. Figures 3 

and 4 show that availability and profit of the system model go 

on increasing with increase of normal weather rate (β1) and 

repair rates (α and α1) of the units. However, there is a 

downward trend in the values of these measures as and when 

values of abnormal weather rate (β) and failure rates (λ and 

λ1) increase. On the basis of the results obtained for a 

particular case, it is concluded that a cold standby system of 

non-identical units  will be more profitable if it is allowed to 

operate under controlled weather i.e. normal weather. If we 

compare the MTSF and Profit of the present model with that 

of the model Malik and Deswal [2012], it is found that MTSF 

of both the models is same however, the present model is less 

profitable. Hence, we conclude that priority to the operation 
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and repair of  original unit should be given over the duplicate 

unit in order to improve the profit of the model. 
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