
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.11, August 2012

20

Integrated Manufacturing Management using
Internet of Things

 Roberto A. Dias

Embedded and Distributed
System Group - IFSC- Brazil

Mauro Ramos Av, 950.

 88020-300. Florianópolis – SC

Igor T. M. Mendonça

Embedded and Distributed
System Group - IFSC- Brazil

Mauro Ramos Av, 950.

 88020-300. Florianópolis – SC

Adriano Regis
Embedded and Distributed

System Group -IFSC- Brazil
Mauro Ramos Av, 950.

 88020-300. Florianópolis – SC

ABSTRACT

The integration between programmable logic controllers

(PLCs) and supervision and control software’s has been a

critical factor for industrial production management. The goal

of this work is to show a new approach for development of an

integration framework for industrial processes using the best

practices of Service Oriented Architecture (SOA) and the

recent integration technology called Devices Profile for Web

Services (DPWS). The main result is a functional prototype

used in a small-scale bottle filling industrial process, using

DPWS technology. Through this scenario was possible to

validate the model’s feasibility on the industrial environment,

making the model’s performance evaluation and observing the

characteristics of notification, description, discovery,

reporting and control messages.

Keywords

Internet of Things, Manufacturing Automation, DPWS, Web

Services.

1. INTRODUCTION
The growing need for effective integration and secure data

collection from devices installed on the workshop in order to

improve the decision making in corporations, demands

innovative concepts of production management to increase

flexibility and modularity of systems. This is only possible

using information technology and communication.

The future of manufacturing industry can be characterized

mainly by frequent change of market demands, the time to

market pressure, the continuous flow of new emerging

technologies and especially the global competition. Thus, it is

of great importance to adopt flexible and adaptable

technologies [1].

The operating cost of a plant is strongly linked to the facilities

installation and maintenance. Whenever an industrial process

is altered due to the replacement or modification of a product,

reconfigurations should be performed with risks of production

interruption, increasing the operating costs. Existing

technologies have contributed so far to the development of

industrial processes, but its features do not include the new

requirements demanded by industries. According to Souza [2]

the main problem is that these technologies depend on each

device having a controller driver to communicate with a

system database. This driver provides information for the

communication device with a given system. These solutions

are restricted to the system and device supported by these

driver or resource, and strongly depends on the connectivity

between the device and the database.

There is a need for technologies to improve workshop

integration with information management systems, with a

direct, independent and transparent platform. A recent

alternative is the use of Service-Oriented Architecture (SOA)

that, according Papazoglou [3]: "It is the characterization of

distributed systems, where the system's functionality is

exposed through an interface that allows description, location

and invocation through a standardized format." The SOA has

as main objective, the ability to connect a wide variety of

systems without the use of proprietary software in order to

achieve a truly open interoperability.

SOA by itself is a concept that allows two programs that were

written in different languages and are running in different

operating systems, to communicate in an easier integration by

adopting an open and independent platform.

Within this context, this paper aims the development of a

model for the integration between existing devices in

industrial environments with supervision and control

software’s using an actual paradigm, “The Internet of Things”

[4]. In order to achieve this, we used the concepts of Service

Oriented Architecture using the Devices Profile for Web

Services DPWS [1].

2. INTERNET OF THINGS
In the present study, we adopted a new approach to integrate

data collected in the workshop with enterprise information

management systems, using as intermediary software layer

(middleware) by use of Web technologies and software

architectures that adhere to a new paradigm of development

called "Internet of Things" - IoT.

2.1 Definition

According Atsori [4], IoT is a new paradigm that is gaining

importance especially in the modern system of wireless

communication and identification systems for radio frequency

tags (RFID). This new approach favors the development of

applications that integrate physical systems such as sensors,

actuators, mobile devices and smart phones with an

environment of cooperation and interoperability.

In this sense, IoT appears as a "glue" that allows integrating

diverse environments. Devices used in everyday life, like

sensors and actuators are integrated via the Internet

communication systems wired or wireless. Among the main

elements used in the implementation of IoT there are the

adoption of intermediary software layer (middleware) based

on SOA and should be performed in the physical device.

In this work, the Devices Profile for Web Services (DPWS)

specification was adopted as a middleware to develop an

application based on IoT. The implementation of DPWS

adopted in this work was based in the DOT NET Micro

Framework (NETMF) ported to a development platform

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.11, August 2012

21

based on a microcontroller with compatible ARM 7 core,

called NETduino Plus.

3. DPWS
The DPWS defines a minimum set of functionalities that

allows devices with limited computational resources to

execute Web Services (WS). This minimal set is basically

formed by an exchange of secure messages provided by

discovery services, notification services, events services,

description services, allowing direct implementation on

embedded devices, in general, without compromising

compliance with the standardization of WS.

3.1 Architecture
The DPWS protocol stack is shown in Figure 1 and is

composed of standard protocols and some WS extensions. An

important detail, shown in Figure 1, is that the specification

for the DPWS [5] defines that it needs SOAP and WSDL in

version 1.2.

Figure 1. DPWS Protocol stack.

3.2 Standardization
The DPWS specifies the SOAP-over-UDP and Web Services

Dynamic Discovery [5]. It was initially developed by a

consortium composed by Microsoft, Ricoh, Intel and

Lexmark, currently standardized by OASIS, through a

technical committee under the alias WS-DD. Currently the

three specifications are in version 1.1

3.3 DPWS Model
In the DPWS computational model the devices can take on

different roles: consumers of services (clients), services or

even both. In the case of services, two types are distinguished:

hosting services and hosted services. Figure 2 illustrates the

two types of services.

UDP multicast port

Hosting Service (Device)

Eventos

operações

Eventos

operações

Hosted Service
(Service Application)

Event

Service Activation

WS- Discovery

HTTP port

WS-Transfer

WS-MetadataExchange

WS-Eventing

Event Services
- Subscription management

Discovery Services
- Local metadata publishing

- Remote metadata cache

- Address map

Execution services
- SOAP 1.2 engine

- Addressing API (WS-Addressing)

Notification

Subscription
Invocation

Soap 1.2 over UDP

WS-Addressing

Soap 1.2

WS-Addressing

Figure 2. DPWS computational model [6].

The so-called hosting service is an important part of the

DPWS model. Several of the non-functional aspects that work

in the evolution of application services are concentrated on

hosting service components, on the form of built in services.

Services that enable dynamic discovery and exchange of

metadata (WSDL interfaces and their attachments as WS-

Policy, XML Schemas) are examples of these services based

on the component device. The engine itself of the Protocol

SOAP 1.2 is also part of the component hosting services.

The hosted services are specific WS applications and provide

the behavior of the application. A device may have several

hosted services, each having their own endpoint and that's

where the name “hosted service” comes from. These hosted

services are device’s dependent. To simplify the use of its

hosted services, the discovery service also can be included.

The hosted services involve four areas: discovery services,

event services, description and messaging services.

Dynamic Discovery Services are used by devices to advertise

their services on a network and be discovered by customers.

The WS-Discovery protocol uses the stack of SOAP on the

UDP / IP multicast to transmit and listen to the messages of

discovery. On “W3C Recommendation” [7] are defined the

publishing services (event sources) and the data record on an

event source. The combination of application services

included with these services allow customers to sign up and

receive asynchronous messages (events) produced by hosted

services. Metadata for hosted services are available to

customers through the use of WS-Metadata Exchange

specifications. The message exchanges occur following the

specifications of SOAP 1.2, as previously reported. The

header information follows the WS-Addressing specification,

enabling their availability for any transport protocol (HTTP,

SMTP, TCP, UDP, etc.).

4. INTEGRATED MANAGEMENT OF

MANUFACTURING USING DPWS
One common problems faced by industry is the integration

between programmable logic controllers (PLCs) with SCADA

(Supervisory Control and Data Acquisition) and other PLCs.

This integration is done through drivers that need to be

programmed by the developers of each SCADA system.

One of the existing solutions on the integration of industrial

networks is the use of Object Linking and Embedding for

Process Control (OLE for process control or simply OPC).

The OPC provides a common way to connect data sources

like PLCs, automation devices and database with an

application server. The OPC connects the sources of data

(automation devices) with the applications, like connecting

SCADA and the PLC, for example. OPC technology is based

on the Distributed Common Object Model (DCOM).

Developed by Microsoft for distributed computation, it allows

the integration of industrial applications and data sharing

using local objects via Local Area Network - LAN [8].

However, many features inherent to the DCOM, affect

applications performance in some situations. Some of its

disadvantages are:

• It is platform dependent;

• The high complexity of the messages generated;

• The messages sending over the Internet is difficult due to the

presence of firewalls [9][10];

Specific Protocol Stack
WS - Discovery WS - Eventing

WS - Security
WS - Policy

WS - MetadataExchange
WS - Addressing

SOAP 1 . 2
WSDL 1 . 1 , XML Schema

UDP
HTTP 1 . 1

TCP

IPv 4 / IPv 6

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.11, August 2012

22

Another technology like DCOM is the Common Object

Request Broker Architecture (CORBA) that is platform

independent, but contains some deficiencies among other

DCOM applications.

With this in mind, the integration of PLCs with other devices

in the industrial environment, using cross-platform technology

that includes features as: self-description of their function,

self-discovery, and events orientation, is the main challenge of

this work.

4.1 Problem Definition
The first advantage of our approach is the low coupling

between the client and server applications. By using SOA, the

Web Service is developed to be consumed by the customer

with little or no knowledge of the existing code in the Web

Service, enabling the interaction between client and server,

using only existing operations in Web Service. The lower the

coupling, the easier will be to reuse of the code [11].

Another advantage is the use of consolidated Web Services

protocols and standards. The XML is used as a way of

formatting information and uses the HTTP protocol as a

transport. Since HTTP is supported on any platforms that

allow viewing of web pages, and XML is a standard transport

and data storage that uses plain text, Web services become

independent of platforms and systems.

As previously mentioned, the use of the precepts of SOA

through Web services as a tool for integration of distributed

systems, is already widely used for general IT purposes. But

the idea of using the service paradigm for communication of

embedded systems is just beginning. Using the SOA, this

paper aims to expand the integration of SCADA software and

DSS (Decision Support Systems) from the workshop level to

the enterprise systems, by the use of services embedded in the

PLC.

By treating the CLP as a Web service, it exposes its features,

eliminating the need for device drivers or integration

technologies such as OPC. Procedures for configuration or

reconfiguration can be automated through self-discovery and

self-description features inherent to services.

As an example, a beverage plant uses one of their treadmills

for bottles of 600 milliliters, but a new requested

configuration is needed for bottles of 355 milliliters. This

configuration can be done directly by the supervision and

control software, through an existing operation in the Web

service embedded in the PLC.

Another example is the replacement of a PLC due to any

problem. Through the discovery service, the characteristics of

the new PLC are obtained. Thus, the Web Service can be

automatically selected and configured accordingly to the new

PLC without the need of drivers or OPC servers. When the

new PLC is installed and connected to the network, a message

will be sent to the SCADA software announcing the new PLC

and describing its features, which can be aggregated by the

supervision and control software.

4.2 Proposed Solution
The model presented in Figure 3 is based on the concepts of

SOA in the context of advertising, dynamic discovery and

auto description of the services in each element of the

industrial environment. To accomplish this, it is proposed the

DPWS as an integration technology (middleware) of the

various elements.

Figure 3. Model Solution Based on SOA.

By embedding a Web service in the device, such as a PLC, it

creates the concept of a "universal" driver, which supports any

operating system or software platform. Once the PLC is

connected to the TCP / IP network, it will be announced, and

the applications will have its description in order to use it.

4.3 Development Platform
As a development platform for embedded Web Service, is

proposed NETDUINO PLUS [12]. A hardware based on the

ARM7 processor manufactured by Atmel. This platform is

programmable in C# on the environment Dot NET Micro

Framework (NETMF), version 4.1.

The NETMF was developed by Microsoft as a platform for

developing embedded systems, using at least 250 KB of

RAM. The main objective with NETMF was the development

of embedded systems with high-level languages, making

faster development of embedded applications and effortless

code maintenance.

The development of applications using NETMF can be

accomplished through the Visual Studio program, a tool

widely used for developing applications on Windows and

Internet. Visual Studio, for example, has tools provided for

recording, debugging and emulation.

By launching the NETMF 4 in November 2009, Microsoft

released its code through Apache 2.0 license, which allows

free use and distribution of source codes and the final

applications, royalties free [13].

As a validation scenario, was adopted a simple bottle filling

industrial process.

The manufacturing process is simple. It contains two sensors,

a timer in the PLC and an electric motor. In spite of its

simplicity, the process is sufficiently complex to study the

characteristics of the model.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.11, August 2012

23

4.4 Embedded Web Service

The web service was developed through Dot NET Micro

Framework (NETMF) API. It was modeled so that we could

get and send information to the PLC. To prevent network

overload with signaling messages, was created an event

service to read the device memory only when a particular

memory location has its value changed. It can be seen in

Figure 4 the methods used.

Figure 4. PLC Web service Class.

The service was modeled in the form of class "CLP Service",

which inherits the features of a hosted service "Dpws Hosted

Service".

4.5 DPWS Client
The DPWS client is a simple HTTP client to send messages to

a HTTP server and processing received XML messages.

Everything is organized so that it is possible to interpret the

SOAP messages and control events.

4.6 Security Service
Mendonça [14] proposed a security DPWS extension with the

specific use of the WS-Security specification, which was used

in this work. The WS-Security is the main security

specification for Web services and relies on standards XML-

Signature and XML-Encryption to provide secure message

exchanges. The specification is intended to be flexible and

allows the use a wide variety of security mechanisms. This

makes possible to provide support for different types of

security credentials (security tokens), multiple signature

formats and various data encryption technologies. The

simplicity e variety of options is important to achieve

interoperability between different technologies.

In the literature, some studies advocate in the most emphatic

manner the use of WS-Security in the model of the DPWS.

With that, it is possible rely properties of reliability,

authenticity and integrity at application level protocols with

end to end security guarantees. This is the path taken in the

experiments with the DPWS in this work.

In Figure 5 is illustrated as a result, a Security Service used in

the DPWS model. This service provides the interception of

incoming and outgoing device messages doing the needed

WS-Security message processing.

Security Service

M
A

N
A

G
E

R

Policy Locator

Policy Processor

Security Engine
WS-Security

 - XML-Encryption

 - XML-Signature

Policies

cache

Encryption

S
O

A
P

 1
.2

M
es

sa
g
es

Security context
(Secure channel for context security)
- Algorithms, keys, credentials, etc.

Signatures

search

registry

create notify

Retrieve context data

request
request

create context

send policy

send

Figure 5. Features Security Service

Table 1 describes the Security Service modules presented in

Figure 5 and the features of the elements shown in the same

figure. Encryption and signature modules are implemented as

a need for the application developed in the device and other

modules are fixed elements of the architecture. The reason for

the variation of signatures and encryption APIs is the diversity

of existing encryption algorithms. Each device may have its

implementation according to their computing power and

security requirements.

Table 1. Security Service Modules

Modules Function

Encryption and

Signature APIs

These modules are available in the form

of libraries and are responsible for data

encryption and decryption and rules for

signing and verification, respectively. It

implementation will vary depending on

the needs and capabilities of the device.

Security

Contexts

For each secure channel established with

the device, is created a security context

stored in the form of security policy

(WS-Policy).

Policies Cache This module keeps the policies metadata

repository of the service interfaces that

compose the device’s recent knowledge.

Policies Locator

This component is used for storage and

retrieving policies. It identifies and

stores in the local cache the policies

shared with known peers devices.

Policies

processor

Performance comparison of policies. In

the process of establishing a secure

channel, this module will create a valid

security context.

Security Engine Encrypts, decrypts, sign and verify

signatures in SOAP messages according

to the WS-Security.

Manager Link between the components

responsible for making decisions and

answers to their peers. This module

intercepts the messages and defines the

need to implement mechanisms and

policies that act on the messages.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.11, August 2012

24

5. RESULTS
To evaluate the proposed manufacturing management system

based on DPWS, it was assembled a prototype bottle filling

system according to the diagram in Figure 6.

Figure 6. Test Apparatus.

The process starts with the engine running, which is stopped

when the bottle reaches the sensor valve (SV). In this point

other engine opens the valve (LV) in a preprogrammed time

valve interval (TV). This time (TV), sets the amount of liquid

to be loaded into the bottle. When the timer reaches the value

expected, the valve will close and the motor continues until

the end line sensor (SC), indicating that the bottle is in the

box. Finally when the last bottle is placed in the box, it will be

activated the full box LED (LC), which indicates that the

bottle tray is complete.

The DPWS Service is responsible for supervision and control

and supports the following features:

• Adjustment of open valve time and number of bottles per

tray;

• Start of production;

• Production Stop;

• Sending notices to each full tray completed.

To generate the notification “full box complete", we use an

event service, installed in the device.

The DPWS client is responsible for the service discovery,

sending the control messages and receiving the full box

completed notifications.

Whenever a device containing a DPWS service is connected

on the LAN, it sends a hello message in the form of IP

multicast to any DPWS customer present on the network. The

DPWS client program responsible for receiving this notice

was called "Explorer". In the Explorer are listed the services

of DPWS network and detailed information about each one.

With the "Explorer" each client can conduct a network survey

(probe) to verify the existence of all devices on the local

network. In the Explorer, a reply message verifies the

existence of a particular device and gets a description message

of the hosting and hosted services.

The DPWS client captures the announcement of the “CLP

service” and can consume the service called "bottler", where

they will control and supervise the manufacturing process.

Here are the main operations used by the available DPWS

service. Through it, we can get and set the valve opening time

and amount of bottles to be stored per tray. It is also possible

to obtain the number of bottles through a triggered event by

every completed tray.

The performance evaluation of the data exchange in an

Ethernet 100 Mbps network was performed. In order to

evaluate the performance of the DPWS messages exchange it

was used the software Wireshark [15]. This software is a

network analyzer that captures packets sent and received from

the network card, documenting the arrival or departure of a

package.

With this tool, the time between request and response

messages of DPWS was measured. The results are shown in

Table 2.

Table 2 – Messages time response

Operation Connection

Time

(seconds)

Request

Response

(seconds)

Total

Time

(seconds)

Probe No

connection

1.180

1.180

Restart

(oneWay)

0.355

0.547

0.902

readHolding-

Registers

(twoWay)

0.357

0.872

1.220

presetSingle-

Register

(twoWay)

0.349

0.798

1.147

subscribe 0.361

1.109

1.471

Register-

Changed

(Eventing)

0.023

0.052

0.211

Observing Table 2, we can apprehend that trying to control

DPWS messages with the inclusion of the security service has

resulted in a considerable lag, consuming over a second to

simple control messages. But the event messages, that avoid

the network scans, are very fast, taking only 212 milliseconds

to be completed.

Other measurements were performed with the same mapping,

but using OPC in place of Web services. It was found that the

reading of the PLC tag (variable) consumes about 480

milliseconds. Similar values were found in the literature [16].

This time is shorter then the regular read Holding-Registers

time (two way). However, the OPC has no service notification

of events such as the DPWS. The event notification to the

process supervisory uses UDP protocol, which explains the

low latency found in table 2. So with this feature, the use of

the DPWS becomes quite feasible. Furthermore, OPC don’t

have security implementation, contrary to the system

developed on this work.

6. CONCLUSION
The use of SOA and IoT paradigm for integration between

factory plant devices and supervision and control systems is a

promising alternative. The use of middleware like DPWS to

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.11, August 2012

25

this integration showed a poor performance for applications

requiring lower latency. However, the objective of this work

was to test and to validate the functionality of the model.

As a future work, is proposed the study and implementation of

a new approach to supervision and control of industrial

networks employing the new OPC-UA specification [17],

with SOA support for industrial appliances. The new OPC-

UA uses a novel protocol stack that provide Web Services on

devices on the similar way of our DPWS approach, but OPC-

UA have a more compact and efficient TCP-IP specific TCP-

IP stack.

7. REFERENCES
[1] Jammes, F. and Mensch, A. and Smit, H. 2007. “Service-

Oriented Device Communications Using the Devices

Profile for Web Services”, no 21st International

Conference on Advanced Information Networking and

Applications Workshops (AINAW'07), Niagara Falls,

Ontario, Canada.

[2] Souza, L. M. S. et al. Socrades 2008. A web service

based shop floor integration infrastructure. Proc. of the

Internet of Things (IOT 2008). Springer;

http://people.inf.ethz.ch/mkoehler/papers/IoT08.pdf.

[3] Papazoglou, M. P. (2003). Service-Oriented Computing:

Concepts, Characteristics and Directions. Fourth

International Conference on Web Information Systems

Engineering (WISE'03). Roma;

[4] Atsori, L. and Lera A. and Morabito, G. 2010. The

Internet of Things: A survey. Computer Networks.

Number 54; pp 2787-2805.

[5] Oasis. Web services discovery and web services devices

profile: (WS-DD). 2009. http://http://www.oasis-

Open.org/committees/tc_home.php?wg_abbrev=ws-

dd>.Last Access 2012 April.

[6] Mensh, A. Rouges, S. 2009. DPWS Core Version 2.1:

User Guide. Version 1.0, April 14, 2009. On-line:

https://forge.soa4d.org/docman/view.php/8/45/DPWSCor

e+User+Guide.pdf

[7] W3C Recommendation, 2006. “Web Services

Addressing 1.0 – Core”, May 2006, on-line:

http://www.w3.org/TR/ws-addr-core/, Last access

19/10/2009.

[8] W3C Working Draft, 2009. “Web Services Eventing

(WS-Eventing)”, online: http://www.w3.org/TR/ws-

eventing/, Last Access 20/10/2009.

[9] Pietrzak P. Kyusakov R. Eliasson, Jens. 2011. Roadmap

for SOA event processing and service execution in real-

time using Timber. 2011 IEEE International Symposium

on Industrial Electronics (ISIE 2011): Gdansk, Poland,

27 - 30 June 2011.

[10] Kapsalis, V. et al 2003. Architecture for Web-based

services integration. The 29th Annual Conference of the

IEEE Industrial Electronics Society (IEEE-IECON’03).

Virginia; pp. 866- 871.

[11] Henning, M. 2006. The Rise and fall of Corba. ACM

QUEUE, New York, v. 4, n. 5; pp. 28- 34.

[12] Walker, Cris. Getting Started With Netduino. O´Reilly

Media. 1st Edition. February. 2012.

[13] Gandolpho, C. 2008. Cresce uso de SOA. Info Corporate.

<http://info.abril.com.br/corporate/infraestrutura/cresce-

uso-de-soa.shtml

[14] Mendonça, I. Fraga, J. da S. Dias, R.A., 2010. Extensão

de Segurança para o Perfil DPWS. X Simpósio Brasileiro

em Segurança da Informação e de Sistemas

Computacionais. Fortaleza.CE. Outubro de 2010.

[15] Sanders, Chris. The practical packet analysis. Starch

Press San Francisco. 2007.

[16] Galli, P. Microsoft to Open Source the.NET Micro

Framework. Port 25: The Open Source Community at

Microsoft, 16 November 2009. Disponivel em:

<http://port25.technet.com/archive/2009/11/16/microsoft

-to-open-source-the-net-micro-framework.aspx>. Last

Access: 29 May 2010.

[17] Marcin Fojcik and Kamil Folkert. Introduction to OPC

UA Performance. Communications in Computer and

Information Science, 2012, Volume 291, 261-270, DOI:

10.1007/978-3-642-31217-5_28

