
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

58

A Generic Non-Linear Method for Fisheye Correction

Pranali Dhane
Research Associate

KPIT Cummins Infosystems
Ltd.,

Pune, India

Krishnan Kutty
Associate Technical Fellow
KPIT Cummins Infosystems

Ltd.,
Pune, India

Sachin Bangadkar
Research Associate

KPIT Cummins Infosystems
Ltd.,

Pune, India

ABSTRACT

With rapid advances in the field of vision based systems and

ever increasing applications that they foster to; it brings along

many challenges both in terms of algorithm design and

associated hardware. One such widely used gadget is the

fisheye camera that is used in myriad of applications in

various fields owing to their wide Field of View. However,

these lenses introduce distortions when any real-world object

gets mapped on to the image plane. The amount of distortion

in fish eye images increases while moving radially outward

from the image centre. Therefore, the amount of correction to

be applied should also vary accordingly based on the pixel

location. This paper presents a fast and real-time

implementable technique for fisheye correction. The proposed

method uses non-linear radial stretching and scaling down of

pixels thereafter; both in X and Y dimensions for correction.

For real-time implementation of the proposed algorithm, we

propose the use of inverse mapping matrix. This enables

transformation of computationally extensive equations used

for correction into a simple look-up table that can easily be

implemented on a FPGA platform.

General Terms

Image Processing, Fisheye Images

Keywords

Fisheye Distortion, Field of View (FOV), radial correction,

mapping matrix

1. INTRODUCTION
Fisheye cameras are finding increasing number of

applications in surveillance, robotic vision, automotive rear-

view imaging systems etc. because of their wide angle

properties. There are broadly two types of fisheye lens; one is

a circular fisheye lens whose vertical angle of view is 180

degree while the other one is full frame fisheye lens with 180

degree diagonal angle of view [9]. However, while fisheye

lenses provide very large wide-angle views (theoretically the

entire frontal hemispheric view of 180°) the images produced

suffer from severe distortion since the hemispherical scene

gets projected onto a flat surface [7].

There are two types of these distortions, radial distortion and

tangential distortion. Tangential distortion is usually

insignificant and is not considered while correcting the

distortions. The effect of radial distortion is that straight

lines/objects in the real world are distorted into curves and

points are moved in radial direction from their correct position

[2][3].

These distortions continue to increase as we move away from

the centre of the fisheye image. Perceiving these distorted

views can be both unusual and confusing to the viewer. It is

therefore desirable to correct fisheye images into their

approximately rectilinear versions before presenting to the

end viewer [8].

Michal Kedzierski et. al. presented a fisheye correction

method based on differential geometry and arc curvature in

every segment of input image [4]. Brauer-Burchardt, C. et. al.

proposed the fisheye correction algorithm based on circle

fitting. This method only requires extraction of distorted

image points from straight lines in the 3D scene [5].

Different models for fisheye distortion correction viz.

polynomial and non-polynomial models have been studied in

detail in literature. The problem with polynomial models is

that there is no analytical method to invert them, i.e. there is

no generic method to invert a forward model to its inverse for

use in correction of radial distortion. This leads to the vacant

pixels in the corrected image. On the other hand, the non-

polynomial models such as perspective model is based on the

calculation of apparent focal length of fisheye camera which

does not necessarily equate with the actual focal length of the

fish-eye camera[1][6].

In this paper, we propose a method for correcting fish eye

distortion using a non-linear radial stretching technique. This

is followed by correction in both X and Y direction for

removing distortions. In order to implement this proposed

technique in real-time, we also introduce the concept of

inverse mapping matrix. The final output is a simple look-up

table that maps every pixel in the output fish eye corrected

image to a corresponding pixel in the input uncorrected

image.

The rest of the paper is organized as follows. We explain our

approach for fisheye correction in Section 2. In Section 3, we

describe calculation of mapping matrix. In Section 4 we

characterize the performance of our proposed approach by

comparing the curvature of known landmark regions in the

original and corrected images. This is followed by conclusion

and discussions in Section 5.

2. FISHEYE IMAGE CORRECTION
Typical fish eye lenses have a large field of view (FoV) that

falls in the range of 120 to 180 degrees. A sample fisheye

image is as shown in the Fig. 1. It is very obvious from this

image that objects that are away from the center of the image

tend to distort more. The formation of a fisheye image is

explained in detail in the following subsection.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

59

Fig 1: Sample Fisheye Image

2.1 Formation of a Fisheye Image
Fig. 2 depicts the path that is traced by a ray of light in case of

a pin-hole camera and a fish-eye lens. In the case of a pin-hole

camera, the reflected light ray coming from any object in the

real world does not bend towards the normal and continues on

the same straight path until the film plane. It is for this reason

that the objects in the images that are captured by a pin-hole

camera do not suffer any appreciable distortion [8].

However, when the same reflected light ray falls on a fisheye

lens, it bends more towards the normal. Because of this, the

image captured by fisheye lens suffers from distortion. With

increase in the bending of the refracted ray, the distortion in

the captured image also increases. This explains why the

distortion in fisheye images is more as we move away from

the center of the image [8].

Fig 2: Fisheye Image Formation

As shown in Fig. 2, the ray shown in blue color (Ray1)

depicts the path of a reflected ray of light as it passes through

a lens of a pinhole camera. The ray shown in red (Ray2),

however, shows the path of the same ray when it travels

through the fisheye lens. The amount of bending observed, in

case of a fish eye lens, depends upon the characteristics of the

lens. The proposed algorithm estimates the parameters

required for estimating the bend (refraction) in the pixel

domain. Based on these parameters, the proposed algorithm

corrects for the distortion viz. estimates point ‘Zout’ for every

point ‘Zin’ in the input image. The algorithm for correcting the

distortion is detailed in the following section.

2.2 Distortion Correction
A high level flowchart illustrating the steps involved in the

proposed approach is as shown in Fig. 3.

Fig 3: Sample Fisheye Image

The description of each step as shown in the flowchart (Fig. 3)

is as given below:

2.2.1 Calculate Image specific parameters
The area captured by the lens depends on its FoV. FoV of the

fisheye lens is given as [9]:

 (

)

From (1),

 (

)

The FoV of typical fisheye lenses falls in the range of 120 to

180 degrees. Therefore denominator of (2) varies from 2 to 3.

For our experiments, with a FoV of 180 degrees, the focal

length is now deduced as:

Ɵ2

Zin

Ɵ1

Ø
f

Optical Axis

Picture Plane

Q

Ray passing through

normal lens

Lens Position

Ray refracted due

to fisheye lens

Ray1

Ray2

r

R

Zout

 Input Fisheye Image

Calculation of image

specific parameters

Non-linear Radial

Stretching of Input

Image

Vertical Stretching/

Vertical Correction

Horizontal Stretching/

Horizontal Correction

Rescaling Image to

input resolution

Alternate Process

Mapping Matrix

Calculation

 Output Fisheye Corrected

Image

A

L

G

O

R

I

T

H

M

F

L

O

W

M

A

P

P

I

N

G

M

A

T

R

I

X

F

L

O

W

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

60

It is worth noticing that the ‘f’ calculated is used to normalize

the image; thus making the algorithm agnostic of image

resolution.

The center of the input fisheye image of width

 and height is calculated as:

 (4)

For our proposed approach, all the calculations are done in the

polar coordinate system. Therefore, the Cartesian coordinate

of each pixel is first converted into its polar coordinate
where is the radius and ‘ ’ is the angle calculated with

positive X-axis as shown in Fig. 4.

2.2.2 Radial Correction

Fig 4: Image Plane and Assumed Coordinate System

Radial lens distortion causes image points on the image plane

in the fish-eye camera to be displaced in a nonlinear fashion

from their ideal position in the pin-hole camera model. [6].

Fig. 4 depicts the image plane for the set up shown in Fig. 2.

When a ray coming from object Q (as seen in Fig. 2), passes

through pinhole camera lens it incidents on the image plane at

the position denoted by , whereas the same ray

incidents at position when passes through fisheye lens.

The problem statement is to identify in the pin-hole

image corresponding to every position of the input

fisheye image.

As shown in Fig. 2 let the angle made by ‘Ray1’ and ‘Ray2’

with optical axis be and respectively. Let be the

distance of a pixel from center of the output image and be

the distance of the same pixel from center but in input fisheye

image.

Now using Snell’s law,

For Ray 1

 (5)

For Ray 2

 (6)

Now from (5) & (6)

 (7)

 Where, is a constant dependent on characteristics of the

fisheye lens.

Varying would vary the amount of correction in the

fisheye image. The constant for a particular fisheye lens

can be estimated using heuristic approach. For our

experiments, we have fixed the value of to 1.15.

From Fig.2,

As shown in Fig. 4, the scene in real world gets mapped in the

lesser number of pixels using fisheye lens as compared to the

same area captured by pinhole camera. Because of this there

will be certain pixel positions in the corrected image where

pixel values will be of vacant intensities, which lead to

interpolation of the vacant pixel values. In order to avoid

interpolation, we proposed an output to input mapping

technique viz. for every pixel position in output image,

there is a mapping established to the input fisheye

from where the pixel value can be estimated. It is evident that

this is a one-to-many mapping.

The problem statement is now modified to identifying

corresponding pixel of the input fisheye image for

every pixel in the pin hole image.

 For inverse mapping, the size of output image is to be

estimated based on the size of the input fisheye image.

Therefore from (7), (8), and (9)

 ((((

))))

This is output radius for particular input radius .

Therefore, to calculate width of the output image, horizontal

radius i.e. of input image can be used instead of .

Similarly, the height of the output image can be calculated

using vertical radius of input image.

 ((((
 ⁄

)))) (11)

 ((((
 ⁄

)))) (12)

Ɵ

r

(X, Y)

(X’, Y’)

Center
(Cx, Cy)

X-axis

Y-axis

R

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

61

Where and are half the width and height of the

output image.

In order to do reverse mapping, for any pixel we

calculate its distance from the center as and find

corresponding distance using following equation derived

from (7), (8) and (9)

 ((
 ((

))

))

Using this , the corresponding coordinate (X’, Y’) in fisheye

image can be calculated as:

 (14)

 (15)

The pixel value at of the fish eye image can now be

mapped to the pixel location in output image.

A typical fish eye image is as shown in Fig 5.

Fig 5: Input Image

 The radial corrected output image of Fig.5 is as shown in

Fig. 6.

Fig 6: Radial corrected output of Fig.5

It can be observed from Fig. 6 that after radial correction the

convex like appearance of the input image is removed. It can

also be noticed that the distortion is not completely eliminated

near the image boundaries. The image is, therefore, further

stretched in both vertical and horizontal direction in order to

correct for these left over distortions.

2.2.3 Vertical Stretching
To make upper and lower boundaries of the radial corrected

image straight vertical stretching is performed.

 Fig 7: Vertical distance of input and corresponding

output pixel

As shown in Fig. 7, ‘ih’ shows the input height and ‘oh’

shows the height to which ‘ih’ should be stretched. The

stretch factor‘s’ is calculated as:

However, every pixel in the column indicated by the red line

in Fig. 7 should not be stretched by the same amount. The

amount of stretching should increase non-linearly as we move

away from the centre. For every vertical distance of the output

pixel from the centre of the image corresponding input

vertical distance is also calculated using following

equation:

 ((
 ((

))

))

Where is the vertical distance of the output pixel and

 is the correction factor.

In order to make stretching non-linear the correction factor

 should be varied depending upon pixel position. Fig. 8

shows the variation in stretching amount dependent on the

correction factor .

ih oh

Centre line

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

62

0

20

40

60

80

100

120

140

160

180
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5D
is

ta
n

c
e
 f

r
o

m
 c

e
n

tr
e Output pixel Position

Rescaled Pixel
Position

Sample Points

(a)

0

50

100

150

200

250

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5D
is

ta
n

c
e
 f

r
o

m
 c

e
n

tr
e Output pixel Position

Rescaled Pixel
Position

Sample Points

(b)
Fig 8: Variation in vertical stretching for constant (a)

and variable (b)

The red curve in Fig. 8 shows the while blue curve

shows the . Fig 8(a) is the plot when is kept constant

while Fig 8(b) is the plot where is kept varying dependent

upon the pixel position. As observed in Fig. 8(a) the pixels

near the centre are also getting stretched while in Fig. 8(b) the

pixels near the centre are stretched lesser than those closer to

the boundaries. And also it can be observed from Fig. 8(b)

that non-linearity in stretching has been increased. In order to

realize this, in (17) is replaced by the distance of the pixel

from the image boundary.

Fig 9: Output after Applying Vertical Stretching

2.2.4 Horizontal Stretching
Horizontal stretching is also carried in the same way as

vertical stretching as explained in the above section. The only

difference being that instead of the vertical distance;

horizontal distance of the pixel from centre is considered. The

stretching factor and corresponding input horizontal distance

is calculated using (16) and (17).

Fig 10: Intermediate Corrected Output

Fig. 10 shows the output after horizontal stretching. The

output image obtained at this step is distortion free. However,

the image obtained will be much larger in size than that of the

input fisheye image because of the radial correction.

Therefore, the image obtained here is considered as an

intermediate output and needs to be scaled back to the original

input size.

2.2.5 Image Rescaling
While rescaling, we have to reduce the resolution of the

image, while keeping the aspect ratio of all object sizes intact.

In order to achieve this, we use the formula in (10) with

 .

0

20

40

60

80

100

120

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5D
is

t
a

n
c
e
 f

r
o

m
 c

e
n

t
r
e Output pixel Position

Rescaled Pixel
Position

Sample Points

Fig 11: Relation between positions of pixels of corrected

output and rescaled output

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

63

The plot in Fig.11 is obtained by plotting the distances of

pixels from centre of the final corrected image as well as that

of the rescaled image keeping constant . From Fig. 11

it is clear that rescaling is performed linearly.

 For vertical rescaling, the vertical shrinking factor

can be calculated as follows:

 (18)

Let be the vertical distance of the pixel in intermediate

output and be that of the pixel in final output. is

calculated as:

 ((((

))))

(19)

Using (19) height of the intermediate output image can be

rescaled to the height of input image.

 On similar lines, the intermediate output can be shrunk

horizontally using (18) and (19). Here we consider the

horizontal distance of the pixel from centre of image instead

of the vertical distance.

After rescaling the intermediate output image, the final output

obtained is as shown in Fig. 12.

Fig 12: Final Output

3. INVERSE MAPPING MATRIX

CALCULATION
The mapping matrix calculation simplifies the complexity of

the algorithm and enhances the execution speed. As algorithm

works on pixel position one can calibrate the system with two

2D matrices of the size equal to size of image. The advantage

of this mapping is all the pixels in output get values from

input image leaving no pixel vacant.

Let I be input image of size (m x n) and coordinate

denotes the pixel position in image I.

Let R be radial corrected image of size (m’ x n’) (calculation

of size of radial corrected image is explained in Section

2.2.2). And let coordinate denotes the pixel position in

image R.

Let Xr-Map and Yr- Map are two matrices of size (m’ x n’)

used to map pixel at position to . Xr-Map stores

 location while Yr-Map stores location.

Fig 13: Calculation of mapping matrix for radial

correction

Using Xr-map and Yr-Map we can directly obtain radial

corrected image without going through actual correction

process.

Similarly we can calculate the mapping matrices for vertical

and horizontal stretching and for rescaling.

Let V and H denote vertically and horizontally stretched

images of size (m’ x n’) respectively. Let coordinate (Xv, Yv)

and (Xh, Yh) denotes the pixel position in vertically and

horizontally stretched image respectively. The two matrices

Xv-Map, Yv-Map of size (m’ x n’) denote the mapping

between vertical stretched image V and radial corrected image

R. Let Xh-Map, Yh-Map of size (m’ x n’) denote the mapping

between horizontally stretched image H and vertically

stretched image V.

Let O be rescaled output image of size (m x n) and coordinate

(x, y) denotes pixel position in O. Xo-Map and Yo-Map of

size (m x n) denotes the mapping between vertically stretched

image V to rescaled output image O.

Fig. 14 gives relation between all mapping matrices and flow

of reverse mapping.

Xr-Map

X

 Y

X’

Yr-Map

X

 Y

Y’

R
X

Y

I
X’

Y’

Pixel

Value

Combined matrix

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

64

Fig 14: Calculation Of Mapping Matrices that maps

Final Output To Input Fisheye Image

From the calculation of all these matrices it is further possible

to find a direct relation between a final rescaled output image

O and input fisheye I. Therefore every position (x, y) in

output image we can map a pixel value from location
in fisheye image. Let Xf-Map. Yf-Map be matrices of size (m

x n). This matrix directly maps any given pixel in the output

corrected image to a corresponding pixel in the input fish-eye

distorted image.

Fig 15: Mapping Matrix Giving Direct Relation From

Output To Input

Fig. 15 shows a combined matrix of all the corrections. These

matrices thus will give the direct mapping between pixel

positions in final output (rescaled image) to its corresponding

positions in input image. Thus for a particular lens algorithm

will calculate the mapping matrix which can be used directly

to obtain output image. Due to symmetry of the fisheye image

mapping matrix size can further be reduced to one fourth of

the image size.

4. PERFORMANCE

CHARACTERISATION

 (a) (b)

 (c)

Fig 16: Sample frames from a fisheye video showing

variation in distortion for a pedestrian crossing

It is evident from Fig. 16 that the pedestrian crossing tends to

get more distorted as it gets projected away from the image

centre. However, in the real world, it is known that the

pedestrian crossing is straight and is perpendicular to the road

boundary i.e. it has same curvature independent of camera

position. Taking this into account, we characterize the

performance of the proposed algorithm by calculating the

curvature of pedestrian crossing in the distortion free image

vis-a-vis the original image.

In order to find the variation in curvature, different frames of

the pedestrian crossing are considered. The video was

captured with the onward looking fisheye camera mounted on

a forward moving vehicle. By considering any three points on

the pedestrian crossing, it is possible to find the radius of the

circle passing through all these points. Once the radius is

known, the curvature can be calculated as:

Where,

 is some constant of proportionality

 is the calculated radius of curvature

(a) (b)

 (c)

Fig 17: Corrected Outputs for Fig. 16

Xr-Map
X

Y
X’ Yr-Map

X

Y
Y’

Xv-Map
X

v

Y
v

X Xv-Map Y
X

v

Y
v

Xh-Map
X

h

Y
h

X
v

X
h

Y
h

Xh-Map Y
v

Xo-Map
x

y
X

h
 Y

h
 Xo-Map

X

Y

O
x

y

X’

Y’

Pixel value

I

Radial map

Vertical map

Horizontal map

Rescaling map

Xf-Map

x

y

X’

Yf-Map

x

y

Y’

O
x

y

I
X’

Y’

Pixel

Value

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

65

After Fig. 17 shows the corresponding output frames for

Fig.16. The arrows shown in Fig. 17 denote the corrected

pedestrian crossing.

After the calculation of curvature for considered input images

and for corresponding corrected images, the graph is plotted.

Fig 18: Performance Characterisation Curve

As shown in Fig.18, the X-axis shows the sequence of frames

that were considered and Y-axis gives the curvature values for

the input fisheye image as well as the corresponding for

corrected images. From the graph, it is evident that as the

landmark under consideration comes closer to the fisheye

camera; its curvature continues to increase. However, after

correction, the curvature of the landmark continues to remain

constant across frames; thereby proving the working of our

proposed algorithm.

5. CONCLUSION
The proposed algorithm was executed on an IBM PC platform

with 1GB RAM and Intel® Core™2 processor. The input

video was of VGA resolution (640 X 480). The processing

speed for calculating the initial mapping matrix was

approximately 35msec. With the use of the proposed inverse

mapping matrix; the algorithm could run in real-time on any

DSP or FPGA platform since all the calculations bubble down

to a simple lookup table.

The polynomial models used for fisheye correction are not

invertible. Hence radial correction using these models leads to

vacant pixels in output image. In order to overcome this

drawback we have proposed a trigonometric equation for the

correction which is invertible. And because of this invertible

equation we can find an inverse mapping matrix for a

particular lens to avoid all calculations which enhances the

execution speed of the algorithm. Also the method proposed is

independent of the lens parameters. For any fisheye image

corresponding corrected image can be found without knowing

the lens specific parameters.

6. ACKNOWLEDGMENTS
The authors would sincerely like to thank the all the

employees at Centre for Research in Engineering Sciences

and Technology (CREST) of KPIT Cummins Infosystems

Ltd. for providing an excellent platform, necessary equipment

and valuable guidance throughout the course of this research.

7. REFERENCES
[1] F. Devernay and O. Faugeras, “Straight lines have to be

straight: automatic calibration and removal of distortion

from scenes of structured enviroments”. Springer-Verlag

Journal of Machine Vision and Applications, 13(1):14–

24, 2001

[2] J.Jedlička, M.Potůčková, Correction Of Radial Distortion

In Digital Images, Charles University in Prague, Faculty

of Science.

[3] Rickard Strand and Eric Hayman, Correcting Radial

Distortion by Circle Fitting, Computational Vision and

Active Perception Laboratory (CVAP) School of

Computer Science and Communication Royal Institute of

Technology (KTH), SE-100 44 Stockholm, Sweden

[4] Michal Kedzierski, Anna Fryskowska, Precise Method

Of Fisheye Lens Calibration, Dept. of Remote Sensing

and Geoinformation, Military University of Technology,

Kaliskiego 2, Str. 00-908 Warsaw, Poland.

[5] C. Brauer-Burchardt, K. Voss , A new algorithm to

correct fish-eye- and strong wide-angle-lens-distortion

from single images, Image Processing, 2001.

Proceedings. 2001 International Conference on In Image

Processing, 2001., Vol. 1 (2001), pp. 225-228

[6] Ciar´an Hughes, Martin Glavin, Edward Jones and

Patrick Denny, Review of Geometric Distortion

Compensation in Fish-Eye Cameras, ISSC 2008,

Galway, June 18–19

[7] Generating Panoramic Views by Stitching Multiple

Fisheye Images, Altera, White Paper

[8] A Flexible Architecture for Fisheye Correction in

Automotive Rear-View Cameras, Altera, White Paper

http://www.altera.com/literature/wp/wp-01073-flexible-

architecture-fisheye-correction-automotive-rear-view-

cameras.pdf

[9] Fisheye lens: http://en.wikipedia.org/wiki/Fisheye_lens

