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ABSTRACT 

With rapid advances in the field of vision based systems and 

ever increasing applications that they foster to; it brings along 

many challenges both in terms of algorithm design and 

associated hardware. One such widely used gadget is the 

fisheye camera that is used in myriad of applications in 

various fields owing to their wide Field of View. However, 

these lenses introduce distortions when any real-world object 

gets mapped on to the image plane. The amount of distortion 

in fish eye images increases while moving radially outward 

from the image centre. Therefore, the amount of correction to 

be applied should also vary accordingly based on the pixel 

location. This paper presents a fast and real-time 

implementable technique for fisheye correction. The proposed 

method uses non-linear radial stretching and scaling down of 

pixels thereafter; both in X and Y dimensions for correction. 

For real-time implementation of the proposed algorithm, we 

propose the use of inverse mapping matrix. This enables 

transformation of computationally extensive equations used 

for correction into a simple look-up table that can easily be 

implemented on a FPGA platform. 

General Terms 

Image Processing, Fisheye Images 

Keywords 

Fisheye Distortion, Field of View (FOV), radial correction, 
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1. INTRODUCTION 
Fisheye cameras are finding increasing number of 

applications in surveillance, robotic vision, automotive rear-

view imaging systems etc. because of their wide angle 

properties. There are broadly two types of fisheye lens; one is 

a circular fisheye lens whose vertical angle of view is 180 

degree while the other one is full frame fisheye lens with 180 

degree diagonal angle of view [9]. However, while fisheye 

lenses provide very large wide-angle views (theoretically the 

entire frontal hemispheric view of 180°) the images produced 

suffer from severe distortion since the hemispherical scene 

gets projected onto a flat surface [7].  

There are two types of these distortions, radial distortion and 

tangential distortion. Tangential distortion is usually 

insignificant and is not considered while correcting the 

distortions. The effect of radial distortion is that straight 

lines/objects in the real world are distorted into curves and 

points are moved in radial direction from their correct position 

[2][3].  

 

 

 

These distortions continue to increase as we move away from 

the centre of the fisheye image. Perceiving these distorted 

views can be both unusual and confusing to the viewer. It is 

therefore desirable to correct fisheye images into their 

approximately rectilinear versions before presenting to the 

end viewer [8].  

Michal Kedzierski et. al. presented a fisheye correction 

method based on differential geometry and arc curvature in 

every segment of input image [4]. Brauer-Burchardt, C. et. al. 

proposed the fisheye correction algorithm based on circle 

fitting. This method only requires extraction of distorted 

image points from straight lines in the 3D scene [5]. 

Different models for fisheye distortion correction viz. 

polynomial and non-polynomial models have been studied in 

detail in literature. The problem with polynomial models is 

that there is no analytical method to invert them, i.e. there is 

no generic method to invert a forward model to its inverse for 

use in correction of radial distortion. This leads to the vacant 

pixels in the corrected image. On the other hand, the non-

polynomial models such as perspective model is based on the 

calculation of apparent focal length of fisheye camera which 

does not necessarily equate with the actual focal length of the 

fish-eye camera[1][6].  

In this paper, we propose a method for correcting fish eye 

distortion using a non-linear radial stretching technique. This 

is followed by correction in both X and Y direction for 

removing distortions. In order to implement this proposed 

technique in real-time, we also introduce the concept of 

inverse mapping matrix. The final output is a simple look-up 

table that maps every pixel in the output fish eye corrected 

image to a corresponding pixel in the input uncorrected 

image.  

The rest of the paper is organized as follows. We explain our 

approach for fisheye correction in Section 2. In Section 3, we 

describe calculation of mapping matrix. In Section 4 we 

characterize the performance of our proposed approach by 

comparing the curvature of known landmark regions in the 

original and corrected images. This is followed by conclusion 

and discussions in Section 5.  

2. FISHEYE IMAGE CORRECTION 
Typical fish eye lenses have a large field of view (FoV) that 

falls in the range of 120 to 180 degrees. A sample fisheye 

image is as shown in the Fig. 1.  It is very obvious from this 

image that objects that are away from the center of the image 

tend to distort more. The formation of a fisheye image is 

explained in detail in the following subsection.  
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Fig 1: Sample Fisheye Image 

 

2.1 Formation of a Fisheye Image 
Fig. 2 depicts the path that is traced by a ray of light in case of 

a pin-hole camera and a fish-eye lens. In the case of a pin-hole 

camera, the reflected light ray coming from any object in the 

real world does not bend towards the normal and continues on 

the same straight path until the film plane. It is for this reason 

that the objects in the images that are captured by a pin-hole 

camera do not suffer any appreciable distortion [8]. 

However, when the same reflected light ray falls on a fisheye 

lens, it bends more towards the normal. Because of this, the 

image captured by fisheye lens suffers from distortion. With 

increase in the bending of the refracted ray, the distortion in 

the captured image also increases. This explains why the 

distortion in fisheye images is more as we move away from 

the center of the image [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Fisheye Image Formation 

 

As shown in Fig. 2, the ray shown in blue color (Ray1) 

depicts the path of a reflected ray of light as it passes through 

a lens of a pinhole camera. The ray shown in red (Ray2), 

however, shows the path of the same ray when it travels 

through the fisheye lens. The amount of bending observed, in 

case of a fish eye lens, depends upon the characteristics of the 

lens. The proposed algorithm estimates the parameters 

required for estimating the bend (refraction) in the pixel 

domain. Based on these parameters, the proposed algorithm 

corrects for the distortion viz. estimates point ‘Zout’ for every 

point ‘Zin’ in the input image. The algorithm for correcting the 

distortion is detailed in the following section. 

2.2 Distortion Correction 
A high level flowchart illustrating the steps involved in the 

proposed approach is as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Sample Fisheye Image 

The description of each step as shown in the flowchart (Fig. 3) 

is as given below: 

2.2.1 Calculate Image specific parameters 
The area captured by the lens depends on its FoV. FoV of the 

fisheye lens is given as [9]: 

                      (
          

              
)                  

From (1), 
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The FoV of typical fisheye lenses falls in the range of 120 to 

180 degrees. Therefore denominator of (2) varies from 2 to 3. 

For our experiments, with a FoV of 180 degrees, the focal 

length is now deduced as: 
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It is worth noticing that the ‘f’ calculated is used to normalize 

the image; thus making the algorithm agnostic of image 

resolution. 

The center          of the input fisheye image of width 

        and height          is calculated as: 

 

                   
     

 
               

      

 
                      (4) 

For our proposed approach, all the calculations are done in the 

polar coordinate system. Therefore, the Cartesian coordinate 

of each pixel is first converted into its polar coordinate        
where     is the radius and ‘ ’ is the angle calculated with 

positive X-axis as shown in Fig. 4.   

 

2.2.2 Radial Correction 
 

 

 

 

 

 

 

 

 

 

Fig 4: Image Plane and Assumed Coordinate System 

Radial lens distortion causes image points on the image plane 

in the fish-eye camera to be displaced in a nonlinear fashion 

from their ideal position in the pin-hole camera model. [6]. 

Fig. 4 depicts the image plane for the set up shown in Fig. 2. 

When a ray coming from object Q (as seen in Fig. 2), passes 

through pinhole camera lens it incidents on the image plane at 

the position denoted by       , whereas the same ray 

incidents at position         when passes through fisheye lens. 

The problem statement is to identify       in the pin-hole 

image corresponding to every position         of the input 

fisheye image.  

As shown in Fig. 2 let the angle made by ‘Ray1’ and ‘Ray2’ 

with optical axis be    and    respectively. Let     be the 

distance of a pixel from center of the output image and     be 

the distance of the same pixel from center but in input fisheye 

image. 

Now using Snell’s law,  

 

For Ray 1 

                                             (5) 

For Ray 2 

                                         (6) 

Now from (5) & (6) 

                                                          (7) 

 Where,   is a constant dependent on characteristics of the 

fisheye lens. 

Varying     would vary the amount of correction in the 

fisheye image. The constant     for a particular fisheye lens 

can be estimated using heuristic approach. For our 

experiments, we have fixed the value of     to 1.15. 

From Fig.2, 

        
 

 
                                       

      
 

 
                                      

As shown in Fig. 4, the scene in real world gets mapped in the 

lesser number of pixels using fisheye lens as compared to the 

same area captured by pinhole camera. Because of this there 

will be certain pixel positions in the corrected image where 

pixel values will be of vacant intensities, which lead to 

interpolation of the vacant pixel values. In order to avoid 

interpolation, we proposed an output to input mapping 

technique viz. for every pixel position       in output image, 

there is a mapping established to the input fisheye        

from where the pixel value can be estimated. It is evident that 

this is a one-to-many mapping.  

The problem statement is now modified to identifying 

corresponding pixel         of the input fisheye image for 

every pixel       in the pin hole image. 

 For inverse mapping, the size of output image is to be 

estimated based on the size of the input fisheye image. 

Therefore from (7), (8), and (9) 

       (     (   (     (
 

 
))   ))                

This is output radius    for particular input radius   . 

Therefore, to calculate width of the output image, horizontal 

radius i.e.          of input image can be used instead of    . 

Similarly, the height of the output image can be calculated 

using vertical radius of input image.   
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Where       and       are half the width and height of the 

output image. 

In order to do reverse mapping, for any pixel       we 

calculate its distance from the center as     and find 

corresponding distance     using following equation derived 

from (7), (8) and (9) 

       (     (
   (     (

 
 
))

 
))                

Using this  , the corresponding coordinate (X’, Y’) in fisheye 

image can be calculated as: 

                                        (14) 

                                          (15) 

The pixel value at         of the fish eye image can now be 

mapped to the pixel location       in output image. 

A typical fish eye image is as shown in Fig 5. 

 
Fig 5: Input Image 

 

  The radial corrected output image of Fig.5 is as shown in 

Fig. 6. 

 

 
Fig 6: Radial corrected output of Fig.5 

 

It can be observed from Fig. 6 that after radial correction the 

convex like appearance of the input image is removed. It can 

also be noticed that the distortion is not completely eliminated 

near the image boundaries. The image is, therefore, further 

stretched in both vertical and horizontal direction in order to 

correct for these left over distortions.  

2.2.3 Vertical Stretching 
To make upper and lower boundaries of the radial corrected 

image straight vertical stretching is performed. 

 Fig 7: Vertical distance of input and corresponding 

output pixel 

As shown in Fig. 7, ‘ih’ shows the input height and ‘oh’ 

shows the height to which ‘ih’ should be stretched. The 

stretch factor‘s’ is calculated as:  

  
  

  
                                             

However, every pixel in the column indicated by the red line 

in Fig. 7 should not be stretched by the same amount. The 

amount of stretching should increase non-linearly as we move 

away from the centre. For every vertical distance of the output 

pixel from the centre of the image corresponding input 

vertical distance      is also calculated using following 

equation: 

          (     (
   (     (

   
  

))

 
))                  

Where       is the vertical distance of the output pixel and 

     is the correction factor. 

In order to make stretching non-linear the correction factor 

     should be varied depending upon pixel position. Fig. 8 

shows the variation in stretching amount dependent on the 

correction factor    . 

ih oh 

Centre line 
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(b) 
Fig 8: Variation in vertical stretching for constant      (a) 

and variable     (b) 

The red curve in Fig. 8 shows the       while blue curve 

shows the     . Fig 8(a) is the plot when      is kept constant 

while Fig 8(b) is the plot where      is kept varying dependent 

upon the pixel position. As observed in Fig. 8(a) the pixels 

near the centre are also getting stretched while in Fig. 8(b) the 

pixels near the centre are stretched lesser than those closer to 

the boundaries. And also it can be observed from Fig. 8(b) 

that non-linearity in stretching has been increased. In order to 

realize this,      in (17) is replaced by the distance of the pixel 

from the image boundary.  

 
Fig 9: Output after Applying Vertical Stretching  

 

2.2.4 Horizontal Stretching 
Horizontal stretching is also carried in the same way as 

vertical stretching as explained in the above section. The only 

difference being that instead of the vertical distance; 

horizontal distance of the pixel from centre is considered. The 

stretching factor and corresponding input horizontal distance 

is calculated using (16) and (17). 

Fig 10: Intermediate Corrected Output 

Fig. 10 shows the output after horizontal stretching.  The 

output image obtained at this step is distortion free. However, 

the image obtained will be much larger in size than that of the 

input fisheye image because of the radial correction. 

Therefore, the image obtained here is considered as an 

intermediate output and needs to be scaled back to the original 

input size. 

2.2.5 Image Rescaling 
While rescaling, we have to reduce the resolution of the 

image, while keeping the aspect ratio of all object sizes intact. 

In order to achieve this, we use the formula in (10) with 
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Fig 11: Relation between positions of pixels of corrected 

output and rescaled output 
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The plot in Fig.11 is obtained by plotting the distances of 

pixels from centre of the final corrected image as well as that 

of the rescaled image keeping constant     . From Fig. 11 

it is clear that rescaling is performed linearly. 

      For vertical rescaling, the vertical shrinking factor      

can be calculated as follows: 

    
                     

                            
                    (18) 

Let       be the vertical distance of the pixel in intermediate 

output and       be that of the pixel in final output.       is 

calculated as: 

            (     (   (     (
   

 
))     ))  

(19) 

Using (19) height of the intermediate output image can be 

rescaled to the height of input image. 

     On similar lines, the intermediate output can be shrunk 

horizontally using (18) and (19). Here we consider the 

horizontal distance of the pixel from centre of image instead 

of the vertical distance. 

After rescaling the intermediate output image, the final output 

obtained is as shown in Fig. 12. 

 
Fig 12: Final Output 

 

 

3. INVERSE MAPPING MATRIX 

CALCULATION 
The mapping matrix calculation simplifies the complexity of 

the algorithm and enhances the execution speed. As algorithm 

works on pixel position one can calibrate the system with two 

2D matrices of the size equal to size of image. The advantage 

of this mapping is all the pixels in output get values from 

input image leaving no pixel vacant. 

Let I be input image of size (m x n) and coordinate         

denotes the pixel position in image I. 

Let R be radial corrected image of size (m’ x n’) (calculation 

of size of radial corrected image is explained in Section 

2.2.2). And let coordinate       denotes the pixel position in 

image R. 

Let Xr-Map and Yr- Map are two matrices of size (m’ x n’) 

used to map pixel at position         to     . Xr-Map stores 

   location while Yr-Map stores    location. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 13: Calculation of mapping matrix for radial 

correction 

Using Xr-map and Yr-Map we can directly obtain radial 

corrected image without going through actual correction 

process. 

Similarly we can calculate the mapping matrices for vertical 

and horizontal stretching and for rescaling.   

Let V and H denote vertically and horizontally stretched 

images of size (m’ x n’) respectively. Let coordinate (Xv, Yv) 

and (Xh, Yh) denotes the pixel position in vertically and 

horizontally stretched image respectively. The two matrices 

Xv-Map, Yv-Map of size (m’ x n’) denote the mapping 

between vertical stretched image V and radial corrected image 

R. Let Xh-Map, Yh-Map of size (m’ x n’) denote the mapping 

between horizontally stretched image H and vertically 

stretched image V. 

Let O be rescaled output image of size (m x n) and coordinate 

(x, y) denotes pixel position in O. Xo-Map and Yo-Map of 

size (m x n) denotes the mapping between vertically stretched 

image V to rescaled output image O. 

Fig. 14 gives relation between all mapping matrices and flow 

of reverse mapping. 
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Fig 14: Calculation Of Mapping Matrices that maps 

Final Output To Input Fisheye Image  

 

From the calculation of all these matrices it is further possible 

to find a direct relation between a final rescaled output image 

O and input fisheye I. Therefore every position (x, y) in 

output image we can map a pixel value from location         
in fisheye image. Let Xf-Map. Yf-Map be matrices of size (m 

x n). This matrix directly maps any given pixel in the output 

corrected image to a corresponding pixel in the input fish-eye 

distorted image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 15: Mapping Matrix Giving Direct Relation From 

Output To Input  

Fig. 15 shows a combined matrix of all the corrections. These 

matrices thus will give the direct mapping between pixel 

positions in final output (rescaled image) to its corresponding 

positions in input image. Thus for a particular lens algorithm 

will calculate the mapping matrix which can be used directly 

to obtain output image. Due to symmetry of the fisheye image 

mapping matrix size can further be reduced to one fourth of 

the image size. 

 

4. PERFORMANCE 

CHARACTERISATION 

  
    (a)                                    (b) 

 
                  (c) 

Fig 16: Sample frames from a fisheye video showing 

variation in distortion for a  pedestrian crossing 
 

It is evident from Fig. 16 that the pedestrian crossing tends to 

get more distorted as it gets projected away from the image 

centre. However, in the real world, it is known that the 

pedestrian crossing is straight and is perpendicular to the road 

boundary i.e. it has same curvature independent of camera 

position. Taking this into account, we characterize the 

performance of the proposed algorithm by calculating the 

curvature of pedestrian crossing in the distortion free image 

vis-a-vis the original image. 

In order to find the variation in curvature, different frames of 

the pedestrian crossing are considered. The video was 

captured with the onward looking fisheye camera mounted on 

a forward moving vehicle. By considering any three points on 

the pedestrian crossing, it is possible to find the radius of the 

circle passing through all these points.  Once the radius is 

known, the curvature can be calculated as: 

 

          
 

 
                                     

 

Where, 

              is some constant of proportionality 

    is the calculated radius of curvature 

 

    
(a)                                     (b) 

 
   (c) 

Fig 17: Corrected Outputs for Fig. 16 
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After Fig. 17 shows the corresponding output frames for 

Fig.16. The arrows shown in Fig. 17 denote the corrected 

pedestrian crossing. 

After the calculation of curvature for considered input images 

and for corresponding corrected images, the graph is plotted. 

 

 
Fig 18: Performance Characterisation Curve 

 

As shown in Fig.18, the X-axis shows the sequence of frames 

that were considered and Y-axis gives the curvature values for 

the input fisheye image as well as the corresponding for 

corrected images. From the graph, it is evident that as the 

landmark under consideration comes closer to the fisheye 

camera; its curvature continues to increase. However, after 

correction, the curvature of the landmark continues to remain 

constant across frames; thereby proving the working of our 

proposed algorithm.  

 

5. CONCLUSION 
The proposed algorithm was executed on an IBM PC platform 

with 1GB RAM and Intel® Core™2 processor. The input 

video was of VGA resolution (640 X 480). The processing 

speed for calculating the initial mapping matrix was 

approximately 35msec.  With the use of the proposed inverse 

mapping matrix; the algorithm could run in real-time on any 

DSP or FPGA platform since all the calculations bubble down 

to a simple lookup table. 

The polynomial models used for fisheye correction are not 

invertible. Hence radial correction using these models leads to 

vacant pixels in output image. In order to overcome this 

drawback we have proposed a trigonometric equation for the 

correction which is invertible. And because of this invertible 

equation we can find an inverse mapping matrix for a 

particular lens to avoid all calculations which enhances the 

execution speed of the algorithm. Also the method proposed is 

independent of the lens parameters. For any fisheye image 

corresponding corrected image can be found without knowing 

the lens specific parameters.  
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