
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

19

Analysis of Distributed Algorithms to Remove
Correlations for Reducing Average Download Time in

PEER–TO–PEER Networks

P. Satheesh
Associate Professor

CSE Department
M.V.G.R College of Engineering

B. Srinivas
Assistant Professor
CSE Department

M.V.G.R College of Engineering

M. V. S. Narayana
CSE Department

M.V.G.R College of Engineering

ABSTRACT

The Peer-to-Peer (P2P) networks are widely used for internet

file sharing. In general the file download can take minutes or

hours depending on the level of network congestion or the

service capacity fluctuations. In this paper, we consider two

major factors that have significant impact on average

download time, namely, the spatial heterogeneity of service

capacities in different source peers and the temporal

fluctuations in service capacities of a single source peer. We

show that both spatial heterogeneity and temporal correlations

in service capacity increase the average download time in P2P

networks and then analyze a simple, distributed algorithm to

reduce the file download time. Here, we analyzes a new

algorithms called that effectively remove the negative factors

of the existing systems i.e. Parallel downloading, Chunk

based switching, periodic switching, thus reduce the average

download time. Our algorithm removes correlations in the

capacity fluctuations and the heterogeneity in space, thus

greatly reducing the average download time.

General Terms

Network performance, spatial heterogeneity, average

download time, Peers.

Keywords

P2P networks, Peer Selection Strategy, Service Capacity.

1. INTRODUCTION
PEER-TO-PEER (P2P) technology is widely used for content

distribution applications. The early model for content

distribution is a centralized one, in which the service provider

simply sets up a server and every user downloads files from it.

In this type of network architecture (server-client), many users

have to compete for limited resources in terms of bottleneck

bandwidth or processing power of a single server. As a result,

each user may receive very poor performance. With this

increasing service capacity, theoretical studies have shown

that the average download time for each user in the network is

much shorter than that of a centralized network architecture in

ideal cases [2], [3].As the measurement study shows [4], the

per-user performance in aP2P network may be even worse

than that of centralized network architecture. Those results

suggest that there is much room for improvement in the P2P

system in terms of per-user performance, i.e., the file

download time of each user. In recent work [5], [6], the

problem of minimizing the download time is formulated as an

optimization problem by maximizing the aggregated service

capacity over multiple simultaneous active links (parallel

connections) under some global constraints. There are two

major issues in this approach. One is that global information

of the peers in the network is required, which is not practical

in real world. The other is that the analysis is based on the

averaged quantities, e.g., average capacities of all possible

source peers in the network. The approach of using the

average service capacity to analyze the average download

time has been a common practice in the literature [2], [3], [5],

[6], [15]–[17].

1.1 Limitations of Average Service Capacity

We here illustrate limitations of the approach based on

averaged quantities in a P2P network by considering the

following examples. Suppose that a downloading peer wants

to download a file of size S from N possible source peers. Let

 be the average end-to-end available capacity between the

downloading peer and the ith source peer (i =1, 2……N).

Notice that the actual value of is unknown before the

downloading peer actually connects to the source peer. The

average service capacity of the network,

 Ĉ is given by Ĉ = ∑

Intuitively, the average download time, T, for a file of size F

would be

 T = F/Ĉ. (1)

In reality, however, (1) is far different from the true average

download time for each user in the network. The two main

reasons to cause the difference are (i) the spatial heterogeneity

in the available service capacities of different end-to-end

paths and (ii) the temporal correlations in the service capacity

of a given source peer.

1.2 Impact of Heterogeneity

Suppose that there are two source peers with service

capacities of = 100 and = 150, respectively, and there

is only one downloading peer in the network. Because the

downloading peer does not know the service capacity of each

source peer prior to its connection, the best choice that the

downloading peer can make to minimize the risk is to choose

the source peers with equal probability. In such a setting, the

average capacity that the downloading peer expects from the

network is (100 + 150) / 2 = 125 kbps. If the file size F is 1

MB, we predict that the average download time is 64 seconds

from (1) However, the actual average download time is 1/2(1

MB/100 kbps) + 1/2(1 MB/150 Mbps) = 66.7 seconds! Hence,

we see that the spatial heterogeneity actually makes the

average download time longer. Then, an obvious solution to

the problem of minimizing the average download time is to

find the peer with the maximum average capacity, i.e., to

choose peer with the average capacity (i)), as the

average download time over source peer would be given by

F/ . Consider again the previous two-source peer example

with C1 = 100 and = 150. As we want to minimize the

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

20

download time, an obvious choice would be to choose source

peer 2 as its average capacity is higher. Now, let us assume

that the service capacity of source peer 2 is not a constant, but

is given by a stochastic process C2(t) taking values 50 or 250

kbps with equal probability, thus giving E { } = = 150

kbps. If the process (t) is strongly correlated over time such

that the service capacity for a file F is likely to be the same

throughout the session duration, it takes on average (1 MB/50

kbps + 1 MB/250 kbps)/2 = 96 seconds, while it takes only 80

seconds to download the file from source peer 1. In other

words, it may take longer to complete the download when we

simply choose the source peer with the maximum average

capacity. Thus it is evident that the average download time is

increased due to heterogeneity and temporal correlation of

service capacity.

1.3 Our Contribution

The main contribution of this paper is to show that the

predicted value given in (1) is actually achievable, regardless

of the heterogeneity in service capacity and the temporal

correlation of service capacity of single source peer. We have

designed and analyzed new distributed algorithms that can

efficiently eliminate the negative impact of both the

heterogeneity in service capacities over different source peers

and the correlations in time of a given source peer. Our

dynamic distributed algorithm limits the amount of time each

peer spends on a bad source peer thus minimizing the average

download time for each user. The rest of the paper is

organized as follows. In Section 2, we provide some

background on service capacity characteristics in a P2P

network in terms of the heterogeneity over different

connections and correlations over time for a given connection.

In Section 3, we analyze the impact of heterogeneity in

service capacities as well as the correlations in a given

connection on each user’s average download time. In Section

4, we show that our simple and distributed algorithm and can

virtually eliminates all the negative impacts of heterogeneity

and correlations. Our scheme thus greatly reduces the average

download time and achieves the simple relation in (1)

regardless of network settings. Section 5 provides simulation

results to test our algorithm and compare with others under

various network settings, and we conclude our work in

Section 6. we conclude our design of algorithm and prove that

our scheme greatly reduces the average download time.

2. FACTORS OF AVERAGE

DOWNLOAD TIME

In this section, we briefly describe the characteristics of the

service capacity that a single user receives from the network

from the user’s perspective.

2.1 Heterogeneity of Service Capacity

In a P2P network, just like any other network, the service

capacities from different source peers are different. There are

many reasons for this heterogeneity. On each peer side,

physical connection speeds at different peers vary over a wide

range [22] (e.g., DSL, Cable, T1, etc.). The limitation in the

processing power can limit how fast a peer can service others

and hence limits the service capacity.

2.2 Correlations in Service Capacity

While the long-term average of the service capacity is mainly

governed by topological parameters, the actual service

capacity during a typical session is never constant, but always

fluctuates over time [23], [24]. There are many factors

causing this fluctuation.

Fig. 1 shows a typical available end-to-end capacity

fluctuation similar to that presented in [23] and [24]. The time

scale for the figure in the measurement study is on the order

of minutes. We know from [4] that a typical file download

session can last from minutes to hours for a file size of several

megabytes. This implies that the service capacity over the

timescale of one download session is stochastic and

correlated.

Fig 1: Typical variations in end-to-end available

bandwidth based on the results in [23] and [24]. Drastic

changes usually occur in the scale of minutes.

3. CHARACTERIZING DOWNLOAD

TIME IN A P2P NETWORK
We consider our network as a discrete-time system with each

time slot of length. For notational simplicity, throughout the

paper, we will assume that the length of a time slot is

normalized to one, i.e., = 1. Let C(t) denotes the time-

varying service capacity(available end-to-end bandwidth) of a

given source peer at time slot t (t=1,2…) over the duration of

a download. Then, the download time T for a file of size F is

defined as

 T= min {s > 0 ∑
 ≥ F}. (2)

Note that is a stopping time or the first hitting time of a

process C(t) to a fixed level F. If C(t),t= 1,2..are constant or

identically identified distributed, then by assuming an equality

in (2), we obtain from Wald’s equation [25] that

 F = E { ∑
 } = E{C (t)} E {T}. (3)

The expected download time, measured in slots, then becomes

E (t) = F/E {c (t)}. Note that (3) also holds if C (t) is constant

(over). Thus, when the service capacity is constant or

independent and identically distributed. Over time or constant,

there exists a direct relationship between the average service

capacity and the average download time, as has typically been

assumed in the literature.

4. MINIMIZING AVERAGE

DOWNLOAD TIME
Intuitively, if a downloader relies on a single source peer for

its entire download, it risks making an unlucky choice of a

slow source resulting in a long download. Since the service

capacity of each source peer is different and fluctuates over

time, utilizing different source peers either simultaneously

(parallel downloading) or sequentially within one download

session would be a good idea to diversify the risk. We will

analyze the performance of (i) parallel downloading; (ii)

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

21

random chunk-based switching; and (iii) random time-based

(periodic) switching.

4.1 Effect of Parallel Downloading
Parallel downloading is one of the most noticeable ways to

reduce the download time [28], [16]. If the file F is divided

into K chunks of equal size, and simultaneous connections are

used, the capacity for this download session becomes +

+ … + , where s the service capacity of th connection.

Intuitively, this parallel downloading seems to be optimal in

all cases. But, it is worth noting that the download time for

parallel downloading is given by Max { + + ..+ }

rather than F/(+ + … +). Without loss of generality,

we assume that . If parallel downloading is used for

downloading a file of size F from the network, the download

time is given by

 = max {

,

 } =

 (4)

For the case of single download, the average download time

E{ }is

E{ } =

 (

 +

) > E{ } = (5)

Now, given that parallel download is better than single

download, one may ask whether it is as good as the predicted

value in (1). To answer this, let us recall the two-source peers

example. From (1), the predicted download time is

E{T} =

 =

 . (6)

Hence, if there is an algorithm that can increase the

performance of each individual connection among such a few

parallel connection, then each individual user may achieve the

download time predicted by (1) or even better.

4.2 Random Chunk-Based Switching
In the random chunk-based switching scheme, the file of

interest is divided into many small chunks just as in the

parallel download scheme. First, suppose that there is no

temporal correlation in service capacity and Wald’s equation

holds for each source peer. A file of size F is divided into m

chunks of equal size, and let be the download time for chunk

. Then, the total download time, h , h = ∑

 . Since

each chunk randomly chooses one of N source peers (with

equal probability), the expected download time will be

E{ } = ∑

 ∑

 =

. (7)

The result in (10) is identical to the download time given in

(6) where a user downloads the entire file from an initially

randomly chosen source peer. In other words, the chunk-based

switching is still subject to the “curse” of spatial

heterogeneity. In other words, we randomly switch based on

time. In the subsequent section, we will investigate the

performance of this random switching based on time and

show that it outperforms all the previous schemes in the

presence of heterogeneity of service capacities over space and

temporal correlations of service capacity of each source peer.

4.3 Random Periodic Switching
In this section, we analyze a very simple, distributed

algorithm and show that it effectively removes correlations in

the capacity fluctuation and the heterogeneity in space, thus

greatly reducing the average download time. In our model,

there are N possible source peers for a fixed downloader. Let

 (t) (t=1,2,…. and i=1,2,..N). denote the available capacity

during time slot of source peer. In this setup, we can consider

the following two schemes: (i) permanent connection, and (ii)

random periodic switching. For the first case, the source

selection function does not change in time. In other words,

U(t) = U, where U is a random variable uniformly distributed

over {1,2,…N}.For the random periodic switching, the

downloader randomly chooses a source peer at each time slot,

independently of everything else.

Fig. 3 illustrates the operation of the source selection function

U(t) for random periodic switching. In this figure, source 1 is

selected at time 1, source N is selected at time 2, and so on.

Let us define an indicator function

 (t)= {

Fig 2: Operation of source selection function U(t) for

Random Periodic Switching.

Then, since U(t) can take values only from { 1,2,…,N},the

Actual available capacity at time t can be written as

X(t) = (t) = ∑

 (t)

for both the permanent connection and the random periodic

switching strategies. Since each downloader chooses a source

peer independently of the available capacity, U(t) is also

independent from t), and so is (t). Note that, from E {

(t) } = 1/N. for any u, we have

E{X(t)} = ∑ {

 (t) (t)}

 = ∑ {

 (t)} { (t)} (8)

 = ∑

 = A(Ĉ)

i.e., the average available capacity for the two source selection

strategies is the same.

4.4 Limitations of the existing methods
In Parallel Downloading, if the downloader stuck with any

one of the bad source peer over k peers, then it waits for long

time until getting the chunk. The download time of this

method is the maximum time taken by any of the k peers that

take the longest time to complete. The main disadvantage of

the Chunk-Based Switching is that if we get stuck in a bad

source peer with very low service capacity, downloading a

fixed amount of bytes from that source peer may still take a In

Random Periodic Switching, the downloader randomly

chooses a source peer at each time slot and it may get stuck

with bad source peer. So this method cause too much

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

22

overhead associated with switching to many source peers and

integrating those many chunks into a single file.

4.4.1 Distributed parallel switching algorithm
Distributed parallel switching algorithm has two

methods.(i)parallel connection (ii)parallel random chunk

based switching. This method outperforms all the previous

schemes in the presence of heterogeneity of service capacities

over space and fluctuation of service capacity of each source

peer. Our two schemes are described below.

4.4.2 Dynamically Distributed Parallel Connection
In this method, the source selection function does not change

in fixed time slot t as in Permanent Connection of existing

Periodic Switching. But instead of choosing a single source

peer, here the downloader chooses multiple fixed k source

peers over N possible source peers and it makes permanent

connection for the fixed time slot t.

4.4.3 Dynamically Distributed Parallel Random Chunk Based

Switching

In this method, the source selection function changes for each

randomly selected time slot as in Random Chunk Based

Switching of existing Periodic Switching. But instead of

choosing a single source peer, here the downloader randomly

chooses multiple fixed k source peers over N possible source

peers and it makes parallel connection with that k source peers

for each randomly selected time slot. So in this method, if the

downloader chooses the k source peers over N possible source

peers at randomly selected time to, then it will stay with that k

source peers permanently until the download completes. After

the time slot gets completed, the downloader again performs

the 6source selection function to download the remaining file.

5. DESIGN OF DYNAMICALLY

DISTRIBUTED PARALLEL

CONNECTION
In this method, We designed new Parallel Connection and our

algorithm implemented at each downloading peer in a

distributed fashion and we focus on a single downloader

throughout this method. In our method , there are N possible

source peers for a fixed downloader. Let (t) where t=1,2…

and i=1,2…k over N possible source peers. Let U(t) is a

source selection function for the downloader. If U(t) = i ,then

it indicates the ith path and available capacity it receives is

 (t) during the time slot t. we however aloe that they have

different distributions of service capacities and the average

service capacity of the network is given as follows,

 →

 A (C) =

 ∑

Our new Dynamically Distributed Parallel Permanent

Connection scheme has the following modules,

5.1 Downloading Peer Initiation Module
In this Downloading Peer Initiation Module, the user requests

the file from the downloading peer and the file is given to the

Source Selection Function Module. Fig. 3 illustrates the

functionality of the Downloading Peer Initiation Module.

Fig 3: Downloading Peer Initiation Module

5.2 Source Selection Function Module
In Source Selection Function Module, the file name is

received as input. The fixed time slot t is initialized. The

downloading peer identifies all the source peers and randomly

selects the k source peers over N possible source peers and

divides the file into chunks. Fig. 4 illustrates the functionality

of the Source Selection Function Module.

Fig 4: Source Selection Function Module

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

23

5.3 Data Provider Module
In this Data Provider module, the chunk size of the file is

identified and divides into k chunks of equal size. The chunk

ratio is calculated and it is given to each Source Peer Module.

Fig. 5 illustrates the functionality of the Data Provider

Module.

Fig 5: Data Provider Module

5.4 Source Peer Module
In this Source Peer Module, the File name, Time slot t, and

the chunk ratio is received as input from the Data Provider

Module. Then it finds the total chunk size and calculates the

number of bytes from the chunk ratio. Then the file content is

given to the Data Receiver Module. Fig.6 illustrates the

functionality of the Source Peer Module.

Fig 6: Source Peer Module

5.5 Data Receiver Module
In this Data Receiver Module, the file content from the

randomly selected k source peers is received as input. This

module verifies whether each chunk over k chunks is received

fully. If the k chunks are received fully, then the file content is

received. Fig.7 illustrates the functionality of the Data

Receiver Module.

Fig 7: Data Receiver Module

6. DYNAMICALLY DISTRIBUTED

PARALLEL RANDOM CHUNK BASED

SWITCHING

6.1 Downloading Peer Initiation Module
In this Downloading Peer Initiation Module, the user requests

the file from the downloading peer and the file is given to the

Source Selection Function Module. The Fig.8 illustrates the

initial module

Fig 8: Downloading Peer Initiation Module

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

24

6.2 Source Selection Function Module

The downloading peer identifies all the source peers and

randomly selects the k source peers over N possible source

peers and divides the file into chunks. Fig. 9 illustrates the

functionality of the Source Selection Function Module.

Fig 9: Source Selection Function Module

6.3 Data Provider Module
In this Data Provider module, the chunk size of the file is

identified and divides into k chunks of equal size. The chunk

ratio is calculated and it is given to each Source Peer Module.

Fig. 10 illustrates the functionality of the Data Provider

Module.

Fig 10: Data Provider Module

6.4 Source Peer Module
In this Source Peer Module, the File name, Time slot t, and

the chunk ratio is received a input from the Data Provider

Module. Then it finds the total chunk size and calculates the

number of bytes from the chunk ratio. Then the file content is

given to the Data Receiver Module. Fig. 11 illustrates the

functionality of the Source Peer Module.

Fig 11: Source Peer Module

6.5 Data Receiver Module
In this Data Receiver Module, the file content from the

randomly selected k source peers is received as input. This

module verifies whether each chunk over k chunks is received

fully. If the entire file is not received, then it starts

downloading the next chunk from the file by continuing the

process from the Source Selection Module. Fig. 12 illustrates

the _functionality of the Data Receiver Module.

Fig 12: Data Receiver Module

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.10, August 2012

25

7. CONCLUSION AND FUTURE WORK
In this paper, we have designed a new scheme that effectively

removes correlations in the capacity fluctuation and the

heterogeneity in space, thus greatly reducing the average

download time. It is highly desirable to improve the network

efficiency by reducing each user's download time. Our future

enhancement is to overcome the negative factor in the existing

Random Chunk Based Switching by providing the Dynamic

Distributed Algorithm.

8. REFERENCES
[1] Y. M. Chiu and D. Y. Eun, “Minimizing file download

time over stochasticchannels in peer-to-peer networks,”

in Proc. 40th Annu. Conf.Information Sciences and

Systems (CISS), Princeton, NJ, Mar. 2006.

[2] D. Qiu and R. Srikant, “Modelling and performance

analysis of Bit-Torrent-like peer-to-peer networks,” in

Proc. ACM SIGCOMM, Aug.2004.

[3] X.Yang and G. deVeciana, “Service capacity of peer to

peer networks,”in Proc. IEEE INFOCOM, Mar. 2004,

pp. 2242–2252.

[4] K. P. Gummadi, R. J. Dunn, and S. Saroiu,

“Measurement, modeling,and analysis of a peer-to-peer

file sharing workload,” in Proc. ACMSymp. Operating

Systems Principles (SOSP), 2003.

[5] M. Adler, R. Kumar, K. Ross, D. Rubenstein, D. Turner,

and D. D.Yao, “Optimal peer selection in a free-market

peer-resource economy,”in Proc. Workshop on

Economics of Peer-to-Peer Systems

(P2PEcon)Cambridge, MA, Jun. 2004.Brown, L. D.,

Hua, H., and Gao, C. 2003. A widget framework for

augmented interaction in SCAPE.

[6] M. Adler, R. Kumar, K. Ross, D. Rubenstein, T. Suel,

and D. D. Yao,“Optimal peer selection for P2P

downloading and streaming,” in Proc.IEEE INFOCOM,

Miami, FL, Mar. 2005, pp. 1538–1549.

[7] D. S. Bernstein, Z. Feng, and B. N. Levine, “Adaptive

peer selection,”in Proc. Int.Workshop on Peer-to-Peer

Systems (IPTPS), Berkeley, CA,Feb. 2003.

[8] S. G. M.Koo, K. Kannan, and C. S. G. Lee, “A genetic-

algorithm-basedneighbor-selection strategy for hybrid

peer-to-peer networks,” in Proc.IEEE Int. Conf.

Computer Communications and Networks (ICCCN2004),

Rosemont, IL, Oct. 2004, pp. 469–474.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker, “AScalable Content Addressable Network,”

Univ. California, Berkeley,Tech. Rep. TR-00-010, 2000.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.

Balakrishnan,“Chord: A scalable peer-to-peer lookup

service for Internet applications,”in Proc. ACM

SIGCOMM, 2001.

[11] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.

Joseph, and J.D. Kubiatowicz, “Tapestry: A resilient

global-scale overlay for servicedeployment,” IEEE J. Sel.

Areas Commun., vol. 22, no. 1, pp. 41–53,Jan. 2004.

[12] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost,

“Informed contentdelivery across adaptive overlay

networks,” in Proc. ACM SIGCOMM,2002.

[13] C. Gkantsidis and P. R. Rodriguez, “Network coding for

large scalecontent distribution,” in Proc. IEEE

INFOCOM, Miami, FL, Mar.2005, pp. 2235–2245.

[14] “Peer-to-peer content distribution: Using client PC

resources to storeand distribute content in the enterprise”

Intel Corp., Tech. Rep.,Sep. 2003 [Online]. Available:

http://www.intel.com/it/digital-enterprise/peer-peer-

content-distribution.pdf.

[15] K. K. Ramachandran and B. Sikdar, “An analytic

framework for modelingpeer to peer networks,” in Proc.

IEEE INFOCOM,Mar. 2005, pp.215–269.

[16] S. G. M. Koo, C. Rosenberg, and D. Xu, “Analysis of

parallel downloadingfor large file distribution,” in Proc.

IEEE Int. Workshop on FutureTrends in Distributed

Computing Systems (FTDCS), May 2003,pp. 128–135.

[17] F. Lo Piccolo and G. Neglia, “The effect of

heterogeneous link capacitiesin BitTorrent-like file

sharing system,” in IEEE Int. Workshop onHot Topics in

Peer-to-Peer Systems (HOT-P2P), Oct. 2004, pp. 40–47.

[18] T. Ng, Y. Chu, S. Rao, K. Sripanidkulchai, and H.

Zhang, “Measurement-based optimization techniques for

bandwidth-demandingpeer-to-peer systems,” in Proc.

IEEE INFOCOM, Apr. 2003, pp.2199–2209.

[19] Y. Kulbak and D. Bickson, “The eMule Protocol

Specification,” Jan.2005 [Online]. Available:

http://leibniz.cs.huji.ac.il/tr/acc/2005/HUJICSE-LTR-

2005-3_emule.pdf

[20] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie:

A cooperativebulk data transfer protocol,” in Proc. IEEE

INFOCOM, Hong Kong,Mar. 2004, pp. 941–951.

[21] B. Cohen, “BitTorrent Protol Specification,” [Online].

Available:http://ww.bittorrent.com/protocol.html.

[22] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “A

measurement studyf peer-to-peer file sharing systems,”

in Proc. ACM Multimedia Computingand Networking

(MMCN), 2002.

[23] M. Jain and C. Dovrolis, “End-to-end estimation of the

available bandwidthvariation range,” in Proc. ACM

Sigmetrics, Jun. 2005.

[24] N. Hu and P. Steenkiste, “Evaluation and

characterization of availablebandwidth probing

techniques,” IEEE J. Sel. Areas Commun., vol. 21,no. 6,

pp. 879–894, Aug. 2003.

[25] S. M. Ross, Stochastic Processes, 2nd ed. New York:

Wiley, 1996.

[26] I. Rhee and L. Xu, “Limitations of equation-based

congestion control,”in Proc. ACM SIGCOMM, Aug.

2005.

[27] A. Müller and D. Stoyan, Comparison Methods for

Stochastic Modelsand Risks. New York: Wiley, 2002.

[28] C. Gkantsidis, M. Ammar, and E. Zegura, “On the effect

of large-scaledeployment of parallel downloading,” in

Proc. IEEE Workshop on InternetApplications (WIAPP),

Jun. 2003, pp. 79–89.

