
International Journal of Computer Applications (0975 – 8887)

Volume 51– No.1, August 2012

28

Ultra Encryption Standard (UES) Version-IV: New
Symmetric Key Cryptosystem with bit-level columnar

Transposition and Reshuffling of Bits

Satyaki Roy
Department of Computer

Science,
St. Xavier’s College

(Autonomous), Kolkata, India

Joyshree Nath

A.K
.
Chaudhuri School of IT,

Raja Bazar Science College,
Calcutta University, Kolkata,

India

Navajit Maitra
Department of Computer

Science
St. Xavier’s College

(Autonomous), Kolkata, India

Shalabh Agarwal
Department of Computer

Science
St. Xavier’s College

(Autonomous), Kolkata, India

Asoke Nath

Department of Computer
Science

St. Xavier’s College
(Autonomous), Kolkata, India

ABSTRACT

The present paper is an extension of the previous work of the

authors i.e. UES version-II and III. Roy et al recently

developed few efficient encryption methods such as UES

version-I, Modified UES-I, UES version-II, UES version-III.

Nath et al developed some methods such as TTJSA, TTSJA

and DJMNA which are most suitable methods to encrypt

password or any small message. The introduction of multiple

feedbacks in TTJSA and TTSJA it was found that the methods

were free from any brute force attack or differential attack or

simple plain text attack. The authors proposed the present

method i.e. Ultra Encryption Standard Version-IV. It is a

Symmetric key Cryptosystem which includes multiple

encryption, bit-wise reshuffling method and bit-wise columnar

transposition method. In the present work the authors have

performed the encryption process at the bit-level to achieve

greater strength of encryption. In the result section the spectral

analysis is done on repeated characters. The authors proposed

method i.e. UES-IV can be used to encrypt short message,

password or any confidential key.

General Terms

UES-I, UES-II, randomization, bit-wise, feedback, password,

shift

1. INTRODUCTION

The problem of data security is now manifold due to

tremendous progress in internet technology. To break a

password nowadays is not at all a very difficult task. The

educational sectors, banking sectors, government sectors, IT

industries, share market, medical sectors all are computerized.

So the most important issue is to protect confidential data

from any kind of intrusion. Especially in the Banking sectors

hacking of data means the system will simply collapse. There

are many websites developed by the hackers where one can

get all those software which can help to break any kind of

weak password. It means only user id and password are not

enough to protect any confidential data. Suppose an intruder

intercepts the confidential data of a company and sells it to a

rival company, then it will be a big damage for the company

from where the data has been intercepted. The confidential

data must be always stored in encrypted form.

To encrypt data or to transform data from readable format to

unreadable format we use two types of cryptography

algorithms (i) Symmetric key cryptography where we use

single key for encryption and decryption purpose. (ii) Public

key cryptography where we use one key for encryption

purpose and one key for decryption purpose. Both the

methods have their advantages as well as disadvantages. Nath

et al. had developed some symmetric key algorithm [1-8].

Most of the methods operate in byte level. In the present

paper, the authors have attempted to take encryption one step

further by introducing bit-level encryption. The authors have

already attempted bit-level encryption in UES III. The

algorithm provides the combined strength of bit-level

reshuffling and a Bit-wise columnar transposition method. We

have tested this method on various types of known text files

and we have found that, even if there is repetition in the input

file, the encrypted file contains no repetition of patterns.

Undoubtedly, it provides stronger encryption than the byte-

level encryption method attempted so far.

2. ALGORITHM- UES IV

The UES Version- IV algorithm comprises of two distinct

methods (i) Bit-level Encryption Technique with Columnar

Transposition method which the author used in UES-I in byte

level, (ii) Bit-level reshuffling method. Now we will describe

in detail UES IV algorithm.

UES IV Encryption Algorithm

The algorithm integrates bit-level columnar transposition and

bit wise reshuffling. It computes ‘cod’ which controls the

multiple encryption number and ‘v’ which is the columnar

sequence generator. It splits the plain files into bits, encrypts it

and then converts it back to bits.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.1, August 2012

29

Step-1: Input plain text file, cipher text file and password

which may be maximum 64-byte long

Step-2: Calculate n=sizeOf (plain file).

Step-3: Calculate cod=key[i] * (i+1) where i=position of

character, 0<=i<=n.

Step-4: Calculate cod=cod%50 and if cod<15 then cod=15.

Cod= Number of times the encryption process is repeated.

Step-5: Decompose the entire plain file into its constituent bits

and define z=0.

Step-6: Define 1-d array arr [] = {2, 8, 32,128} where the

elements of 'arr'= number of bytes of plain text extracted and

encrypted at a time in each iteration.

Step-7: If z>=4 Goto17.

Step-8: If arr[z]>n then break else calculate no=n/arr[z] and

define i=0.

Step-9: Extract arr[z] bytes of plain text and if i>=n then goto

step-15

Step 10: Define u=square_root (arr[z]*8), (arr[z]*8) = number

of bits encrypted at once.

Step 11: Define v=0, where v= counter variable to perform

multiple encryption.

Step-12: If v>=cod Goto step-15.

Step-13: Call function ran_en (u, i) where the key matrix will

be randomized i-times.

Step-14: Call function colum (v) where the value v=the

columnar sequence generator for every iteration. Increment v.

Goto step-12

Step-15: Calculate i=i+1, Goto step-9

Step-15: Write the encrypted bits in the output file together

with the unrandomized residual bits and convert into

respective bytes of encrypted text.

Step-16: Calculate

Step-17: Goto step-7

Step-17: End

UES IV Decryption Algorithm

Step-1: Input plain text file, cipher text file, password

(maximum size is 64-byte).

Step-2: Calculate n=sizeOf (plain text file).

Step-3: Calculate cod=key [i] * (i+1) where i=position of

character, 0<=i<=n.

Step-4: Calculate cod=cod%50 and if cod<15 then cod=15.

cod= Number of times the decryption process is repeated.

Step-5: Decompose the entire plain file into its constituent bits

and define z=0.

Step-6: Define 1-d array arr [] = {2, 8, 32,128} where the

elements of ‘arr’= number of bytes of plain text extracted and

encrypted at a time in each iteration.

Step-7: If z>=4 Goto17.

Step-8: If arr[z]>n then z=z+1 and continue, else calculate

no=n/arr[z] and define i=0.

Step-9: Extract arr[z] bytes of plain text and if i>=n then

goto step-15

Step 10: Define u=square root (arr[z]*8), (arr[z]*8) =number

of bits encrypted at once.

Step 11: Define v=0, where v= counter variable to perform

multiple encryption.

Step-12: If v>=cod Goto step-15.

Step-13: Call function colum (v, cod) where the value v=the

columnar sequence generator for every iteration.

Step-14: Call function ran_de (u,i) where the key matrix will

be randomized i-times. Increment v. Goto step-12

Step-15: Perform i=i+1, Goto step-9

Step-15: Write the encrypted bits in the output file together

with the unrandomized residual bits and convert into

respective bytes of decrypted text.

Step-16: calculate z=z+1

Step-17: Go to step-7.

Step-18: End

2.1Bit Level Columnar Transposition

Algorithm

This module generates the random sequence of column

extraction in every iteration. It extracts the plain bits

according to the sequence set by an array.

Encryption column (v, cod)

Step 1: Start

Step 2: The columnar transposition is performed on the bits of

plain file. The value cod=unique key generated from user

password, v=the columnar transposition column generator.

The initial value of arra[]={7,6,5,4,3,2,1,0} and subsequently

becomes arra[i]=(arra[i]+v)%8 where 0<i<8. Therefore the

value of arra which stores the sequence of column extraction,

changes in every iteration.

Step 3: Initialize the variable n to an arbitrary value which

represents the number of columns of the columnar

transposition array in which the plain file bits will be stored.

Typically n may have any value.

Step 4: Initialize both variables row=0 and col=0

Step 5: Initialize all the elements in the specified array arr [] []

to NULL('\0')

Step 6: Store the plain text file byte by byte in the array arr []

[] where the row and column positions are determined by 'row'

and 'col'.

Step 7: Perform col=col+1 once a byte is read and placed in

the array

Step 8: If col=n then row=row+1, and initialize col=0 to keep

a check on the row and column parameters.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.1, August 2012

30

Step 9: Goto 7 until the storing of the intermediate plain text

in the array is complete.

Step 10: If col==0 then we decrement the row index by 1 to

ensure that the character array arr[] does not produce an extra

row. This happens when a bit is placed at the last column of a

particular row.

Step 11: Initialize both variables count=index=0.

Step 12: If (count>=n) Goto 17

Step 13: count=count+1

Table-I (a): Plain Text bits

Plain text (ASSUME): aa = 0110000101100001

The plain text is placed in array ‘arr’.

arra [i]=(arra[i]+v)%8

p=arra [index]

Where index=0 and subsequently index=index+1

p=6, 7, 5, 4, 3, 1, 2, 0 (ASSUME) respectively where p stands

for the sequence of extracted column.

0 1 1 0 0 0 0 1

0 1 1 0 0 0 0 1

Table-I (b): Cipher Text bits: After bit-wise columnar

transposition Encryption

0 1 0 0 0 1 1 0

0 1 0 0 0 1 1 0

Step 14: Perform p= arra [index]. Here the 'arra []' stores the

order in which the columns will be transported to the same

columnar transposition array arr [] to implement the columnar

transposition encryption method. The variable 'index' is

subsequently incremented to transport the rest of the columns

of the columnar transposition array.

Step 15: Write the bits in the p-th column in the intermediate

encrypted output file.

Step 16: Goto 12.

Step 17: Once the control flows outside the loop. The

encryption process is complete.

Step 18: End.

Decryption column (v, cod)

Step 1: Start

Step 2: The algorithm de-randomizes the cipher bits. Cod =

the unique key calculated from user password.

Step 3: Initialize the value v=columnar transposition column

generator and array num[]={7,6,5,4,3,2,1,0} which stores the

order in which the columns will be decrypted to get the

decrypted file. Then arra[i]=(arra[i]+(cod-v-1))%8 where

0<i<8. Therefore the value of arra which stores the sequence

of column extraction, changes in every iteration. The

algorithm states that the order of the columns in the columnar

transposition method must follow the same sequence.

Step 4: Initialize three variables row=col=count=0.

Step 5: Initialize all the elements in the array arr[][] to

NULL('\0')

Step 6: Read the encrypted file byte by byte and increment

count by 1.Count will give us the number of characters that

needs to be decrypted.

Step 7: Compute no=count/8. The algorithm (one such case)

has used 8 columns to encrypt the plain text and hence divide

count by 8 to get the number of rows in which the decrypted

text has to be stored in the array arr [][].

Step 8: If count%8! = 0 then an extra row is produced which

will accommodate the extra characters. Therefore the variable

'no' is incremented.

Step 9: Initialized i to ' 0'

Step 10: If i>=8 then Goto step 17.

Step 11: Compute p=num[i] and initialize k to 0, where k will

control the iterations within variable 'no' that has been

calculated.

Step 12: If 'k' is greater than or equal to 'no' Goto 16

Step 13: Extract the characters from the encrypted file and

store in character 'ch'

Step 14: Save the character in arr[k][p].

Step 15: Increment k.

Step 16: Goto 13.

Step 17: Increment i.

Step 18: Goto 10.

Step 19: Once the control flows out of the while loop, the

array ‘arr [] []' holds the decrypted file that is ready to be

written into the intermediate output file.

Step 20: Write the characters from the array arr [][] in the

output file.

Step 21: End

2.2Bit- level Reshufflings Algorithm

The algorithm randomizes the key matrix based on the value

of the multiple encryption number (cod). It performs

randomization of the plain bits based on the arrangement of

numbers in the key matrix.

Encryption rand_en (m, in)

Step 1: Start

Step 2: Create a key matrix which is used to randomize the

bits of plain text where m=number of rows / columns in the

square matrix of plain bits, in=number of times the key matrix

is randomized.

 Step 3: Define 2-d arrays arr=the randomization key. Define

2-d bits arrays chararr [] [] =plains bits and chararr2 [] []

=randomized bits.

Step 4: Initialize all the elements in the bits arrays chararr [][]

and chararr2[][] to 'null'.

Step 5: 'm'=number of rows and columns in the square matrix

of chararr [] [], chararr2 [] [], arr [] [].

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.1, August 2012

31

Step 6: Input the numbers 1, 2, 3..., (m*8) to the array arr [] []

by incrementing the value of n.

Step 7: Copy the input file bits to 2-d array chararr [] [].

Step 8: The program invokes function ‘leftshift ()' which shifts

every column in the array to one place left thus the leftmost

column goes to the extreme right.

Step 9: Invoke function top shift () which shifts very row to

the row above. Therefore the elements in first row are

displaced to the corresponding position of the last row.

Step 10: Subsequently perform cycling operation on the array

arr [] []. Initialize i to 1.

Step 11: If i > m/2 Goto 15.

Step 12: If i is odd, perform clockwise cycling of the ith cycle

of the key matrix array. Invoke functions :

rights(),downs(), lefts(),tops() to implement the clockwise

displacement of the elements in arr[][].

Step 13: If i is even, perform anti-clockwise cycling of the i-th

cycle of the bits array. Invoke functions ac_rights (),

ac_downs (), ac_lefts (), ac_tops () to implement the anti-

clockwise displacement of the elements in arr [] []. Therefore

the array arr [] [] is alternately randomized in clockwise and

anti-clockwise cycles. Repeat step 13 ‘in’ number of times.

Step 14: Increment i. Goto 11.

Step 15: The program invokes function 'rightshift ()' which

shifts every column in the array to one place right thus the last

column is displaced to the position of the first column.

Step 16: Invoke function ‘downshift () which shifts very row

to the row below. Therefore the elements last row are

displaced in the corresponding position of the first row.

Step 17: Invoke the function 'leftdiagonal ()' that performs

downshift on the elements in the left diagonal such that the

lowermost element is displaced to the position of the topmost

element in the left diagonal.

Step 18: Invoke the function 'rightdiagonal ()' that performs

downshift on the elements in the right diagonal such that the

lowermost element is displaced to the position of the topmost

element in the right diagonal.

Step 19: To arrange the elements in the bits array chararr [] []

according to the randomized array arr [] []. Initialize i to 1.

Step 19: Initialize j to 1

Step 20: Store element arr[i] [j] in z.

Step 21: Compute the k=row position=z/m and l=column

position=modulus (z, m) pointed by the element z

Step 22: Place chararr[k][l] in auxiliary bits array

chararr2 [][] in positions chararr2[i][j].

Step 23: Increment j.

Step 24: If j<=m Goto 20

Step 25: Increment i

Step 26: If j<=m Goto 20

Step 27: Write the randomized elements in bits array chararr2

[i] [j] to the output file.

Step 28: End.

Decryption rand_de (m, in)

Step 1: Start

Step 2: Create a key matrix which is used to randomize the

bits of plain text where m=number of rows / columns in the

square matrix of plain bits, in=number of times the key matrix

is randomized.

Step 3: Define 2-d array 'arr' = randomized key. Define 2-d

bits arrays 'chararr [][]' = bits in encrypted file and

chararr2[][] = decrypted bits.

Step 4: Initialize all the elements in the bits arrays chararr [][]

and chararr2 [][] to 'null'.

Step 5: 'm' = number of rows and columns in the square

matrix of chararr [] [], chararr2 [] [], arr [] [].

Step 6: Input the numbers 1, 2, 3..., (m*8) to the array arr [] []

by incrementing the value of n. The bits in the input file are

copied to the bits array ‘chararr [][]'.

Step 7: Use the numbers in the randomized array created with

the help of the functions subsequently defined in the program

to obtain key matrix.

Step 8: The program invokes function 'leftshift ()' which shifts

every column in the array to one place left.

Step 9: Invoke function 'topshift () which shifts every row to

the row above.

Step 10: Perform cycling operation on the array 'arr [][]' .

Initialize i to 1.

Step 11: If i > m/2 goto 15.

Step 12: If i is odd, perform clockwise cycling of the i-th

cycle of the bits array. Invoke functions rights (), downs (),

lefts (), tops () to implement the clockwise displacement of the

elements in arr [] [].

Step 13: If i is even, perform anti-clockwise cycling of the ith

cycle of the bits array. Invoke functions :

ac_rights (), ac_downs (), ac_lefts (), ac_tops () to implement

the anti-clockwise displacement of the elements in arr[][].

Therefore the array arr [] [] is alternately randomized in

clockwise and anti-clockwise cycles. Repeat step-13 ‘in’

times.

Step 14: Increment i. Goto 11.

Step 15: Invoke function 'rightshift ()' which shifts every

column in the array to one place right.

Step 16: Invoke function 'downshift () which shifts very row

to the row below.

Step 17: Invoke the function 'leftdiagonal ()' that performs

downshift on the elements in the left diagonal.

Step 18: Invoke the function 'rightdiagonal ()' that performs

downshift on the elements in the right diagonal.

Step 19: Store decrypted bits in auxiliary array chararr []

[].Initialize i to 1.

Step 20: Initialize j to 1

Step 21: Initialize variables flag to 0, k to 0 and l to 0 where

k=row index and l=column index for array chararr [] [].

Step 22: if arr[k] [l] is not equal to n goto 24

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.1, August 2012

32

Step 23: chararr2 [i][j] assumes the value in chararr[k][l],

flag=1 and BREAK.

Step 24: If 'flag' is equal to 1 break

Step 25: Increment l.

Step 26: If l is less than or equal to m goto 22.

Step 27: Increment k

Step 28: If k is less than or equal to m goto 22.

Step 29: Increment n.

Step 30. Increment j.

Step 31. If j is less than or equal to m goto 21.

Step 32. Increment i

Step 33: If i is less than or equal to m goto 22.

Step 34: Write the decrypted elements in the bits array

chararr2 [] [] in the output file.

Step 35: End

2.3Diagrammatic Representation of Ultra

Encryption Standard (UES) Version IV:

New Symmetric key Cryptosystem with bit-

level columnar transposition and

reshuffling of bits

The above diagram shows the working of the UES IV

algorithm. It initially extracts 2 bytes at a time and performs

bitwise reshuffling and columnar transposition of the

extracted data. It then extracts the next 2 bytes and performs

the same process until the entire file is encrypted or the

number of residual bytes is less than the number of extracted

bytes. It then repeats the same procedure by extracting 8, 32

and 128 bytes of plain text bytes at a time.

Figure 1: Diagrammatic Representation of UES IV.

3.TEST RESULTS

In the present paper, the authors have combined the two

modules of bit-level randomization and Advanced Bit-wise

Encryption Technique with columnar transposition. The test

results have been recorded with great care to ensure that the

algorithm not only works for every file format but also yields

satisfactory test results for all possible file sizes. The

algorithm works at the bit-level and the test results show that

the quality and strength of encryption obtained is significantly

higher than the techniques that work with bytes. The test

results include (i) the change in the cipher text when applied

on the same plain text but with different passwords and (ii)

Frequency analysis of some rare test cases. (iii) Byte by byte

comparison between the ciphers of text file containing only

characters ‘a’, ‘b’, ‘c’ respectively. The following results

effectively demonstrate the quality of encryption rendered by

UES-IV.

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.1, August 2012

33

(i) Table-II: The change in the cipher text when

applied on the same plain text but with

different password

Plain Text Password Cipher File

Ultra Encryption

Standard IV is a

bit-level encryption

technique.

1 …ë«3í__•È_Yàü±_ä€j

æ,½_éž‘D®U‹•²fÃª£Ù

H'$&y_†}ïmÙ!©à¥`Ê_

DÏujz_ö1è

Ultra Encryption

Standard IV is a

bit-level encryption

technique.

11 p±L•µH_{I•“__Å0+à¼

V_ÕV>õ…`_ó‚ºË•)›)_É

üA_\Z¸DØy+é_[W\øÐ‘

Ê ô@¤g]_

Ultra Encryption

Standard IV is a

bit-level encryption

technique.

111 hð°ÏXÂ__}#ô*Âp8‹ìa_

4•!l+_¦_¤Œlh.__pù±_Ír

S}Tˆ¸”¯¨º¸«Œh_@³û3T¦

AÚ

The above table studies the effectiveness of the user password

by applying different passwords on the same plain text input

and cataloguing the variation in the resultant cipher files.

Frequency Analysis of rare text inputs

Figure II: Spectrum Analysis for cipher file for 256

characters of ASCII ‘a’

Generally plain inputs like 512 bytes of ‘a’ or 256 bytes of

ASCII value 2 are hard to encrypt. However frequency

analysis reveals that this algorithm can encrypt such plain file

inputs.

The figure above (RESULT-I) represents the frequency of

each character in the cipher file corresponding the plain text

which is 512 characters of a. The bit-configuration of the

character is therefore 01100001. However, due to the

effectiveness of bit-level randomization and columnar

transposition, it has been possible to encrypt such a plain file.

Fig-III: RESULT – II: 256 characters of ASCII ‘2’, the

graph representing the frequency of each character (of

ASCII 0-255) in the cipher file

The graph (RESULT II) corresponds to 256 characters of

ASCII value ‘2’ of bit sequence 00000010. Since majority of

bits in the plain file is 0 therefore the encryption of such a file

is equally difficult without feedback. However it is only

possible due to repeating transposition and randomization

operations.

Byte by byte comparison between the

ciphers of text files 20 containing only

characters ‘a’, ‘b’, ‘c’

Byte

Number

ASCII

value of

character

in cipher

files for 40

characters

of ‘A’.

ASCII

value of

character

in cipher

file for 40

characters

of ‘B’.

ASCII value

of character

in cipher file

for 40

characters

of ‘C’.

1 165 32 160

2 169 0 34

3 132 18 22

4 0 169 173

5 0 32 32

6 28 64 64

7 65 0 50

8 7 92 124

9 128 20 157

10 132 157 136

11 65 128 163

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.1, August 2012

34

12 36 163 36

13 32 32 42

14 74 32 58

15 50 26 7

16 36 7 97

17 10 97 44

18 147 44 184

19 64 152 2

20 44 2 201

Table - III: Byte by byte comparison of similar text

inputs. (In this case 20 characters of ‘A’, ‘B’ and ‘C’.

The objective of this test is to verify whether the cipher file

for similar inputs (in this case, 40 bytes of ‘A’, ‘B’ and ‘C’

are similar. The results in columns 2,3 and 4 of the table

verify that almost no row has the same character for the three

plain text files.

4. CONCLUSION AND FUTURE SCOPE

In the previous endeavours of UES Version-I, UES Modified

Version-I and UES Version-II, the authors have worked

exclusively on bytes. In the present work the entire

encryption process is performed at the bit-level. The plain text

files have been split into respective bits before we apply the

aforementioned algorithms. From the test results shown

before, it is evident that the algorithm takes care of plain text

inputs such as ASCII 2 and many occurrences of same

character. Even when the same characters are provided as

input, the cipher files have almost no occurrence of repetitive

patterns.The columnar transposition module with bits has

been utilized for the first time. The use of multiple encryption

and the role of the password provided by the user have also

been demonstrated in the test results.

The results show that this method is too hard to break by

using any kind of brute force method. As mentioned before

have applied our method on some known text where the single

character repeats itself for a number of times and we have

found that after encryption there is no repetition of pattern in

the output file. Moreover, it must be remembered, if the cipher

file is tampered and certain character(s) in the file get altered,

it would be impossible to retrieve the plain file, since the

feedback generated will be different for different characters.

The present method will not work if the plain text file contains

all ASCII character 255 or ASCII character 0.

5. ACKNOWLEDGEMENT

We are grateful to the Department of Computer Science for

giving us the unique opportunity to work on Symmetric Key

Cryptography. One of the authors (AN) sincerely expresses

his gratitude to Fr. Dr. Felix Raj and Fr. Jimmy Keepuram for

allowing us to carry out research work. AN is thankful to the

University Grant Commission for their support and financial

assistance. JN is grateful to A.K. Chaudhuri School of IT and

SR, NM, SA and AN are thankful to St. Xavier’s College.

6. REFERENCES

[1] Symmetric Key Cryptography using Random Key

generator: Asoke Nath, Saima Ghosh, Meheboob Alam

Mallik: ŖProceedings of International conference on

security and management (SAMř10ŗ held at Las Vegas,

USA Jull 12-15, 2010), P-Vol-2, 239-244 (2010).

[2] A new Symmetric key Cryptography Algorithm using

extended MSA method: DJSA symmetric key algorithm,

Dripto Chatterjee, Joyshree Nath, Suvadeep Dasgupta

and Asoke Nath : Proceedings of IEEE CSNT-2011 held

at SMVDU(Jammu) 3-5 June,2011, Page-89-94.

[3] New Symmetric key Cryptographic algorithm using

combined bit manipulation and MSA encryption

algorithm: NJJSAA symmetric key algorithm: Neeraj

Khanna,Joel James,Joyshree Nath, Sayantan

Chakraborty, Amlan Chakrabarti and Asoke Nath :

Proceedings of IEEE CSNT-2011 held at

SMVDU(Jammu) 03-06 June 2011, Page 125-130.

[4] Advanced Symmetric key Cryptography using extended

MSA method: DJSSA symmetric key algorithm: Dripto

Chatterjee, Joyshree Nath, Soumitra Mondal, Suvadeep

Dasgupta and Asoke Nath, Jounal of Computing, Vol3,

issue-2, Page 66-71,Feb(2011).

[5] Advanced Steganography Algorithm using encrypted

secret message : Joyshree Nath and Asoke Nath,

International Journal of Advanced Computer Science and

Applications, Vol-2, No-3, Page-19-24, March(2011).

[6] Symmetric key Cryptography using modified DJSSA

symmetric key algorithm, Dripto Chatterjee, Joyshree

Nath, Sankar Das, Shalabh Agarwal and Asoke nath,

Proceedings of International conference Worldcomp

2011 held at Las Vegas, USA, July 18-21, Page 312-318,

Vol-I(2011).

[7] Cryptography and Network, Willian Stallings, Prentice

Hall of India.

[8] Cryptography & Network Security, B.A.Forouzan, Tata

Mcgraw Hill Book Company.

[9] An Integrated symmetric key cryptography algorithm

using generalized vernam cipher method and DJSA

method: DJMNA symmetric key algorithm, Debanjan

Das, Joyshree Nath, Megholova Mukherjee, Neha

Chaudhury and Asoke Nath, Proceedings of IEEE

conference WICT-2011 held at Mumbai University Dec

11-14,2011

[10] Symmetric key cryptosystem using combined

cryptographic algorithms-generalized modified Vernam

cipher method, MSA method and NJJSAA method:

TTJSA algorithm, Trisha Chatterjee, Tamodeep Das,

Joyshree Nath, Shyan dey and asoke Nath, Proceedings

of IEEE conference WICT-2011 held at Mumbai

University Dec 11-14, 2011.

[11] Ultra Encryption Standard (UES) Version-II: Symmetric

Key Cryptosystem using generalized modified Vernam

Cipher method, Permutation method, Columnar

Transposition method and TTJSA Method, Satyaki Roy,

Navajit Maitra, Shalabh Agarwal and Asoke Nath,

International Journal of Computer Applications (0975 – 8887)

Volume 51– No.1, August 2012

35

Proceedings of the 2012 International Conference on

Foundation of Computer Science, held at Las Vegas, July

14-19, Page 97-104.

[12] Ultra Encryption Standard (UES) Version-III: Symmetric

Key Cryptosystem With Bit-level Encryption Algorithm,

Satyaki Roy, Navajit Maitra, Shalabh Agarwal, Joyshree

Nath, Asoke Nath, International Journal of Modern

Education and Computer Science (IJMECS), Volume 4

Number 7, July 2012.

[13] Ultra Encryption Algorithm (UEA): Bit level Symmetric

key Cryptosystem with randomized bits and feedback

mechanism International Journal of Computer

Application (IJCA) Volume 49 number 5, Satyaki Roy,

Navajit Maitra, Shalabh Agarwal, Joyshree Nath, Asoke

Nath, July, 2012

.

