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ABSTRACT 

With the introduction of GPGPUs, parallel programming has 

become simple and affordable. APIs such as NVIDIA’s 

CUDA have attracted many programmers to port their 

applications to GPGPUs. But writing CUDA codes still 

remains a challenging task. Moreover, the vast repositories of 

legacy serial C codes, which are still in wide use in the 

industry, are unable to take any advantage of this extra 

computing power available. Lot of attempts have thus been 

made at developing auto-parallelization techniques to convert 

a serial C code to a corresponding parallel CUDA code. Some 

parallelizes, allow programmers to add ―hints‖ to their serial 

programs, while another approach has been to build an 

interactive system between programmers and parallelizing 

tools/compilers. But none of these are really automatic 

techniques, since the programmer is fully involved in the 

process. In this paper, we present an automatic parallelization 

tool that completely relieves the programmer of any 

involvement in the parallelization process. Preliminary results 

with a basic set of usual C codes show that the tool is able to 

provide a significant speedup of ~10 times. 
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Auto parallelization, parallelization, C, CUDA, hiCUDA, 

GPU. 
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1. INTRODUCTION 
In the last decades, there have been great advancements in the 

field of Parallel Computing. With the introduction of General 

Purpose Graphical Processing Units (GPGPUs), attaining 

parallel processing capability has become simple and 

affordable. A typical GPU is a multi-core architecture with 

each core capable of running thousands of threads 

simultaneously. Hence, an application with a large amount of 

parallelism can use GPUs to realize significant performance 

benefits. SDKs and APIs such as Nvidia’s CUDA [1], AMD’s 

FireStream and Khronos Group’s Open CL [2] have 

simplified the task of programming GPUs. Some of the areas 

where GPUs have been used extensively for General Purpose 

computing are: scientific computing [3][4], image processing 

[5][6][7], animation and simulation [8][9] and cryptography 

[10]. 

But the vast repositories of legacy serial C codes, which are 

still in use, are unable to exploit this extra computing power 

available to them. Manually updating all such codes is tedious 

and error-prone. Parallelizing even a single C code is not a 

trivial task. The programmer needs to have a complete 

knowledge of the code being parallelized and should be 

comfortable with the target parallel architecture. Also, even 

though APIs, such as those of CUDA, have attracted many 

non-graphics programmers to port their applications to 

GPGPUs, the process still remains very challenging.  In 

particular, CUDA places on the programmer the burden of 

packaging GPU code in separate functions, of explicitly 

managing data transfer between the host memory and various 

GPU memories, and of manually optimizing the utilization of 

the GPU memory [11]. 

Due to the reasons mentioned above, we have undertaken the 

task to develop ―Automated Tool to Generate Parallel CUDA 

code from a Serial C Code‖. The tool is aimed at enabling 

easy portability of existing serial softwares to parallel 

architectures. This should be possible without the user having 

any knowledge whatsoever of the algorithm and the 

architecture. 

Though the quality of automatic parallelization has improved 

in the past several decades, fully automatic parallelization of 

sequential programs by compilers remains a grand challenge 

due to its need for complex program analysis and the 

unknown factors (such as input data range) during 

compilation. Attempts have been made at simplifying the 

process of manual parallelization by allowing programmers to 

add "hints" to their programs to guide compiler 

parallelization, such as High Performance Fortran (HPF) [12] 

for distributed memory systems and OpenMP [13] for shared 

memory systems. Another approach has been to build an 

interactive system between programmers and parallelizing 

tools/compilers. Notable examples are Vector Fabrics' 

vfAnalyst [14], SUIF Explorer [15] (The Stanford University 

Intermediate Format compiler), the Polaris compiler [16], and 

ParaWise (formally CAPTools) [17]. 

There exist some directive based auto-parallelization tools for 

CUDA such as PGI Accelerator, CAPS HMPP, Goose, 

NOAA F2C Fortran/C to CUDA C auto-parallelization 

compiler and hiCUDA [18]. But the drawback in all these 

tools is that the programmer has to understand and learn the 

specific compiler directive syntax. Our proposed tool goes a 

step further than these tools in simplifying the process for the 

user by automatically generating the parallel code from input 

serial code without any additional input from the user. 

The tool works in two phases. In the first phase, the input 

serial code is parsed to identify independent portions of code 

which can be executed in parallel. Identifiers are then 

automatically inserted at appropriate positions to mark these 
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parallelizable portions. In the second phase, an equivalent 

CUDA code is generated which parallelizes the portions 

identified in Phase 1. 

The parallel code obtained might not be as efficient as hand-

tuned programs but can still lead to tremendous speedups with 

a quick production phase. 

The paper is organized as follows. Section 2 presents the 

system architecture while the major issues in identifying and 

then parallelizing portions of serial code are discussed in 

section 3. Section 4 analyses the results and Section 5 ponders 

over some future work that can lead to better results. 

2. SYSTEM ARCHITECTURE 
The proposed tool takes a serial C code as input and generates 

an equivalent parallel code as output, as illustrated by the 

flowchart in Figure 1. The generated output code can be 

compiled and executed on any machine with a CUDA enabled 

graphics card. 

 

  

Fig 1: Flowchart showing the input and output with the 

tool as a black-box 

 

Internally, the tool works in two phases (Figure 2). hiCUDA 

is used as the intermediate language between them: 

• In the first phase, the input serial code is parsed 

using a Perl script to identify independent portions of code 

which can be executed in parallel. Identifiers (hiCUDA 

pragmas) are then automatically inserted at appropriate 

positions to highlight these parallelizable portions.  

• In the second phase, the hiCUDA compiler is used 

to generate an equivalent CUDA code using the hiCUDA 

pragmas inserted in Phase 1. 

 

Fig 2: Representation of the internal phases 

3. IDENTIFY AND PARALLELIZE 

PARALLELIZABLE PORTIONS  
As most of the execution time of a program takes place inside 

some form of loop, we intend to focus most on them and will 

try to split each loop so that each of its iteration can be 

executed on separate processors concurrently. 

Also, since GPUs are optimized for executing SIMD type 

instructions, they are guaranteed to give maximum gain. 

For example, consider the following code snippet: 

for( i = 0; i < n; i++) { 

 a[i] = b[i] * c[i]; 

} 

Code 1. Single for loop 

 

Since instructions in each iteration are independent of each 

other, this code can be easily parallelized by using n threads 

running in parallel, each operating on one element of vector a. 
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3.1 When to parallelize 
Not all for loops can be parallelized. Hence, we need to have a 

set of rules defining when a for loop is parallelized and when 

not. For our purpose, we do not parallelize in the following 

cases: 

 Presence of an I/O instruction in a loop. 

 Presence of a break/return/goto statement in a loop. 

 A scalar is being Written after Read (WAR). 

 Same element of an array being written in each 

iteration of the loop. 

 2 different elements of same array being accessed in 

each iteration (at least one being written). 

 

3.2 Handling Nested Loops 
In case of nested loops, a separate read and write list is 

created for each loop independently and the analysis as 

explained above is done to determine whether the loop is 

parallelizable. 

To handle nested loops, we create a GPU kernel for each 

bunch of nested loops. Each loop is analyzed independently 

and a kernel is created if at least one of the nested loops can 

be parallelized.  

For example, consider the following snippet: 

for( i = 0; i < n; i++) { 

 for( j  = 0; j < n; j++) { 

  sum[i] = sum[i] + a[i][j]; 

 } 

} 

  Code 2. Nested for loop 

 

In this case, the outer loop will be parallelized while the inner 

loop will not be, which is indicated by the hiCUDA pragma 

just before the outer loop only: 

#pragma hicuda loop_partition over_tblock over_thread 

for( i = 0; i < n; i++) { 

 for( j  = 0; j < n; j++) { 

  sum[i] = sum[i] + a[i][j]; 

 } 

} 

.Code 3. Nested for loop with a hiCUDA pragma for outer 

loop 

 

3.3 Determining number of threads (block 

size and number of blocks) 
 The number of threads required for the parallel execution of a 

loop are determined by the number of iterations of each loop. 

For example, consider the following code snippet: 

for( i = 0; i < n; i++) { 

 sum = sum + a[i]; 

} 

Code 4. Code for computing the sum of all elements of an 

array 

 

Here, the number of threads required are (n - 0). Hence, for a 

block_size = 512, number_of_blocks = (n – 0)/512. 

For nested loops, the dimensionality of block_size and 

number_of_blocks changes accordingly. 

For example, consider the following code snippet: 

for( i = 0; i < n; i++) { 

 for( j = 0; j < m; j++) { 

  a[i][j] = i * j; 

} 

} 

Code 5. Sample code for initializing a 2-D array 

 

Here, the number of threads required are (n - 0) * (m – 0). 

Hence, for a block_size = (16, 16), number_of_blocks = ( ((n 

– 0)/16), ((m – 0)/16) ), which is indicated by the hicuda 

pragma in the following code: 

#pramga hicuda kernel kernel_name tblock(((n – 0)/16), ((m – 

0)/16)) thread(16, 16) 

#pramga hicuda loop_partition over_tblock over_thread 

for( i = 0; i < n; i++) { 

#pramga hicuda loop_partition over_tblock over_thread 

 for( j = 0; j < m; j++) { 

  a[i][j] = i * j; 

} 

} 

Code 6. Nested for loops with hiCUDA pragmas 

 

3.4 Memory allocation/de-allocation on 

GPU 
Whenever a kernel is created, memory needs to be allocated 

(and then de-allocated) on the GPU, for all data variables 

which are accessed (read/write) inside the kernel. Hence 

additional information about the dimensionality of each array 

is maintained. 

All variables accessed inside the loop instructions are 

categorized into two lists: the read list (if the variable is read 

from) and the write list (if the variable is written onto). These 

lists are then utilized to determine which variables will be 

―copyin‖ and which variables will be ―copyout‖ from GPU 

memory. 

For example, consider the following serial code: 

for( i = 0; i < n; i++) { 

 b[i] = a[i] * a[i]; 

} 

Code 7. Sample code for calculating square of each element 

of array 

 

Here a[] will only be ―copyin‖ to the GPU memory while b[] 

will be both ―copyin‖ and ―copyout‖ from it, which is 

indicated by the following pragmas: 

#pragma hicuda global alloc a[*] copyin 

#pragma hicuda global alloc b[*] copyin 

#pramga hicuda kernel kernel_name tblock((n – 0)/16) 

thread(16) 
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#pramga hicuda loop_partition over_tblock over_thread 

for( i = 0; i < n; i++) { 

 b[i] = a[i] * a[i]; 

} 

#pragma hicuda kernel_end 

#pragma hicuda global copyout b[*] 

#pragma hicuda global free a 

#pragma hicuda global free b 

Code 8. The complete hiCUDA code 

 

4. RESULTS AND ANALYSIS 
To test the effectiveness of this tool, it is important to quantify 

the following: 

 

1. Performance of the generated parallel code v/s 

original serial code. 

2. Performance of the automatic parallel code v/s a 

hand written best optimized parallel code. 

 

The codes are run on an Intel Core2Duo 1.6 Ghz processor 

with 2GB RAM. NVIDIA’s GeForce 8400 GS graphics card 

is used for GPU’s. 

4.1 Measuring speedup obtained by 

parallelization 
To measure the speedup obtained by parallelizing serial 

codes, the execution time of various input serial C codes are 

compared with the execution time of the corresponding auto 

generated parallel CUDA codes. 

 

4.1.1 Matrix Multiplication 

First of all, the standard problem of matrix multiplication is 

considered. Two matrices, a and b are initialised as follows: 

a[i][j] = (i + j) ^ N 

b[i][j] = (i – j) ^ N 

where, a and b are of size N*N. 

 

Then, the resultant c matrix is obtained by multiplying 

matrices a and b. 

 

 

Figure 3 and Table 1 show the speedup obtained by 

parallelizing a serial code for this problem. For a moderate 

matrix size, N = 1024, the speedup obtained is 5-6 times. 
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Fig 3: Performance comparison of serial and parallel 

matrix multiplication codes 

Table 1. Execution times for serial and parallel matrix 

multiplication codes 

Size, N Serial Parallel 

128 0.08 0.15 

256 0.6 0.4 

512 5 2 

1024 85 15 

 

4.1.2 Compute Power Array 

The problem of computing the power vector is considered 

next. Each element of vector a is calculated by using the 

following formula: 

a[i] = i ^ N 

where, N is the size of the vector a. 

 

Since, each element is independent of others, this task can 

easily be parallelized. The proposed tool is used to parallelize 

the serial code and the speedup obtained is indicated in Figure 

4 and Table 2. 
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Fig 4: Performance comparison of serial and parallel 

power array codes 

 

Table 2. Execution times for serial and parallel power 

array codes 

Size, N Serial Parallel 

1024 0.02 0.141 

4096 0.287 0.172 

8192 1.142 0.243 

16384 4.552 0.584 

32768 18.201 1.942 

65536 72.8 7.347 

 

In this case, the speedup obtained is ~10 times. 

 

The speedup, in this case, is greater than that for matrix 

multiplication, which is as expected. A high cost is paid in 

transferring data from CPU to GPU (and vice-versa), so the 

computation for each GPU thread should be long enough to 

justify the overhead transfer costs. In matrix multiplication, 

for the second kernel (computing c[i]), each thread performs 

only a single operation of multiplying a single element of 
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matrix a[] with that of b[], which is unable to compensate for 

the cost of threads and kernel creation. 

 

4.1.3 Calculate the Prime divisors 

Next, we consider a modular code, where each task is divided 

amongst various functions. We consider the problem of 

finding the prime divisors of a given number n. Different 

functions are responsible for finding whether an integer 1 < i 

< n is a prime number and whether it completely divides the 

number n. This tool successfully parallelises this code and the 

speedup obtained is shown by Figure 5 and Table 3. 
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Fig 5: Performance comparison of serial and parallel 

prime divisors codes 

 

Table 3. Execution times for serial and parallel prime 

divisors codes 

Size, N Serial Parallel 

256 0.002 0.101 

1024 0.006 0.128 

8192 0.278 0.212 

16384 1.056 0.554 

32768 4.162 1.815 

65536 16.55 6.82 

4.2 Comparing generated parallel code 

with hand-written code 
To get hand written CUDA code, we use the hiCUDA 

compiler to generate CUDA code from a hand written 

hiCUDA code. 

A hand written parallel code is expected to outperform the 

automatically generated parallel code in a few cases, but here 

we document by how much they outperform and the reasons 

for the same. 

4.2.1 Matrix Multiplication 

The first code we consider in this section is the matrix 

multiplication code (which is the same code as in section 

4.1.1). When we write the code manually for this specific 

problem, we can gain some advantage by utilizing the shared 

memory on GPU’s, which is ignored by the generic tool. The 

data needed by all threads in a thread block can be loaded into 

the shared memory before they are used, reducing access 

latency to memory. This can be done by using the following 

hiCUDA pragma’s: 

 

#pragma hicuda shared alloc A[*][*] copyin 

#pragma hicuda shared remove A 

 

Since the amount of data is too large to fit in the shared 

memory at once, it must be loaded and processed in batches. 

For this problem, we store 32 elements of each matrix in the 

shared matrix at a moment. The difference in the 

automatically generated and the hand-written code is shown in 

Codes 9 and 10. 

 

for(kk=0; kk<N2; kk+=32) { 

#pragma hicuda shared alloc A[i][kk:kk+32] copyin 

#pragma hicuda shared alloc B[kk:kk+32][j] copyin 

#pragma hicuda barrier 

 for (k = 0; k < 32; ++k) { 

  sum = sum + A[i][kk+k] * B[kk+k][j]; 

  sum = sum % 100000000; 

} 

#pragma hicuda barrier 

#pragma hicuda shared remove A B 

} 

Code 9. The hand-written code 

 

for(k=0; k<N2; k++) { 

sum = sum + A[i][k] * B[k][j]; 

sum = sum % 100000000; 

} 

Code 10. The automatically generated code 

 

Figure 6 and Table 4 show a comparison of the running 

times of both the codes. 

 

Matrix Multiplication

0

2

4

6

8

10

12

14

16

18

128 256 512 1024

Size, N

Ex
ec

ut
io

n 
Tim

e 
(se

c)

Hand-Written

Auto-Generated

 

Fig 6: Performance comparison of hand-written and auto-

generated matrix multiplication codes 

Table 4. Execution times for hand-written and auto-

generated matrix multiplication codes 

 

Size, N Hand-Written Auto-Generated 

128 0.122 0.177 

256 0.252 0.344 

512 1.002 2.073 

1024 6.984 15.47 
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4.2.2 Vector multiplication 

Another area where a hand written code can beat the 

automatically generated code is by combining multiple 

kernels together. We use the standard vector multiplication 

algorithm in this section. 

 

The first kernel, initializes a[] and b[] vectors(or arrays) as 

power arrays:  

a[i] = i ^ N; 

b[i] = (N - i) ^ N; 

 

The next kernel calculates c vector as follows: 

c[i] = a[i] * b[i]; 

 

While these tasks are performed by different kernels in the 

automatically generated parallel code, they are combined into 

a single kernel in the hand written code. Performance gains 

are obtained by eliminating the memory transfer instructions. 

In the automatically generated code, a[] and b[] vectors are 

first copied from GPU memory into the CPU memory after 

the execution of first kernel. These are then successively 

copied back to the GPU memory for the beginning of the 

second kernel. A comparison of both these codes reveals that 

the performance gain is not very significant, as shown in 

Figure 7 and Table 5. 

 

Vector Multiplication

0

0.5

1

1.5

2

2.5

3

3.5

4

64 256 1024 8192 32768

Hand-Written

Auto-Generated

 

Fig 11: Performance comparison of hand-written and 

auto-generated vector multiplication codes 

Table 5. Execution times for hand-written and auto-

generated vector multiplication codes 

 

Size, N Hand-Written Auto-Generated 

64 0.105 0.139 

256 0.103 0.136 

1024 0.124 0.143 

8192 0.313 0.344 

32768 3.488 3.499 

 

5. CONCLUSION AND FUTURE WORK 
A working end-to-end tool has successfully been developed 

and tested over a wide range of codes. The performance 

results obtained are very satisfying with speedup gains 

obtained of up to 10 times. 

 

The automatic parallelization, we believe, is a very significant 

step forward and would help the industrial community 

immensely. It being a generic tool capable of handling most 

kinds of C codes increases its worth. 

 

This good performance only motivates us to improve it 

further. The ultimate aim is that the tool should be able to 

parse all legacy C codes. The parsing technique needs to be 

improved for this. We can also look at some dedicated parsing 

tools available for C code such as Elsa [19]. 

 

Also, the tool uses static analysis to detect data independency, 

that is, it reads the code as a simple text. On the other hand, if 

it used dynamic analysis, wherein the code is actually 

executed and the runtime memory accesses monitored, it 

would have enabled handling pointers too. But that would 

have also resulted in the execution time of the serial code 

being a bottleneck in the parallelization process. 

 

Presently, each set of nested for loops in the C code are 

combined together to form an independent kernel for the 

GPU. In cases, such as in matrix multiplication, where we 

have two consecutive kernels one directly after the other and 

when the output of one is an input for the next, we can 

combine the two kernels and remove the unnecessary memory 

transfer instructions in between them. This would require 

another pass over an intermediate hiCUDA code. 

 

To obtain maximum speed up, the tool will have to deal with 

the shared and textured memory of GPU as well. It, at present, 

deals with only the global GPU memory 

 

6. ACKNOWLEDGMENT 
The authors would like to thank Mr. Tarun Beri (IIT Delhi) 

for sharing his invaluable knowledge of the field and 

discussing the ideas of the authors and even giving some of 

his own. 

 

7. REFERENCES 
[1] NVIDIA, NVIDIA CUDA Compute Unified Device 

Architecture-Programming Guide, Version 3, 2010. 

[2] Stone, J.E.,   Gohara, D.,   Guochun Shi, ―OpenCL: A 

Parallel Programming Standard for Heterogeneous 

Computing Systems‖, Computing in Science and 

Engineering, Vol. 12, Issue 3, pp. 66-73, May 2010 

[3] E. Alerstam, T. Svensson and S. Andersson-Engels, 

"Parallel computing with graphics processing units for 

high speed Monte Carlo simulation of photon 

migration" , J. Biomedical Optics 13, 060504 (2008). 

[4] Larsen E. S., Mcallister D., ―Fast matrix multiplies 

using graphics hardware‖, Proceedings of the 2001 

ACM/IEEE Conference on Supercomputing, Nov. 2001, 

pp. 55. 

[5] Vladimir Glavtchev, Pinar Muyan-Ozcelik, Jeffrey M. 

Ota, John D. Owens, "Feature-Based Speed Limit Sign 

Detection Using a Graphics Processing Unit", IEEE 

Intelligent Vehicles, 2011. 

[6] Woetzel J., Koch R., ―Multi-camera realtime depth 

estimation with discontinuity handling on PC graphics 

hardware‖, Proceedings of the 17th International 

Conference on Pattern Recognition (Aug. 2004), pp. 

741–744. 

[7] Rumpf M., Strzodka R., ―Level set segmentation in 

graphics hardware‖, Proceedings of the IEEE 

International Conference on Image Processing (ICIP 

’01), Oct. 2001, vol. 3, pp. 1103–1106. 



International Journal of Computer Applications (0975 – 8887)  

Volume 50 – No.8, July 2012 

21 

[8] Purcell T. J., Buck I., Mark W. R., Hanrahan P., ―Ray 

tracing on programmable graphics hardware‖, ACM 

Transactions on Graphics 21, 3 (July 2002), pp 703–

712. 

[9] Knott D., Pai D. K., ―CInDeR: Collision and 

interference detection in real-time using graphics 

hardware‖, Proceedings of the 2003 Conference on 

Graphics Interface, June 2003, pp. 73–80. 

[10] Svetlin A. Manavski, "Cuda compatible GPU as an 

efficient hardware accelerator for AES cryptography" 

Proc. IEEE International Conference on Signal 

Processing and Communication, ICSPC 2007, (Dubai, 

United Arab Emirates), November 2007, pp.65-68. 

[11] T. D. Han and T. S. Abdelrahman, "hiCUDA: High-

Level GPGPU Programming", IEEE Transactions on 

Parallel and Distributed Systems, Jan. 2011, vol. 22, no. 

1, pp. 78-90. 

[12] David B. Loveman, ―High Performance Fortran‖, IEEE 

Parallel & Distributed Technology: Systems & 

Technology, February 1993, v.1 n.1, pp 25-42. 

[13] Leonardo Dagum and Ramesh Menon, ―OpenMP: An 

industry-standard API for shared-memory 

programming‖, IEEE Computational Science and 

Engineering, 5(1):46–55, January–March 1998.  

[14] VectorFabrics. vfAnalyst: Analyze your sequential C 

code to create an optimized parallel implementation. 

http://www.vectorfabrics.com/. 

[15] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-

W. Liao, E. Bugnion, and M. Lam, ―Maximizing 

multiprocessor performance with the SUIF compiler‖, 

IEEE Comput. 29, 12, Dec. 1996, pp 84–89. 

[16] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. 

Hoeflinger, T. Lawrence, J. Lee, D. Padua, Y. Paek, B. 

Pottenger, L. Rauchwerger, and P. Tu. ―Advanced 

Program Restructuring for High-Performance 

Computers with Polaris‖, IEEE Computer, December 

1996, Vol. 29, No. 12, pages 78- 82. 

[17] Johnson, S.P., Evans, E., Jin, H., Ierotheou, C.S., ―The 

ParaWise Expert Assistant—Widening accessibility to 

efficient and scalable tool generated OpenMP code‖, 

WOMPAT, pp. 67–82 (2004). 

[18] T.D. Han, ―Directive-Based General-Purpose GPU 

Programming‖, master’s thesis, Univ. of Toronto, Sept. 

2009. 

[19] Elsa: The Elkhound-based C/C++ Parser. 

http://www.scottmcpeak.com/elkhound/sources/elsa/ 

 


