
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

15

Automated Tool to Generate Parallel CUDA code from a
Serial C Code

Akhil Jindal

Department of Computer
Engineering, Delhi

Technological University,
Shahbad Daulatpur, Main

Bawana Road, Delhi - 110042,
India.

Nikhil Jindal
Department of Computer

Engineering, Delhi
Technological University,
Shahbad Daulatpur, Main

Bawana Road, Delhi - 110042,
India.

Divyashikha Sethia
Department of Software

Engineering, Delhi
Technological University,
Shahbad Daulatpur, Main

Bawana Road, Delhi - 110042,
India.

ABSTRACT

With the introduction of GPGPUs, parallel programming has

become simple and affordable. APIs such as NVIDIA’s

CUDA have attracted many programmers to port their

applications to GPGPUs. But writing CUDA codes still

remains a challenging task. Moreover, the vast repositories of

legacy serial C codes, which are still in wide use in the

industry, are unable to take any advantage of this extra

computing power available. Lot of attempts have thus been

made at developing auto-parallelization techniques to convert

a serial C code to a corresponding parallel CUDA code. Some

parallelizes, allow programmers to add ―hints‖ to their serial

programs, while another approach has been to build an

interactive system between programmers and parallelizing

tools/compilers. But none of these are really automatic

techniques, since the programmer is fully involved in the

process. In this paper, we present an automatic parallelization

tool that completely relieves the programmer of any

involvement in the parallelization process. Preliminary results

with a basic set of usual C codes show that the tool is able to

provide a significant speedup of ~10 times.

General Terms

Auto parallelization, parallelization, C, CUDA, hiCUDA,

GPU.

Keywords

Auto parallelization, parallelization, C, CUDA, hiCUDA,

GPU.

1. INTRODUCTION
In the last decades, there have been great advancements in the

field of Parallel Computing. With the introduction of General

Purpose Graphical Processing Units (GPGPUs), attaining

parallel processing capability has become simple and

affordable. A typical GPU is a multi-core architecture with

each core capable of running thousands of threads

simultaneously. Hence, an application with a large amount of

parallelism can use GPUs to realize significant performance

benefits. SDKs and APIs such as Nvidia’s CUDA [1], AMD’s

FireStream and Khronos Group’s Open CL [2] have

simplified the task of programming GPUs. Some of the areas

where GPUs have been used extensively for General Purpose

computing are: scientific computing [3][4], image processing

[5][6][7], animation and simulation [8][9] and cryptography

[10].

But the vast repositories of legacy serial C codes, which are

still in use, are unable to exploit this extra computing power

available to them. Manually updating all such codes is tedious

and error-prone. Parallelizing even a single C code is not a

trivial task. The programmer needs to have a complete

knowledge of the code being parallelized and should be

comfortable with the target parallel architecture. Also, even

though APIs, such as those of CUDA, have attracted many

non-graphics programmers to port their applications to

GPGPUs, the process still remains very challenging. In

particular, CUDA places on the programmer the burden of

packaging GPU code in separate functions, of explicitly

managing data transfer between the host memory and various

GPU memories, and of manually optimizing the utilization of

the GPU memory [11].

Due to the reasons mentioned above, we have undertaken the

task to develop ―Automated Tool to Generate Parallel CUDA

code from a Serial C Code‖. The tool is aimed at enabling

easy portability of existing serial softwares to parallel

architectures. This should be possible without the user having

any knowledge whatsoever of the algorithm and the

architecture.

Though the quality of automatic parallelization has improved

in the past several decades, fully automatic parallelization of

sequential programs by compilers remains a grand challenge

due to its need for complex program analysis and the

unknown factors (such as input data range) during

compilation. Attempts have been made at simplifying the

process of manual parallelization by allowing programmers to

add "hints" to their programs to guide compiler

parallelization, such as High Performance Fortran (HPF) [12]

for distributed memory systems and OpenMP [13] for shared

memory systems. Another approach has been to build an

interactive system between programmers and parallelizing

tools/compilers. Notable examples are Vector Fabrics'

vfAnalyst [14], SUIF Explorer [15] (The Stanford University

Intermediate Format compiler), the Polaris compiler [16], and

ParaWise (formally CAPTools) [17].

There exist some directive based auto-parallelization tools for

CUDA such as PGI Accelerator, CAPS HMPP, Goose,

NOAA F2C Fortran/C to CUDA C auto-parallelization

compiler and hiCUDA [18]. But the drawback in all these

tools is that the programmer has to understand and learn the

specific compiler directive syntax. Our proposed tool goes a

step further than these tools in simplifying the process for the

user by automatically generating the parallel code from input

serial code without any additional input from the user.

The tool works in two phases. In the first phase, the input

serial code is parsed to identify independent portions of code

which can be executed in parallel. Identifiers are then

automatically inserted at appropriate positions to mark these

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

16

parallelizable portions. In the second phase, an equivalent

CUDA code is generated which parallelizes the portions

identified in Phase 1.

The parallel code obtained might not be as efficient as hand-

tuned programs but can still lead to tremendous speedups with

a quick production phase.

The paper is organized as follows. Section 2 presents the

system architecture while the major issues in identifying and

then parallelizing portions of serial code are discussed in

section 3. Section 4 analyses the results and Section 5 ponders

over some future work that can lead to better results.

2. SYSTEM ARCHITECTURE
The proposed tool takes a serial C code as input and generates

an equivalent parallel code as output, as illustrated by the

flowchart in Figure 1. The generated output code can be

compiled and executed on any machine with a CUDA enabled

graphics card.

Fig 1: Flowchart showing the input and output with the

tool as a black-box

Internally, the tool works in two phases (Figure 2). hiCUDA

is used as the intermediate language between them:

• In the first phase, the input serial code is parsed

using a Perl script to identify independent portions of code

which can be executed in parallel. Identifiers (hiCUDA

pragmas) are then automatically inserted at appropriate

positions to highlight these parallelizable portions.

• In the second phase, the hiCUDA compiler is used

to generate an equivalent CUDA code using the hiCUDA

pragmas inserted in Phase 1.

Fig 2: Representation of the internal phases

3. IDENTIFY AND PARALLELIZE

PARALLELIZABLE PORTIONS
As most of the execution time of a program takes place inside

some form of loop, we intend to focus most on them and will

try to split each loop so that each of its iteration can be

executed on separate processors concurrently.

Also, since GPUs are optimized for executing SIMD type

instructions, they are guaranteed to give maximum gain.

For example, consider the following code snippet:

for(i = 0; i < n; i++) {

 a[i] = b[i] * c[i];

}

Code 1. Single for loop

Since instructions in each iteration are independent of each

other, this code can be easily parallelized by using n threads

running in parallel, each operating on one element of vector a.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

17

3.1 When to parallelize
Not all for loops can be parallelized. Hence, we need to have a

set of rules defining when a for loop is parallelized and when

not. For our purpose, we do not parallelize in the following

cases:

 Presence of an I/O instruction in a loop.

 Presence of a break/return/goto statement in a loop.

 A scalar is being Written after Read (WAR).

 Same element of an array being written in each

iteration of the loop.

 2 different elements of same array being accessed in

each iteration (at least one being written).

3.2 Handling Nested Loops
In case of nested loops, a separate read and write list is

created for each loop independently and the analysis as

explained above is done to determine whether the loop is

parallelizable.

To handle nested loops, we create a GPU kernel for each

bunch of nested loops. Each loop is analyzed independently

and a kernel is created if at least one of the nested loops can

be parallelized.

For example, consider the following snippet:

for(i = 0; i < n; i++) {

 for(j = 0; j < n; j++) {

 sum[i] = sum[i] + a[i][j];

 }

}

 Code 2. Nested for loop

In this case, the outer loop will be parallelized while the inner

loop will not be, which is indicated by the hiCUDA pragma

just before the outer loop only:

#pragma hicuda loop_partition over_tblock over_thread

for(i = 0; i < n; i++) {

 for(j = 0; j < n; j++) {

 sum[i] = sum[i] + a[i][j];

 }

}

.Code 3. Nested for loop with a hiCUDA pragma for outer

loop

3.3 Determining number of threads (block

size and number of blocks)
 The number of threads required for the parallel execution of a

loop are determined by the number of iterations of each loop.

For example, consider the following code snippet:

for(i = 0; i < n; i++) {

 sum = sum + a[i];

}

Code 4. Code for computing the sum of all elements of an

array

Here, the number of threads required are (n - 0). Hence, for a

block_size = 512, number_of_blocks = (n – 0)/512.

For nested loops, the dimensionality of block_size and

number_of_blocks changes accordingly.

For example, consider the following code snippet:

for(i = 0; i < n; i++) {

 for(j = 0; j < m; j++) {

 a[i][j] = i * j;

}

}

Code 5. Sample code for initializing a 2-D array

Here, the number of threads required are (n - 0) * (m – 0).

Hence, for a block_size = (16, 16), number_of_blocks = (((n

– 0)/16), ((m – 0)/16)), which is indicated by the hicuda

pragma in the following code:

#pramga hicuda kernel kernel_name tblock(((n – 0)/16), ((m –

0)/16)) thread(16, 16)

#pramga hicuda loop_partition over_tblock over_thread

for(i = 0; i < n; i++) {

#pramga hicuda loop_partition over_tblock over_thread

 for(j = 0; j < m; j++) {

 a[i][j] = i * j;

}

}

Code 6. Nested for loops with hiCUDA pragmas

3.4 Memory allocation/de-allocation on

GPU
Whenever a kernel is created, memory needs to be allocated

(and then de-allocated) on the GPU, for all data variables

which are accessed (read/write) inside the kernel. Hence

additional information about the dimensionality of each array

is maintained.

All variables accessed inside the loop instructions are

categorized into two lists: the read list (if the variable is read

from) and the write list (if the variable is written onto). These

lists are then utilized to determine which variables will be

―copyin‖ and which variables will be ―copyout‖ from GPU

memory.

For example, consider the following serial code:

for(i = 0; i < n; i++) {

 b[i] = a[i] * a[i];

}

Code 7. Sample code for calculating square of each element

of array

Here a[] will only be ―copyin‖ to the GPU memory while b[]

will be both ―copyin‖ and ―copyout‖ from it, which is

indicated by the following pragmas:

#pragma hicuda global alloc a[*] copyin

#pragma hicuda global alloc b[*] copyin

#pramga hicuda kernel kernel_name tblock((n – 0)/16)

thread(16)

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

18

#pramga hicuda loop_partition over_tblock over_thread

for(i = 0; i < n; i++) {

 b[i] = a[i] * a[i];

}

#pragma hicuda kernel_end

#pragma hicuda global copyout b[*]

#pragma hicuda global free a

#pragma hicuda global free b

Code 8. The complete hiCUDA code

4. RESULTS AND ANALYSIS
To test the effectiveness of this tool, it is important to quantify

the following:

1. Performance of the generated parallel code v/s

original serial code.

2. Performance of the automatic parallel code v/s a

hand written best optimized parallel code.

The codes are run on an Intel Core2Duo 1.6 Ghz processor

with 2GB RAM. NVIDIA’s GeForce 8400 GS graphics card

is used for GPU’s.

4.1 Measuring speedup obtained by

parallelization
To measure the speedup obtained by parallelizing serial

codes, the execution time of various input serial C codes are

compared with the execution time of the corresponding auto

generated parallel CUDA codes.

4.1.1 Matrix Multiplication

First of all, the standard problem of matrix multiplication is

considered. Two matrices, a and b are initialised as follows:

a[i][j] = (i + j) ^ N

b[i][j] = (i – j) ^ N

where, a and b are of size N*N.

Then, the resultant c matrix is obtained by multiplying

matrices a and b.

Figure 3 and Table 1 show the speedup obtained by

parallelizing a serial code for this problem. For a moderate

matrix size, N = 1024, the speedup obtained is 5-6 times.

Matrix Multiplication

0

10

20

30

40

50

60

70

80

90

128 256 512 1024

Size, N

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Serial

Parallel

Fig 3: Performance comparison of serial and parallel

matrix multiplication codes

Table 1. Execution times for serial and parallel matrix

multiplication codes

Size, N Serial Parallel

128 0.08 0.15

256 0.6 0.4

512 5 2

1024 85 15

4.1.2 Compute Power Array

The problem of computing the power vector is considered

next. Each element of vector a is calculated by using the

following formula:

a[i] = i ^ N

where, N is the size of the vector a.

Since, each element is independent of others, this task can

easily be parallelized. The proposed tool is used to parallelize

the serial code and the speedup obtained is indicated in Figure

4 and Table 2.

Power Array

0

10

20

30

40

50

60

70

80

1024 4096 8192 16384 32768 65536

Size, N

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Serial

Parallel

Fig 4: Performance comparison of serial and parallel

power array codes

Table 2. Execution times for serial and parallel power

array codes

Size, N Serial Parallel

1024 0.02 0.141

4096 0.287 0.172

8192 1.142 0.243

16384 4.552 0.584

32768 18.201 1.942

65536 72.8 7.347

In this case, the speedup obtained is ~10 times.

The speedup, in this case, is greater than that for matrix

multiplication, which is as expected. A high cost is paid in

transferring data from CPU to GPU (and vice-versa), so the

computation for each GPU thread should be long enough to

justify the overhead transfer costs. In matrix multiplication,

for the second kernel (computing c[i]), each thread performs

only a single operation of multiplying a single element of

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

19

matrix a[] with that of b[], which is unable to compensate for

the cost of threads and kernel creation.

4.1.3 Calculate the Prime divisors

Next, we consider a modular code, where each task is divided

amongst various functions. We consider the problem of

finding the prime divisors of a given number n. Different

functions are responsible for finding whether an integer 1 < i

< n is a prime number and whether it completely divides the

number n. This tool successfully parallelises this code and the

speedup obtained is shown by Figure 5 and Table 3.

Prime Divisors

0
2
4
6
8

10
12
14
16
18

256 1024 8192 16384 32768 65536

Size, N

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Serial

Parallel

Fig 5: Performance comparison of serial and parallel

prime divisors codes

Table 3. Execution times for serial and parallel prime

divisors codes

Size, N Serial Parallel

256 0.002 0.101

1024 0.006 0.128

8192 0.278 0.212

16384 1.056 0.554

32768 4.162 1.815

65536 16.55 6.82

4.2 Comparing generated parallel code

with hand-written code
To get hand written CUDA code, we use the hiCUDA

compiler to generate CUDA code from a hand written

hiCUDA code.

A hand written parallel code is expected to outperform the

automatically generated parallel code in a few cases, but here

we document by how much they outperform and the reasons

for the same.

4.2.1 Matrix Multiplication

The first code we consider in this section is the matrix

multiplication code (which is the same code as in section

4.1.1). When we write the code manually for this specific

problem, we can gain some advantage by utilizing the shared

memory on GPU’s, which is ignored by the generic tool. The

data needed by all threads in a thread block can be loaded into

the shared memory before they are used, reducing access

latency to memory. This can be done by using the following

hiCUDA pragma’s:

#pragma hicuda shared alloc A[*][*] copyin

#pragma hicuda shared remove A

Since the amount of data is too large to fit in the shared

memory at once, it must be loaded and processed in batches.

For this problem, we store 32 elements of each matrix in the

shared matrix at a moment. The difference in the

automatically generated and the hand-written code is shown in

Codes 9 and 10.

for(kk=0; kk<N2; kk+=32) {

#pragma hicuda shared alloc A[i][kk:kk+32] copyin

#pragma hicuda shared alloc B[kk:kk+32][j] copyin

#pragma hicuda barrier

 for (k = 0; k < 32; ++k) {

 sum = sum + A[i][kk+k] * B[kk+k][j];

 sum = sum % 100000000;

}

#pragma hicuda barrier

#pragma hicuda shared remove A B

}

Code 9. The hand-written code

for(k=0; k<N2; k++) {

sum = sum + A[i][k] * B[k][j];

sum = sum % 100000000;

}

Code 10. The automatically generated code

Figure 6 and Table 4 show a comparison of the running

times of both the codes.

Matrix Multiplication

0

2

4

6

8

10

12

14

16

18

128 256 512 1024

Size, N

Ex
ec

ut
io

n
Tim

e
(se

c)

Hand-Written

Auto-Generated

Fig 6: Performance comparison of hand-written and auto-

generated matrix multiplication codes

Table 4. Execution times for hand-written and auto-

generated matrix multiplication codes

Size, N Hand-Written Auto-Generated

128 0.122 0.177

256 0.252 0.344

512 1.002 2.073

1024 6.984 15.47

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

20

4.2.2 Vector multiplication

Another area where a hand written code can beat the

automatically generated code is by combining multiple

kernels together. We use the standard vector multiplication

algorithm in this section.

The first kernel, initializes a[] and b[] vectors(or arrays) as

power arrays:

a[i] = i ^ N;

b[i] = (N - i) ^ N;

The next kernel calculates c vector as follows:

c[i] = a[i] * b[i];

While these tasks are performed by different kernels in the

automatically generated parallel code, they are combined into

a single kernel in the hand written code. Performance gains

are obtained by eliminating the memory transfer instructions.

In the automatically generated code, a[] and b[] vectors are

first copied from GPU memory into the CPU memory after

the execution of first kernel. These are then successively

copied back to the GPU memory for the beginning of the

second kernel. A comparison of both these codes reveals that

the performance gain is not very significant, as shown in

Figure 7 and Table 5.

Vector Multiplication

0

0.5

1

1.5

2

2.5

3

3.5

4

64 256 1024 8192 32768

Hand-Written

Auto-Generated

Fig 11: Performance comparison of hand-written and

auto-generated vector multiplication codes

Table 5. Execution times for hand-written and auto-

generated vector multiplication codes

Size, N Hand-Written Auto-Generated

64 0.105 0.139

256 0.103 0.136

1024 0.124 0.143

8192 0.313 0.344

32768 3.488 3.499

5. CONCLUSION AND FUTURE WORK
A working end-to-end tool has successfully been developed

and tested over a wide range of codes. The performance

results obtained are very satisfying with speedup gains

obtained of up to 10 times.

The automatic parallelization, we believe, is a very significant

step forward and would help the industrial community

immensely. It being a generic tool capable of handling most

kinds of C codes increases its worth.

This good performance only motivates us to improve it

further. The ultimate aim is that the tool should be able to

parse all legacy C codes. The parsing technique needs to be

improved for this. We can also look at some dedicated parsing

tools available for C code such as Elsa [19].

Also, the tool uses static analysis to detect data independency,

that is, it reads the code as a simple text. On the other hand, if

it used dynamic analysis, wherein the code is actually

executed and the runtime memory accesses monitored, it

would have enabled handling pointers too. But that would

have also resulted in the execution time of the serial code

being a bottleneck in the parallelization process.

Presently, each set of nested for loops in the C code are

combined together to form an independent kernel for the

GPU. In cases, such as in matrix multiplication, where we

have two consecutive kernels one directly after the other and

when the output of one is an input for the next, we can

combine the two kernels and remove the unnecessary memory

transfer instructions in between them. This would require

another pass over an intermediate hiCUDA code.

To obtain maximum speed up, the tool will have to deal with

the shared and textured memory of GPU as well. It, at present,

deals with only the global GPU memory

6. ACKNOWLEDGMENT
The authors would like to thank Mr. Tarun Beri (IIT Delhi)

for sharing his invaluable knowledge of the field and

discussing the ideas of the authors and even giving some of

his own.

7. REFERENCES
[1] NVIDIA, NVIDIA CUDA Compute Unified Device

Architecture-Programming Guide, Version 3, 2010.

[2] Stone, J.E., Gohara, D., Guochun Shi, ―OpenCL: A

Parallel Programming Standard for Heterogeneous

Computing Systems‖, Computing in Science and

Engineering, Vol. 12, Issue 3, pp. 66-73, May 2010

[3] E. Alerstam, T. Svensson and S. Andersson-Engels,

"Parallel computing with graphics processing units for

high speed Monte Carlo simulation of photon

migration" , J. Biomedical Optics 13, 060504 (2008).

[4] Larsen E. S., Mcallister D., ―Fast matrix multiplies

using graphics hardware‖, Proceedings of the 2001

ACM/IEEE Conference on Supercomputing, Nov. 2001,

pp. 55.

[5] Vladimir Glavtchev, Pinar Muyan-Ozcelik, Jeffrey M.

Ota, John D. Owens, "Feature-Based Speed Limit Sign

Detection Using a Graphics Processing Unit", IEEE

Intelligent Vehicles, 2011.

[6] Woetzel J., Koch R., ―Multi-camera realtime depth

estimation with discontinuity handling on PC graphics

hardware‖, Proceedings of the 17th International

Conference on Pattern Recognition (Aug. 2004), pp.

741–744.

[7] Rumpf M., Strzodka R., ―Level set segmentation in

graphics hardware‖, Proceedings of the IEEE

International Conference on Image Processing (ICIP

’01), Oct. 2001, vol. 3, pp. 1103–1106.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

21

[8] Purcell T. J., Buck I., Mark W. R., Hanrahan P., ―Ray

tracing on programmable graphics hardware‖, ACM

Transactions on Graphics 21, 3 (July 2002), pp 703–

712.

[9] Knott D., Pai D. K., ―CInDeR: Collision and

interference detection in real-time using graphics

hardware‖, Proceedings of the 2003 Conference on

Graphics Interface, June 2003, pp. 73–80.

[10] Svetlin A. Manavski, "Cuda compatible GPU as an

efficient hardware accelerator for AES cryptography"

Proc. IEEE International Conference on Signal

Processing and Communication, ICSPC 2007, (Dubai,

United Arab Emirates), November 2007, pp.65-68.

[11] T. D. Han and T. S. Abdelrahman, "hiCUDA: High-

Level GPGPU Programming", IEEE Transactions on

Parallel and Distributed Systems, Jan. 2011, vol. 22, no.

1, pp. 78-90.

[12] David B. Loveman, ―High Performance Fortran‖, IEEE

Parallel & Distributed Technology: Systems &

Technology, February 1993, v.1 n.1, pp 25-42.

[13] Leonardo Dagum and Ramesh Menon, ―OpenMP: An

industry-standard API for shared-memory

programming‖, IEEE Computational Science and

Engineering, 5(1):46–55, January–March 1998.

[14] VectorFabrics. vfAnalyst: Analyze your sequential C

code to create an optimized parallel implementation.

http://www.vectorfabrics.com/.

[15] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-

W. Liao, E. Bugnion, and M. Lam, ―Maximizing

multiprocessor performance with the SUIF compiler‖,

IEEE Comput. 29, 12, Dec. 1996, pp 84–89.

[16] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J.

Hoeflinger, T. Lawrence, J. Lee, D. Padua, Y. Paek, B.

Pottenger, L. Rauchwerger, and P. Tu. ―Advanced

Program Restructuring for High-Performance

Computers with Polaris‖, IEEE Computer, December

1996, Vol. 29, No. 12, pages 78- 82.

[17] Johnson, S.P., Evans, E., Jin, H., Ierotheou, C.S., ―The

ParaWise Expert Assistant—Widening accessibility to

efficient and scalable tool generated OpenMP code‖,

WOMPAT, pp. 67–82 (2004).

[18] T.D. Han, ―Directive-Based General-Purpose GPU

Programming‖, master’s thesis, Univ. of Toronto, Sept.

2009.

[19] Elsa: The Elkhound-based C/C++ Parser.

http://www.scottmcpeak.com/elkhound/sources/elsa/

