
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.6, July 2012

13

 An Index based Pattern Matching using Multithreading

S. Nirmala Devi
Research Scholar
Bharath University

Chennai – 600 073. India

S.P. Rajagopalan
Professor Emeritus, Dr. M.G.R Educational and

Research Institution University

Chennai-600095. India

ABSTRACT

Pattern matching, the problem of finding sub sequences

within a long sequence is essential for many applications

such as information retrieval, disease analysis, structural and

functional analysis, logic programming, theorem-proving,

term rewriting and DNA-computing. In computational

biology the essential components for DNA applications is the

exact string matching algorithms. Many databases like

GenBank were built by researchers for DNA and protein

sequences; the string matching problem is the core problem

for searching these databases. As the size of the database

grows, the more important research area is to design an

efficient string matching algorithms. This paper proposes a

new pattern matching technique called An Index based

Pattern matching using Multithreading for DNA sequences.

The method specified in this paper performs parallel string

searching using multiple threads simultaneously, each thread

is responsible for searching one part of the text.. The proposed

algorithm is an efficient algorithm that can be used to search

for exact occurrences of patterns in DNA sequences.

Keywords

Exact String matching algorithms, pattern matching, DNA

sequence, Multithreading, Context Switching.

1. INTRODUCTION
Pattern Matching is one of the important issues in the

research areas of computer science. The field of

bioinformatics has many applications in the modern world

which includes text editors, Intrusion Detecting Systems,

search engine, molecular medicine and Comparative biology

etc., DNA - deoxyribonucleic acid which exists in

chromosomes and mitochondria or chloroplast of cells

contains the hereditary information of living things. DNA

contains genetic instructions of an organism. The basic units

of DNA are nucleotides and each nucleotide is one of the

following four types: adenine (A), guanine (G), cytosine (C)

and thymine (T). It can be viewed as a long sequences of

A‟s, G‟s, C‟s and T‟s. It is very difficult to retrieve necessary

information from the sequence when the size of the database

grows.

Biologists are often interested in performing a simple database

search to identify proteins or genes that contain a well-defined

sequence pattern. Many algorithms have been developed each

designed for a specific type of search. For Fast pattern

matching techniques more efficient methods are required.

Let P={p1,p2,p3…pm } be a set of patterns which are strings

of nucleotide characters from a fixed alphabet set called Σ =

{A,C,G,T}. Let T be a long sequence of strings consists of

characters in Σ denoted as Σ*. The problem of single pattern

matching is to find all occurrences of pattern P in text T. If

more than one pattern is matched against the given input text

simultaneously, then it is called as multiple pattern matching.

Approximate String matching- Given a text string T of length

n, a pattern string P of length m and a maximal number of

errors allowed k, the approximate string matching is to find all

text positions where the pattern matches the text up to k

errors, where errors can be substituting, deleting, or inserting

a character. For instance, if T = "pttapa", P = "patt" and k = 2,

the substrings 2,1T
, 3,1T

, 4,1T
 and 6,5T

 are all up to 2 errors

with P[1].

The main objective behind the pattern matching algorithms is

to reduce the total number of character comparisons between

the pattern and the text, reduce execution time and to

increase the overall efficiency. The improvement in the

efficiency of a search can be obtained by choosing the index

value of the characters after each attempt.

We propose a new algorithm called An Index based Pattern

matching using Multithreading for exact pattern-matching for

DNA sequence. In this method, the characters in the input text

is scanned from left to right till the end of the string for the

first occurrence of pattern in Text and its position is retrieved..

In order to search for a particular pattern in the string T, the

searching is based on the index value of the first character of

the pattern P .If there is a mismatch, we skip the search and

search starts on the next index of the first character of pattern

P. This process is continued till the end of the String T. The

efficiency of the new algorithm is supported by favorable

experimental results obtained by comparison against

prominent algorithms described in the next section.

2. BACKGROUND AND RELATED

WORK
Several Algorithms have been proposed and they have their

own advantages and limitations based on the text and pattern

length. Generally there are two ways to search a pattern P

against Text T.

Depending on the problem domain, most of the well-known

algorithms [2] and [3] work in two phases.(i.e) .,

preprocessing phase and the search phase. In the

preprocessing phase, it processes the text and builds a data

structure and this information in the search phase to reduce

the total number of character comparisons and hence reduce

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2012

14

the overall execution time. Some algorithms performs search

on text without preprocessing [4]. Such algorithms are called

online search algorithms.

In the IKPMPM algorithm [5] a table is built called index

table for all types of input patterns. For searching the pattern

against the Text it uses the index table.

In the MSMPMA[8] the algorithm scans the input file to find

all occurrences of the pattern based upon the skip technique.

GRASPm [9] algorithm improves exact pattern-matching in

genomic sequences. GRASPm could be classified as a

heuristic-based algorithm, analyzing multiple pattern

alignments within a wide search window and using a novel

filtering heuristic to maximize efficiency.

This proposed method performs preprocessing to get the

index. By using this index as the starting point of matching, it

compares the Text contents from the defined point with the

pattern contents.

2.1 Thread and Multithreading Motivation
A problem with single-threaded applications is that lengthy

activities must complete before other activities can begin

(actions execute one after another.) In a multithreaded

application, Multithreading [6] allows two parts of the same

program to run concurrently.

Java is unique among popular general-purpose programming

languages in that it makes concurrency primitives available to

the applications programmer. The programmer specifies that

applications contain threads of execution, each thread

designating a portion of a program that may execute

concurrently with other threads. Multithreading gives the Java

programmer powerful capabilities that are not available in C

and C++, the languages on which Java is based [6].

Fig 1: CPU Context Switching between Threads

Multithreading allows a program or a process to execute

many tasks concurrently (at the same time and parallel). It

allows a process to run its tasks in parallel mode on a single

processor system [7]. CPU performs context switching

between threads and it seems that threads are executed at the

same time. This study proposes a multithreading text search

approach to improve search performance at a single CPU

machine. The idea is to have multiple threads that search the

text from different positions. The pattern may occur at any

position, having more than one search is better than searching

the text sequentially from the first character to the last one.

The first thread examines the first character of its assigned

text part, CPU makes a context switch specified in Fig.1 to the

second thread to check the first character of its part and so on.

This process is repeated until the whole text is examined by

all the threads.

3. AN INDEX BASED PATTERN

MATCHING USING

MULTITHREADING
In this proposed method a very large size DNA sequence is

divided into parts depending upon the pattern size. The main

idea by using multithreading is to solve the pattern matching

problem on a single CPU machine is to have multi search

threads that searches the pattern simultaneously in a

timesharing manner. From different positions the threads

starts searching for the pattern, the speed of finding the

required pattern will increase.

When splitting the Text into parts problem will not occur if a

match is found entirely in the first half or in the second half of

the string.

Situations may occur when a part of pattern arises in one

string and another part of pattern arises in the consecutive

string, then we have to make sure about that the pattern

matches or not.

String S:

Pattern P:

Split S into S1 and S2

String S1:

Pattern P

String S2:

Pattern P:

If the pattern size is "m" then we will store the last (m-1)

elements of string1 and the first (m-1) elements of

consecutive string2. So total of 2(m-1) elements will be stored

in a new derived string. Now the pattern of size "m" will

match its elements in this new derived string.

Thread 1 Searches Part 1

Thread 2 Searches Part 2

Thread 3 Searches Part 3

Thread 4 Searches Part 4

C

P

U

S

W

IT

C

H

E

S

G T A T T

5

G A C A G G A

5

C C G

G A C

G T A T T G A

G A C
Thread 1

C A G G A

5

C C G

G A C
Thread 2

G A C
Thread 3

G A C A

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2012

15

String S3:

Pattern P:

It then shows number of attempts and the occurrence of

pattern if exist in the same way. This process will be done for

all joining parts of the strings. Now we will combine all the

threads execution result together.

3.1 Algorithm
Input : String T of n characters and a pattern P of m

characters, where S, P belongs to as Σ*.

Output : The number of occurrences and number of characters

compared.

Step 1 : [initialization of variable]

 String array s[x], n_occ:=0, cmp:=0,index=0;

Step 2 : assigning values for

 s[0]-S.substring(0,n/2-1), s[1]S.substring(n/2,n),

 s[2]S.substring(n/2-(m-1),n/2+(m-1))

Step 3 : creating multiple threads and the run method

performs preprocessing and search for the pattern in the

portion of the text allotted to each thread.

 Searching phase

Step 4 : char start_char_pattern=P.charAt(0);

 For i:=index;i<size;i++

 Index= T.indexOf(start_char_pattern,index);

 j:=starting index of pattern P

 cmp:=cmp+1

Step 5 : while (j<m) && (P.charAt(j)==T.chatAt(ind+j)

 j:=j+1;

 if(j==m)

 n_occ:=n_occ+1;

 End If

 i=index+j;

 End while

End For

Step 6: print “Number of occurrences – n_occ,Number of

comparisons cmp”.

3.2 Working Example.
The genome databank consists of gene sequences(NCBI site

http://www.ncbi.nlm.nih.gov/nuccore/1762443 ?report=fasta)

.Full Sequence in Fasta Format.>

>gi|1762443|gb|U60816.1|HSSLC07 Human cystine

transporter rBAT (SLC3A1) gene, exon 7

CCCCGATGACACTGAACCTTGTCAACTCTTATAGGTT

CATGGGGACTGAAGCCTATGCAGAGAGTATTGACAG

GACCGTGATGTACTATGGATTGCCATTTATCCAAGA

AGCTGATTTTCCCTTCAACAATTACCTCAGCATGCTA

GACACTGTTTCTGGGAACAGCGTGTATGAGGTTATC

ACATCCTGGATGGAAAACATGCCAGAAGGAAAATG

GCCTAACTGGATGGTAAGTTCTCATGACAGCAGAGT

AAGGAGAGGACAGCGAT

To validate the proposed method, a part of the gene sequence

(only 31 residues from a gene sequence has been used(see

below for details)

Let us take a string S=G T A T T G A C A G G A C C G T G

A T G T A C T A T G G A C T of 31 characters

and P=G A C.

n=31 and m=3.

The length of String S is 31. n/2 of S is 15 & 16

The String S is split into 3 substrings S1,S2, S3 as S1 contains

character from 0 to 14 and S2 from 15 to 30 and S3 contains

character based on pattern length. It contains the last m-1

values of S1 and first m-1 values of S2(values from 13th

location to 16th location of S).Threads are created based on the

number of substrings and passed as argument to the thread.

The run method does the searching process.

The algorithm first finds the index of the first occurrence of

the first character of pattern in the text.

Based on that search begins from left to right.

S1=G T A T T G A C A G G A C C G

P= G A C

The first character matches then it compares the second

characters of pattern and text. If it matches it proceeds the

same for the remaining characters based on pattern length. If

it does not match it finds the next index of first character of

pattern in text.

S1=G T A T T G A C A G G A C C G

P = GAC

Compares the second character against the character in text

S1.

S1=G T A T T G A C A G G A C C G

P = G A C

Compares the third character against the character in text S1.

S1=G T A T T G A C A G G A C C G

P = G A C

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2012

16

Now all the character matches it prints the message the pattern

found at the location 5 in the string. It follows the same

procedure for the remaining characters in the string s1 and for

the other threads.

Experimental results of the proposed algorithm with different

Patterns, the number of occurrences and the number of

character comparisons for the part of the string of Human

cystine transporter rBAT (SLC3A1) gene, exon 7 (Full

sequence in Fasta Format). We have implemented and tested

the Index Based Pattern Matching using Multithreading

algorithm for different patterns matching using object oriented

programming with Java and the results are shown in the

following Table 1..

Table 1. Experimental Results of Index Based Pattern

Matching using Multithreading algorithm

Patterns (P) Size

of P

No.of

Occur

No.of

comparision

A 1 8 8

GA 2 4 16

GAC 3 3 22

GGAC 4 2 18

ATTGA 5 1 19

GATGTA 6 1 19

GACAGGA 7 1 19

The operating system's task scheduler allocates execution time

to multiple tasks. By quickly switching among executing

tasks, it creates the impression that the tasks execute

simultaneously. If it didn't switch among the tasks, they would

execute sequentially.

Few threads on One CPU may increase performance in case

you continue with another thread instead of waiting for I/O

bound operation and the threads share a single memory space.

In molecular biology this type of large sequences are common

to compare with other sequences. To check whether the given

pattern presents in the sequences or not we need an efficient

algorithm which searches in less time. There are many

algorithms which perform the search and each have its

advantages and disadvantages. This algorithm will decrease

the number of comparisons.

4. RESULTS AND DISCUSSION
The results were compared with Brute-Force, Not So Naïve

and Morris-Pratt algorithm and are shown in the table 2 and

also plotted in the graph as shown in the Fig. 2.

Table 2. Comparisons of different algorithms with Thread

Table 2 shows the comparison between different existing

algorithms with the proposed technique in terms of number of

comparisons. A size of 270 characters of Human cystine

transporter rBAT (SLC3A1) DNA gene is given as Input for

the existing and the proposed method and 6 different random

patterns from the above shown DNA data set and the pattern

size starting from 2 character to 7 characters chosen from the

DNA dataset.

Fig 2. shows the comparisons of different algorithms with the

proposed technique. The current technique gives good

performance in reducing the number of character comparisons

compared with other popular methods. The dotted line shows

the proposed model whereas Brute-Force, Not so naïve and

Morris Pratt are shown by solid lines. Towards X-axis we

have taken randomly different pattern sizes range from 2 to 7
whereas towards Y-axis shows the total number of

comparisons.

This approach is efficiently improving the time complexity as

it is based on multithreading technique. The use of pattern

matching is very broad and efficient pattern matching

algorithm can improve system performance. This

Multithreaded implementation improves the CPU utilization

and increases the time efficiency.

5. CONCLUSION
We presented Index Based Multithreaded Pattern matching

algorithm with a simple logic which is very easy to

implement. This method can also be used for pattern matching

in protein sequences and also for English Text. This algorithm

depends on the pre-processing phase which retrieves the

index.

Pattern

No.

of

chars

Number of character comparisons

Index

Based

Brute

Force

Not

SoNaive

Morris

-Pratt

GA 2 132 336 269 309

GAC 3 166 362 281 329

GGAC 4 153 360 207 320

ATTGA 5 186 373 283 344

GATGTA 6 168 367 297 328

GGCCTAA 7 157 350 197 327

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2012

17

Comparisons of different algorithm with Thread

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7

No. of Characters

N
u

m
b

e
r

o
f

C
o

m
p

a
ri

s
o

n
s

Thread

Brute Force

Not So Naïve

Morris Pratt

Fig 2. Comparison of Different Algorithms with Index Based Thread

We have taken the input of 270 characters and tested

randomly by taking different pattern sizes. Our further

interests are focused for developing algorithms for multiple

pattern matching and patterns that include regular expressions

to meet the challenges and demands put forward by the

present-day computational genomics research. Multithreaded

implementation improves the CPU utilization and this

approach provides best performance related to DNA sequence

dataset.

6. REFERENCES
[1] Dan Gusfield, Algorithms on Strings, Trees, and

Sequences: Computer Science and Computational

Biology, Cambridge University Press, New York, 1997.

[2] Knuth D., Morris.J Pratt.V Fast pattern matching in

strings, SIAM journal on computing.

[3] Boyer R. ande Moore J., “A Fast String Searching

Algorithm,”Computer Journals of Communications of

the ACM, vol.20, no.10, pp.762-772, 1997.

[4] Christian Charras, “Brute Force algorithm. http://www-

igm.univmlv-

fr/~lecroq/string/node3.html#SECTION0030..

[5] Raju Bhukya,DVLN Somayajulu,”An Index Based K-

Partitions Multiple Pattern matching Algorithm”, Proc.of

Int.Conf. on Adfvances in Computer Science 2010.

[6] Deitel P. and Deitel H., Java How to Program, Prentice

Hall, 2003.

[7] T. Ungerer,,” A Survey of Processors with Explicit

Multithreading”, ACM Computing Surveys, Vol. 35, No.

1, March 2003, pp. 29–63.

[8] Ziad A.A. Alqadi, “Multiple Skip Multiple Pattern

Matching Algorithm “, IAENG International Journal of

Computer Science, 34:2, IJCS_34_2_03, Advance online

publication: 17 November 2007.

[9] Deusdado, S. and Carvalho, P.(2009) „GRASPm: an

efficient algorithm for exact pattern-matching in genomic

sequences‟, Int J. Bioinformatics Research and

Applications, Vol.

