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ABSTRACT  
The  aim of present  paper is to introduce the notion of t-
conorm of H-type analogous to t-norm of H-type  introduced 
by Hadzic [9] and using this notion we  prove coupled  fixed 
point theorems for weakly  compatible mappings  in 
intuitionistic fuzzy metric spaces. 
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1. INTRODUCTION  
Recently, Bhaskar and Lakshmikantham [10] introduced the 
concepts of  coupled fixed points and mixed monotone 
property  and illustrated these  results by proving the existence 
and uniqueness of the solution for a periodic boundary value 
problem. Later on    these results were extended and 
generalized by  Fang [4]and  Xin-Qi Hu [12] etc . 
As a generalization of fuzzy sets, Atanassove [1] introduced 

and studied the concept of intuitionistic fuzzy metric sets. 
Intuitionistic fuzzy sets deal with both degree of nearness and 
non-nearness. Motivated by the idea of intuitionistic fuzzy 
metric sets Park [8] introduced the concept of intuitionistic 
fuzzy metric spaces using continuous t-norms and continuous 
t-conorms. Later on , many authors[2-6] have studied fixed 
points results in intuitionistic fuzzy metric spaces.Fang [7] 
defined -contractive conditions and proved some important 

fixed point theorems under -contractions for compatible and 

weakly compatible maps in Menger PM-spaces using t-norm 
of H-type introduced by Hadzic [9]. 

In this paper , first we introduce the notion of  t-conorm of H-
type analogous to t-norm of H-type  introduced by Had c [9] 

and using this notion we  prove a common coupled fixed point 
theorem for compatible mappings  in intuitionistic fuzzy 
metric spaces. 
 

2. DEFINITIONS AND 

PRELIMINARIES  
For basic definitions and structure on intuitionistic fuzzy 

metric spaces we refer to [ 1-6 ].However we give some 

definitions in the sequel. 

Definition 2.1 A binary operation * : [0,1]  [0,1]  [0,1] is 

continuous t-norm if 0,1 , is a topological abelian 

monoid with unit 1 such that t   a * b  c * d whenever a  c 

and b  d for all a, b, c, d  [0,1]. 

Definition 2.2. A binary operation ◊ : [0,1]  [0,1]  [0,1] is 

continuous t-conorm  if 0,1 , is a topological abelian 

monoid with unit 1 such that )   a ◊ b  c ◊ d whenever a  c 

and b  d for all a, b, c, d  [0,1]. 

Definition 2.3[3]. A 5-tuple (X, M, N, *, ◊) is said to be an 

intuitionistic fuzzy metric space if X is an arbitrary set, * is a 

continuous t-norm, ◊ is a continuous t-conorm and M, N are 

fuzzy sets on X2  (0, ) satisfying the following conditions: 

(i)   M(x, y, t) + N(x, y, t)  1 for all x, y  X and t > 0, 

(ii)   M(x, y, 0) = 0 for all x, y  X, 

(iii)   M(x, y, t) =  1 for all x, y  X and t > 0 if and only if   

  x = y, 

(iv)   M(x, y, t) = M(y, x, t) for all x, y  X and t > 0, 

(v)   M(x, y, t) * M(y, z, s)  M(x, z, t + s) for all x, y, z  X 

and t, s > 0, 

(vi)   for all x, y  X, M(x, y, .) : [0, )  [0,1] is continuous, 

(vii)    = 1, for all x, y in X, 

(viii)   N(x, y, 0) = 1 for all x, y  X, 

(ix)   N(x, y, t) =  0 for all x, y  X and t > 0 if and only if  

x = y, 

(x)   N(x, y, t) = N(y, x, t) for all x, y  X and t > 0, 

(xi)   N(x, y, t) ◊ N(y, z, s)  N(x, z, t + s) for all x, y, z  X 

and t, s > 0, 

(xii)   for all x, y  X, N(x, y, .) : [0, )  [0,1] is continuous, 

(xiii)    = 0, for all x, y in X. 

              Then (M, N) is called an intuitionistic fuzzy metric 

on X. the functions M(x, y, t) and N(x, y, t) denote the degree 

of nearness and the degree of non-nearness between x and y 

with respect to t, respectively. 

Definition 2.4[3]. Let (X, M, N, *, ) be an intuitionistic 

fuzzy metric space. Then 

(i)   a sequence { } in X is said to be a Cauchy sequence, if 

for all t > 0 and p  1, 



International Journal of Computer Applications (0975 – 8887)  
Volume 50– No.23, July 2012 

29 

 = 1,  = 0. 

(ii)   a sequence { } in X is said to be convergent to a point 

 x  X, if for all t > 0,  

 = 1,  = 0. 

Definition 2.5[9]. Let (t, t) = 1. A t-norm  is said 

to be of H-type if the family of functions  is 

equicontinuous at t = 1, where 

 = t,  = t  ( ), m= 1, 2…… t  [0, 1]. 

The t-norm  = min. is an example of t-norm of H-type. 

Remark 2.1. is a H-type t-norm iff for any  (0, 1), there 

exists ( )  (0, 1) such that   > (1- ) for all m  N, 

when t > (1- ). 

We now define notion of t-conorm of H-type analogous to t-

norm of H-type as follows. 

Definition 2.6. Let (t, t) = 0. A t-conorm  is said 

to be of H-type if the family of functions  is 

equicontinuous at t = 0, where  = t,  = t  

( ), m= 1, 2,… t  [0, 1]. 

The t- conorm  = max. is an example of t-conorm of H-

type. 

Remark 2.2. is a H-type t-norm iff for any  (0, 1), there 

exists ( )  (0, 1) such that   <  for all m  N, when  

t < . 

Definition 2.7[11]. An element (x, y)  X  X is called a 

coupled fixed point of the mapping f: X  X  X if 

f(x, y) = x ,      f(y, x) = y. 

Definition 2.8[11].An element (x, y)  X  X is called a 

coupled coincidence point of the mappings f: X  X  X 

and g: X  X if 

f(x, y) = g(x),    f(y, x) = g(y). 

Definition 2.9[11]. An element (x, y)  X  X is called  

(i) a common coupled fixed point of the 

mappings f: X  X  X and g: X  X if 

                                         x = f(x, y) = g(x),    y = f(y, x) = g(y). 

(ii)  a common fixed point of the mappings    

f: X  X  X and g: X  X if 

                                         x = f(x, x) = g(x). 

Definition 2.10 [5]. The mappings f: X  X  X and g: X  

X are said to be compatible if 

 = 1, 

 = 1 

And ,  = 0, 

 = 0, 

for all t > 0 whenever {xn} and {yn} are sequences in X, such 

that 

 =  = x,   

   =  = y, 

for some x, y in X. 

Lemma 2.1[2]. Let (X, M, N, *, ◊) be an intuitionistic fuzzy 

metric space and for all x, y in X,  t > 0, if there exists a 

number k  (0,1) such that 

 M(x, y, kt)  M(x, y, t) and N(x, y, kt)  N(x, y, t)  then  

x = y. 

3. MAIN RESULTS 

Theorem 3.1. Let (X, M, N, *, ) be a Complete Intuitionistic 

Fuzzy Metric Space, * being continuous t–norm of H-type and 

 being continuous t–conorm of H-type. Let A , B : X  X  

X  and S , T : X  X  be four mappings satisfying the 

following conditions: 

(3.1) A(X  X)  T(X), B(X  X)  S(X) and the  pairs 

 (A, S) and (B, T) are weakly compatible 

(3.2) S and T are continuous, 

(3.3) ( ( , ), ( , ), ) [ { ( , , ), ( ( , ), , ), ( ( , ), , )}]M A x y B u v kt Min M Sx Tu t M A x y Sx t M B u v Tu t

 

(3.4) ( ( , ), ( , ), ) [ { ( , , ), ( ( , ), , ),N A x y B u v kt Max N Sx Tu t N A x y Sx t  

                                                   
( ( , ), , )}]N B u v Tu t  

, , , , (0,1)x y u v X k  where 

, : 0,1 0,1 are  continuous  functions  such that  

( ) , (1) 1t t   and  ( ) , (0) 0t t   for 

0 1.t  Then  A,B,S and  T have a unique common fixed 

point in X , i.e there exists unique x in X such that  

A(x, x) = T(x) = B(x, x) = S(x) = x. 

Proof: Let x0, y0 be two arbitrary points in X. Since A(X  X) 

 T(X), we can choose x1, y1 in X such that T(x1) = A(x0, y0), 

T(y1) = A(y0, x0). Again, Since B(X  X)  S(X), we can 

choose x2, y2 in X such that S(x2) = B(x1, y1) and  
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 S(y2) = B(y1, x1). Continuing in this way, we can construct 

two sequences { } and { } in X such that 

 = A( , )  =  T( ) , 

 = B( +1, )  =  S( ) 

And , = A( , )  =  T( ) , 

 = B( , )  =  S( ), for all n  0. 

Step 1: We first show that { } and { } are Cauchy 

sequences.Using  (3.3) and (3.4) , 

2 1 2 2

2 2 2 1 2 1

( , , )

( ( , ), ( , ), )

n n

n n n n

M z z kt

M A x y B x y kt
 

2 2 1

2 2 2

2 1 2 1 2 1

( , , ),

( ( , ), , ),

( ( , ), , )

n n

n n n

n n n

M Sx Tx t

Min M A x y Sx t

M B x y Tx t

 

2 1 2 1 2 2

2 2 2 1 2 1

2 1 2 1 2 2

( ( , ), ( , ), ),

( ( , ), ( , ), ),

( ( , ), ( , ), )

n n n n

n n n n

n n n n

M A x y B x y t

Min M A x y B x y t

M B x y A x y t

 

2 2 1

2 2 1 2 2 2 1

[ { ( , , ),

( , , ), ( , , )}]

n n

n n n n

Min M z z t

M z z t M z z t
 

If   2 2 2 1 2 1 2( , , ) ( , , )n n n nM z z t M z z t  , a 

contradiction  as ( , , )M x y t  is increasing , therefore ,                                                                        

2 2 2 1 2 1 2( , , ) [ ( , , )]n n n nM z z kt M z z t
 

                                       2 1 2( , , )n nM z z t
 

And , 
 

2 1 2 2

2 2 2 1 2 1

( , , )

( ( , ), ( , ), )

n n

n n n n

N z z kt

N A x y B x y kt
 

2 2 1

2 2 2

2 1 2 1 2 1

( , , ),

( ( , ), , ),

( ( , ), , )

n n

n n n

n n n

N Sx Tx t

Max N A x y Sx t

N B x y Tx t

 

2 1 2 1 2 2

2 2 2 1 2 1

2 1 2 1 2 2

( ( , ), ( , ), ),

( ( , ), ( , ), ),

( ( , ), ( , ), )}

n n n n

n n n n

n n n n

N A x y B x y t

Max N A x y B x y t

N B x y A x y t

 

2 2 1 2 2 1

2 2 2 1

[ { ( , , ), ( , , ),

( , , )}]

n n n n

n n

Max N z z t N z z t

N z z t
 

If   2 2 2 1 2 1 2( , , ) ( , , )n n n nN z z t N z z t  ,  a 

contradiction  as ( , , )N x y t  is decreasing , therefore ,                                                                        

2 2 2 1 2 1 2 2 1 2( , , ) [ ( , , )] ( , , )n n n n n nN z z kt N z z t N z z t

 

Similarly , we can show that  

2 3 2 2 2 2 2 1( , , ) ( , , )n n n nM z z kt M z z t
 
and

2 3 2 2 2 2 2 1( , , ) ( , , )n n n nN z z kt N z z t  

In general, 1 1( , , ) ( , , )n n n nM z z kt M z z t and

1 1( , , ) ( , , )n n n nN z z kt N z z t . Thus  by lemma [2.1]

nz is  a Cauchy sequence . Similarly we can show  { } is 

Cauchy sequence. 

Step 2: Since X is complete, there exists point a, b in X such 

that 

 = a and  = b, 

that is,  =  A(x2n, y2n) = T(x2n+1) = a, 

=  B(x2n+1, y2n+1) = S(x2n+2) = a 

and  ,  =  A(y2n, x2n) = T(y2n+1) = b, 

=  B(y2n+1, x2n+1) = S(y2n+2) = b. 

We first show that S(a) = T(a). As  S and  T are  continuous  , 

so  2 2 2 2, , ( , ) .n n n nSSx Sa SSy Sb SA x y Sa  

and

2 2 2 2, , ( , ) .n n n nTTx Ta TTy Tb TB x y Ta  

But the pairs  (A,S)  and  (B,T)  are weakly compatible , so ,  

2 2 2 2( , ) ( , )n n n nSA x y A Sx Sy Sa
 
and  

2 2 2 2( , ) ( , )n n n nTB x y B Tx Ty Ta .Using (3.3) and 

(3.4), we have , 

2 2 2 2

2 2

2 2 2

2 2 2

( ( , ), ( , ), ))

( , , ),

( ( , ), , ),

( ( , ), , )

n n n n

n n

n n n

n n n

M A Sx Sy B Tx Ty kt

M SSx TTx t

Min M A Sx Sy SSx t

M B Tx Ty TTx t  
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Taking ,n we get 

( , , ) [ { ( , , ),1,1}M Sa Ta kt Min M Sa Ta t
 

                                
( , , )M Sa Ta t

 

And  ,

2 2 2 2

2 2 2 2 2

2 2 2

( ( , ), ( , ), ))

( , , ), ( ( , ), , ),

( ( , ), , )

n n n n

n n n n n

n n n

N A Sx Sy B Tx Ty kt

N SSx TTx t N A Sx Sy SSx t
Max

N B Tx Ty TTx t

Taking ,n  and  using  lemma (3.1) ,we get    

( , , ) [ { ( , , ),0,0}]N Sa Ta kt Min N Sa Ta t
 

                            

( , , ).N Sa Ta t

 

Which  gives Sa = Ta .  

Now , we prove that Sa =  B(a,b) , again using  (3.3) and (3.4)  

we have 

2 2

2 2 2 2

( ( , ), ( , ), )

[ { ( , , ), ( ( , ), , ),

( ( , ), , )}]

n n

n n n n

M A Sx Sy B a b kt

Min M SSx Ta t M A Sx Sy SSx t

M B a b Ta t
And ,

2 2

2 2 2 2

( ( , ), ( , ), )

[ { ( , , ), ( ( , ), , ),

( ( , ), , )}]

n n

n n n n

N A Sx Sy B a b kt

Max N SSx Ta t N A Sx Sy SSx t

N B a b Ta t
Taking n  , we get Sa =  B(a,b) = Ta . Now , we prove 

that B(a,b) =  A(a,b)

( ( , ), ( , ), )

( , , ), ( ( , ), , ),
[

( ( , ), , )

M A a b B a b kt

M Sa Ta t M A a b Sa t
Min

M B a b Ta t

               

[ 1, ( ( , ), ( , ), ),1

( ( , ), ( , ), )

Min M A a b B a b t

M A a b B a b t
 

And , 

( ( , ), ( , ), )

( , , ), ( ( , ), , ),

( ( , ), , )

N A a b B a b kt

N Sa Ta t N A a b Sa t
Max

N B a b Ta t
.
 

Thus , A(a,b) = B(a,b ) = Sa = Ta . Similarly , we  can show 

that  A(b, a ) = B(b,a ) = Sb = Tb. 

Let  A(a,b) = B(a,b ) = Sa = Ta = x  and  A(b, a ) = B(b,a ) = 

Sb = Tb = y. Since  (A,S) and  (B,T) are   weakly compatible , 

so ,   

( , ) ( , ) ( , )Sx SA a b A Sa Sb A x y
 
and  

( , ) ( , ) ( , )Sy SA b a A Sb Sa A y x . 

( , ) ( , ) ( , )Tx TB a b B Ta Tb B x y and  

( , ) ( , ) ( , )Ty TB b a B Tb Ta B y x .  

Step 3: We next show that x = y . From (3.3) and (3.4) , 

( , , ) ( ( , ), ( , ), )

( , , ), ( ( , ), , )
1

( ( , ), , )

M x y kt M A a b B a b kt

M Sa Ta t M A a b Sa t
Min

M B a b Ta t

And ,

( , , ) ( ( , ), ( , ), )

( , , ), ( ( , ), , )
0

( ( , ), , )

N x y kt N A a b B a b kt

N Sa Ta t N A a b Sa t
Max

N B a b Ta t

 

Therefore , x = y . 

Step 4:   Now , we prove that  Sx = Tx, again  using  (3.3) and  

(3.4)  

( , , ) ( ( , ), ( , ), )

( , , ), ( ( , ), , ),

( ( , ), , )

( , , )

M Sx Tx kt M A x y B x y kt

M Sx Tx t M A x y Sx t
Min

M B x y Tx t

M Sx Tx t

( , , ) ( ( , ), ( , ), )

( , , ), ( ( , ), , ),

( ( , ), , )

( , , ),

N Sx Tx kt N A x y B x y kt

N Sx Tx t N A x y Sx t
Max

N B x y Tx t

N Sx Tx t
 

Thus we  get Sx = Tx . 

Step 5: Lastly , we prove that Sx = x  , From  (3.3)  and  (3.4) 

, we have 

( , , ) ( ( , ), ( , ), )

( , , ), ( ( , ), , ),
1

( ( , ), , )

M Sx x kt M A x y B x y kt

M Sx Tx t M A x y Sx t
Min

M B x y Tx t

 

( , , ) ( ( , ), ( , ), )

( , , ), ( ( , ), , ),
0

( ( , ), , )

N Sx x kt N A x y B x y kt

N Sx Tx t N A x y Sx t
Max

N B x y Tx t

 

Thus , we  get Sx = x . Hence   

( , ) ( , )x Sx Tx A x x B x x . This shows that A, 
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B, S, T have a common fixed point and uniqueness of x 

follows easily from (3.3)  and  (3.4).  

Next we give an example in support of theorem 3.1 

Example 3.1. Let X = R and d be the usual metric on X. 

Denote a * b = ab and a ◊ b = min{1, a + b} for all a, b in 

[0,1] and let Md and Nd be fuzzy sets on X2  (0, ) defined 

as follows: 

Md(x, y, t) =  , Nd(x, y, t) = . 

Then (X, M, N, *, ◊) is an intuitionistic fuzzy metric space. 

Define the mappings 

, :A B X X X and , :S T X X   as follows 

, 0,2 ,
( , )

1,

x y x y X
A x y

otherwise
and

, 0,2 ,
( , )

2,

x y x y X
B x y

otherwise
 

( )S x x and ( ) 2T x x , then the pairs (A,S) and  

(B,T) are  weakly  compatible  and  we see  A(X  X)  

T(X), B(X  X)  S(X), So,  all  the conditions of our 

theorem  are satisfied . Thus A,B,S and T  have a unique 

common coupled fixed point in X. Indeed, x = 0 is the unique 

common fixed point. 
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