Properties P and Q for Suzuki-type fixed point theorems in metric spaces

Renu Chugh, Raj Kamal and Madhu Aggarwal* Department of Mathematics, Maharshi Dayanand University, Rohtak 124001

ABSTRACT

The aim of this paper is to present several results for maps defined on a metric space involving contractive conditions of Suzuki-type which satisfy properties P and Q. An interesting fact about this study is that none of these maps has any nontrivial periodic points.

Keywords

Property P; Property Q; Metric space; Suzuki contraction.

1. INTRODUCTION

The Banach contraction principle [15] states that every contraction T on a complete metric space has a unique fixed point. Recently, Suzuki [20] introduced a new type of mapping and presented a generalization of the Banach contraction principle as follows:

Theorem 1.1.[20] Define a non-increasing function θ from

$$[0, 1) \text{ onto } \left(\frac{1}{2}, 1\right] \text{ by}$$

$$\theta(r) = \begin{cases} 1 & \text{if } 0 \le r \le \frac{1}{2}(\sqrt{5} - 1) \\ \frac{1 - r}{r^2} & \text{if } \frac{1}{2}(\sqrt{5} - 1) \le r \le \frac{1}{\sqrt{2}} \\ \frac{1}{1 + r} & \text{if } \frac{1}{\sqrt{2}} \le r < 1. \end{cases}$$

Let (X, d) be a complete metric space and let T be a mapping from *X* into itself. Assume that there exists $r \in [0, 1)$ such that for all $x, y \in X$

 $\theta(r) d(x, Tx) \le d(x, y)$ implies $d(Tx, Ty) \le r d(x, y)$.

Then there exists a unique $z \in X$ such that $z \in Tz$.

The elegant technique employed to prove Theorem 1.1 attracted several authors to work along these lines and subsequently Theorem 1.1 was generalized and extended in various ways (see for instance, [1], [3], [4], [7-14], [16-19], [21], [22] and others).

We will denote the set all fixed points of a self mapping T from X into itself by F(T), i.e., $F(T) = \{z \in X: Tz = z\}$. It is obvious that if z is a fixed point of T then it is also a fixed point of T^n for each $n \in N$, *i. e.*, $F(T) \subset F(T^n)$ if $F(T) \neq \phi$. However converse is false. Indeed the mapping T: $R \rightarrow R$

defined by $Tx = \frac{1}{2} - x$ has a unique fixed point, i.e., F (T) =

 $\left\{\frac{1}{4}\right\}$, but every $x \in \mathbb{R}$ is a fixed point for \mathbb{T}^2 . If $F(T) = F(T^n)$,

for each $n \in N$, then we say that T has no periodic points.

In 2005, Jeong and Rhoades [5] examine a number of situations in which the fixed point sets for maps and their iterates are the same.

They state that a map T has **property** P if $F(T) = F(T^n)$ for each $n \in N$. Also a pair of maps S and T have property Q if $F(S) \cap F(T) = F(S^n) \cap F(T^n)$ for each $n \in N$.

Several works has been done related to Property P and Q (see for instance [2] and [6]).

Now we continue this study for mappings satisfying Suzuki type contractive conditions in metric space. In section I, we discuss property P for a map which involve Suzuki contractive conditions. In section II, we prove property Q for pairs of maps involving above contractive conditions. An important of this study is that if a map satisfies property P then every periodic point is a fixed point. The same situation is true for maps satisfying property Q.

PROPERTY P 2.

Theorem 2.1. Define a nonincreasing function φ from [0, 1) into (0, 1] by

$$\varphi(r) = \begin{cases} 1, & if \ 0 \le r \le \frac{1}{2} \\ 1 - r, & if \ \frac{1}{2} \le r \le 1. \end{cases}$$

Let (X, d) be a complete metric space and let *T* be a mapping from X into itself. Assume that there exists $r \in [0, \infty)$ 1) such that for all $x, y \in X$

$$\varphi(r) d(x, Tx) \leq d(x, y)$$
 implies

$$d(Tx,Ty) \le r \max\left\{\frac{d(x,y), d(x,Tx), d(y,Ty),}{\frac{d(x,Ty) + d(y,Tx)}{2}}\right\}.$$

Then T has property P.

Proof: From corollary 2.3 of [3], T has a fixed point. In other words, $F(T) \neq \emptyset$. Therefore $F(T^m) \neq \emptyset$ for each positive integer *m*.Let *n* be a fixed positive integer greater than 1 and suppose that $z \in F(T^n)$. We claim that $z \in F(T)$, that is, z is a fixed point of T.

Suppose that $z \neq Tz$. Then

$$d(z, Tz) = d(T^{n}z, T(T^{n}z)) = d(T^{n}z, T^{n+1}z),$$

which is of the form
$$d(Tx,Ty)$$
, here

$$y=T^n z, \ x=T^{n-1}z.$$

Now $\varphi(r)d(x,Tx) = \varphi(r) d(T^{n-1}z, T(T^{n-1}z))$

$$= \varphi(r)d(T^{n-1}z,T^nz) \leq d(x,y),$$

that is,
$$\varphi(r) d(x, Tx) \leq d(x, y)$$
 implies

$$d(Tx, Ty) \le r \max\left\{\frac{d(x, y), d(x, Tx), d(y, Ty)}{2}\right\}$$

that is,
$$d(T(T^{n-1}z), T(T^nz))$$

$$\leq r \max\left\{\frac{d(T^{n-1}z,T^{n}z), d(T^{n-1}z,T^{n}z), d(T^{n}z,T^{n+1}z),}{2}\right\},\$$
$$= r \max\left\{d(T^{n-1}z,T^{n}z), d(T^{n}z,T^{n+1}z), \frac{d(T^{n-1}z,T^{n+1}z)}{2}\right\}$$

that is, $d(T^n z, T^{n+1} z) \leq r \max$

$$\leq r \max \left\{ d(T^{n-1}z,T^nz), d(T^nz,T^{n+1}z) \right\}.$$

Then
$$d(T^n z, T^{n+1} z) \leq r d(T^{n-1} z, T^n z).$$

Continuing like this, we have $d(T^n z, T^{n+1}z) \leq r d(T^{n-1}z, T^n z) \leq r^2 d(T^{n-2}z, T^{n-1}z) \leq \dots \leq r^n d(z, Tz),$ that is, $d(z, Tz) \leq r^n d(z, Tz) < d(z, Tz),$ that is, d(z, Tz) < d(z, Tz),which is a contradiction. So our supposition that $z \neq Tz$ is wrong. Thus, z = Tz and so $z \in F(T)$. Therefore $F(T^n) \subseteq F(T)$. Also $F(T) \subseteq F(T^n)$. Thus, $F(T) = F(T^n)$. Hence T satisfies property P.

Special cases of Theorem 2.1 are contractive conditions appearing in Theorem 3.3 of [19], Theorem 2.2 and Theorem 3.1 of [8], Theorem 2 of [20], Corollary 3.4 of [17] and Corollary 4.4 of [18].

Theorem 2.2. Let (X, d) be a compact metric space and let *T* be a mapping on *X*. Assume that

$$\frac{1}{2} d(x, Tx) < d(x, y) \text{ implies } d(Tx, Ty) < d(x, y)$$

for $x, y \in X$. Then *T* has property *P*.

Proof: From Theorem 3 of [21], T has a unique fixed point.In other words, $F(T) \neq \emptyset$. Therefore $F(T^m) \neq \emptyset$ for each positive integer *m*.Let *n* be a fixed positive integer greater than 1 and suppose that $z \in F(T^n)$. We claim that $z \in F(T)$, that is, *z* is a fixed point of *T*. Suppose that $z \neq Tz$. Then

 $d(z, Tz) = d(T^{n}z, T(T^{n}z)) = d(T^{n}z, T^{n+1}z),$

which is of the form d(Tx, Ty), here $y = T^n z$, $x = T^{n-1}z$.

Now
$$\frac{1}{2}d(x, Tx) = \frac{1}{2}d(T^{n-1}z, T(T^{n-1}z)) = \frac{1}{2}d(T^{n-1}z, T^nz)$$

< $d(T^{n-1}z, T^nz)$,

that is, $\frac{1}{2} d(x, Tx) < d(x, y)$ implies d(Tx, Ty) < d(x, y),

that is, $d(T(T^{n-1}z), T(T^nz)) < d(T^{n-1}z, T^nz)$,

that is, $d(T^n z, T^{n+1} z) < d(T^{n-1} z, T^n z)$.

Continuing like this, we have

 $d(T^n z, T^{n+1} z) < d(z, Tz),$

That is, d(z, Tz) < d(z, Tz), which is a contradiction. So our supposition that $z \neq Tz$ is wrong. Thus, z = Tz and so $z \in F(T)$.

Therefore $F(T^n) \subseteq F(T)$. Also $F(T) \subseteq F(T^n)$. Thus, $F(T) = F(T^n)$. Hence *T* satisfies property *P*.

Theorem 2.3: Define a function η from [0,1) into (1/2, 1] by

$$\eta(r) = \begin{cases} 1 & if \quad 0 \le r < 1/2 \\ (1+r)^{-1} & if \quad 1/2 \le r < 1 \end{cases}.$$

Let (X, d) be a complete metric space and let *T* be a mappings form *X* into CB(X). Assume that there exists $r \in [0, 1)$ such that for all $x, y \in X$

(2.3.1)

 $\eta(r) \, d(x, \, Tx) \leq d(x, \, y) \text{ implies } \delta \, (Tx, \, Ty) \leq rd(x, \, y).$

Then T has property P.

Proof: From theorem 4 of [10], *T* has a unique fixed point z and $Tz = \{z\}$. Therefore, $F(T^n) \neq \phi$ for each positive integer *n*. Let *n* be a fixed positive integer greater than 1 and

suppose that $u \in F(T^n)$. We claim that $u \in F(T)$, that is, u is a fixed point of T.

Let $u \in F(T^n)$ Then for any positive integer *i*, *j* satisfying $0 \le i, j \le n$, we obtain

$$\eta(r) \ d(T^{i-1}u, T(T^{j-1}u)) = \eta(r)d(T^{i-1}u, T^{j}u) \le d(T^{i-1}u, T^{j}u).$$

Then contractive condition (2.3.1) implies that $\delta(T(T^{i-1}u), T(T^{j}u)) \leq rd(T^{i-1}u, T^{j}u). \quad (2.3.2)$ Define $\delta_{i} = \delta_{i} = \delta_{i} = \delta_{i}$

Define $\delta = \max_{0 \le i, j \le n} \delta(T^i u, T^j u).$

Since, if j = n, then $T^{j+1}u = Tu$. Assuming $\delta > 0$, it then follows from (2.3.2) that $\delta \le r \delta$, which is a contradiction. Therefore $\delta = 0$. Thus $\delta (Tu, u) = 0$ implies $\{u\} = Tu$. Hence $u \in F(T)$.

Hence T satisfies property P.

3. PROPERTY Q

Theorem 3.1. Define a strictly decreasing function η from [0, 1) onto $\left(\frac{1}{2}, 1\right)$ by $\eta(r) = \frac{1}{2}$.

onto
$$\left\lfloor \frac{-}{2}, 1 \right\rfloor$$
 by $\eta(r) = \frac{-}{1+r}$.

Let (X, d) be a complete metric space and let *T* and *S* be mappings from *X* into itself. Assume that there exists $r \in [0, 1)$ such that for all $x, y \in X$

 $\begin{aligned} \eta(r) \min\{d(x, Tx), d(y, Sy)\} \leq & d(x, y) \text{ implies } d(Tx, Sy) \leq & rM(x, y) \end{aligned}$

where
$$M(x, y) = \max \begin{cases} d(x, y), \frac{d(x, Tx) + d(y, Sy)}{2}, \\ \frac{d(x, Sy) + d(y, Tx)}{2} \end{cases}$$

Then *S* and *T* have property Q.

Proof: From corollary 2.3 of [12], *S* and *T* have a unique common fixed point. In other words, $F(S) \cap F(T) \neq \emptyset$. Therefore, $F(S^m) \cap F(T^m) \neq \emptyset$ for each positive integer *m*. Let *n* be a fixed positive integer greater then 1 and suppose that $z \in F(S^n) \cap F(T^n)$.

We claim that $z \in F(S) \cap F(T)$. To prove this, it is sufficient to show that z is a fixed point of T.

Suppose that $z \neq Tz$. Then

 $d(z, Tz) = d(S^{n}z, T(T^{n}z)) = d(T(T^{n}z), S(S^{n-1}z)),$

which is of the form d(Tx, Sy), here $x = T^n z$, $y = S^{n-1} z$. Now $\eta(r) d(x, Tx) =$

 $\eta(r) \ d(T^{n}z, T(T^{n}z)) = \eta(r) \ d(T^{n}z, T^{n+1}z)$

$$\leq d(T^n z, T^{n+1} z).$$
 (3.1.2)

Case-I If $d(x, Tx) \leq d(y, Sy)$.

Then $d(T^n z, T^{n+1} z) \le d(S^{n-1} z, S^n z) = d(S^{n-1} z, z)$

 $= d(S^{n-1}z, T^n z) = d(T^n z, S^{n-1}z). \quad (3.1.3)$ Combining (3.1.2) and (3.1.3) we have

Combining (3.1.2) and ($\eta(r) d(x, Tx) \le d(x, y).$

Then by contractive condition (3.1.1), we have

 $d(Tx, Sy) \le r \max\left\{ \begin{aligned} d(x, y), \frac{d(x, Tx) + d(y, Sy)}{2}, \\ \frac{d(x, Sy) + d(y, Tx)}{2} \end{aligned} \right\}.$

This implies that $d(T(T^nz), S(S^{n-1}z)) \leq$

$$r \max \left\{ \frac{d(T^{n}z, S^{n-1}z), \frac{d(T^{n}z, T^{n+1}z) + d(S^{n-1}z, S^{n}z)}{2}}{\frac{d(T^{n}z, S^{n}z) + d(S^{n-1}z, T^{n+1}z)}{2}}{2} \right\}$$

That is, $d(T^{n+1}z, S^nz) \leq$

$$r \max \begin{cases} d(T^{n}z, S^{n-1}z), \frac{d(T^{n}z, T^{n+1}z) + d(S^{n-1}z, S^{n}z)}{2}, \\ \frac{d(T^{n}z, S^{n}z) + d(S^{n-1}z, T^{n+1}z)}{2} \end{cases}$$

Case-II If $d(y, Sy) \le d(x, Tx)$, i.e. $d(S^{n-1}z, S(S^{n-1}z) \le d(T^n z, T(T^n z)))$, i.e. $d(S^{n-1}z, S^n z) \le d(T^n z, T^{n+1}z)$, Now $\eta(r) d(y, Sy) = \eta(r) d(S^{n-1}z, S^n z) \le d(S^{n-1}z, S^n z) = d(S^{n-1}z, z)$

$$= d(S^{n-1}z,T^nz) = d(x, y).$$

As $d(y, Sy) \le d(x, Tx)$ and $\eta(r) d(y, Sy) \le d(x, y)$. So by contractive condition (3.1.1), we have

$$d(Tx, Sy) \le r \max r \max\left\{ \begin{array}{l} d(x, y), \frac{d(x, Tx) + d(y, Sy)}{2}, \\ \frac{d(x, Sy) + d(y, Tx)}{2} \end{array} \right\}$$

This implies that $d(T(T^n z), S(S^{n-1} z)) \le$

$$r \max\left\{ \frac{d(T^{n}z, S^{n-1}z), \frac{d(T^{n}z, T^{n+1}z) + d(S^{n-1}z, S^{n}z)}{2}}{\frac{d(T^{n}z, S^{n}z) + d(S^{n-1}z, T^{n+1}z)}{2}}{2} \right\},$$

that is, $d(T^{n+1}z, S^nz) \leq$

$$r \max\left\{ \frac{d(T^{n}z, S^{n-1}z), \frac{d(T^{n}z, T^{n+1}z) + d(S^{n-1}z, S^{n}z)}{2}}{\frac{d(T^{n}z, S^{n}z) + d(S^{n-1}z, T^{n+1}z)}{2}}{2} \right\}$$

Thus from bothcase-I and case-II, we obtain $d(T^{n+1}z, S^nz) \le$

$$r \max \begin{cases} d(T^{n}z, S^{n-1}z), \frac{d(T^{n}z, T^{n+1}z) + d(S^{n-1}z, S^{n}z)}{2}, \\ \frac{d(T^{n}z, S^{n}z) + d(S^{n-1}z, T^{n+1}z)}{2} \end{cases}, \\ \text{that is,} \quad d(z, Tz) \leq \\ r \max \begin{cases} d(z, S^{n-1}z), \frac{d(z, Tz) + d(S^{n-1}z, z)}{2}, \\ \frac{d(z, z) + d(S^{n-1}z, Tz)}{2} \end{cases}, \\ \frac{d(z, z) + d(S^{n-1}z, Tz)}{2}, \\ \frac{d(z, S^{n-1}z), \frac{d(z, Tz) + d(S^{n-1}z, z)}{2}, \\ \frac{d(z, Tz) \leq r \max}{2}, \\ \frac{d(z, Tz) \leq r \max}{2} \leq \frac{d(z, Tz) + d(S^{n-1}z, z)}{2}. \end{cases}, \\ \text{Since,} \quad \frac{d(S^{n-1}z, Tz)}{2} \leq \frac{d(z, Tz) + d(S^{n-1}z, z)}{2}. \\ \text{So (3.1.4) takes the form} \\ d(z, Tz) \leq r \max \left\{ d(z, S^{n-1}z), \frac{d(z, Tz) + d(S^{n-1}z, z)}{2} \right\}. \\ \text{Case-(a) If } d(z, Tz) \leq r \ d(z, S^{n-1}z) . \end{cases}$$

Case-(b) If $d(z, Tz) \le r \frac{d(z, Tz) + d(S^{n-1}z, z)}{2}$. that is, $2d(z, Tz) \le rd(z, Tz) + r d(S^{n-1}z, z)$, $(2-r) d(z, Tz) \leq r d(S^{n-1}z, z),$ $d(z, Tz) \leq \left(\frac{r}{2-r}\right) d(S^{n-1}z, z),$ that is, $d(z, Tz) \le r_1 d(S^{n-1}z, z)$, where $r_1 < 1$. Thus from case-(a) and case-(b), we have $d(z, Tz) \leq \beta d(S^{n-1}z, z)$, where $\beta < 1$, that is, $d(Tz, z) \leq \beta d(z, S^{n-1}z)$, that is, $d(T(T^n z), S^n z) \le \beta d(T^n z, S^{n-1} z)$. Thus we get $d(T^{n+1}z, S^nz) \leq \beta d(T^nz, S^{n-1}z)$ Continuing like this, we have $d(T^{n+1}z, S^nz) \leq \beta^n d(Tz, z) < d(Tz, z),$ that is, $d(T_z, z) < d(T_z, z)$, which is a contradiction. So, oursupposition that $z \neq Tz$ is wrong. Thus z = Tz. Analogously*z* = *Sz*. Therefore $z \in F(T) \cap F(S)$. So $F(S^n) \cap F(T^n) \subseteq F(T) \cap F(S)$. Also $F(T) \cap F(S) \subset F(S^n) \cap F(T^n)$. Thus, $F(T) \cap F(S) = F(S^n) \cap F(T^n)$. Hence S and T satisfy property Q.

Theorem 3.2. Define a non-increasing function θ as in Theorem 1.1 and let X be a complete metric space, $f, T: X \rightarrow f$ X satisfying the following: (i) f is continuous. (ii) $T(X) \subset f(X)$. (iii) fand T commute. Assume there exists $r \in [0, 1)$ such that for each $x, y \in X$, $\theta(r) d(fx, Tx) \leq d(fx, fy)$ implies d(fx, fy), d(fx, Tx), d(fy, Ty), $d(Tx, Ty) \le r \max \left\{ d(fx, Ty) + d(fy, Tx) \right\}$.(3.2.1) Then *f* and *T* have property Q. *Proof:* From theorem 2.1 of [11], *f* and *T* have a unique common fixed point. In other words, $F(f) \cap F(T) \neq \emptyset$. Therefore $F(f^n) \cap F(T^n) \neq \emptyset$ for each positive integer n. Let n be a fixed positive integer greater than 1 and suppose that $u \in F(f^n) \cap F(T^n)$. We claim that $u \in F(f) \cap F(T)$. Since $u \in F(f^n) \cap F(T^n)$. Then for any positive integer *i*,*r* satisfying $0 \le i, r \le n$, we obtain $\theta(r) d(f(T^{i-1}f^{r-1}u), T(T^{i-1}f^{r-1}u))$ $\leq d(T^{i-1}f^{r}u, T^{i}f^{r-1}u)$ $= d(f(T^{i-1}f^{r-1}u), f(T^{i}f^{r-2}u)).$

Then contractive condition (3.2.1) implies that

$$d(T^{i}f^{r-1}u, T^{i+1}f^{r-2}u) \leq \left\{ \begin{aligned} &d(T^{i-1}f^{r}u, T^{i}f^{r-1}u), d(T^{i-1}f^{r}u, T^{i}f^{r-1}u), \\ &d(T^{i}f^{r-1}u, T^{i+1}f^{r-2}u), \\ &\frac{d(T^{i-1}f^{r}u, T^{i+1}f^{r-2}u) + d(T^{i}f^{r-1}u, T^{i}f^{r-1}u)}{2} \\ \end{aligned} \right\}$$

$$(3.2.2)$$

Define $\delta = \max_{0 \le i, r, l, t \le n} d(T^i f^r u, T^l f^t u)$

Since, if i = n, then $T^{i+1}u = Tu$.

Assuming $\delta > 0$, it then follows from (3.2.2) that $\delta \le r \max{\{\delta, \delta, \delta\}},$ that is, $\delta < \delta$ which is a contradiction. Therefore $\delta = 0$. Thus d(fu, u) = d(Tu, u) = 0 implies u = fu = Tu. Hence $u \in F(f) \cap F(T)$. So $F(f^n) \cap F(T^n) \subseteq F(f) \cap F(T)$.

Also $F(f) \cap F(T) \subseteq F(f^n) \cap F(T^n)$.

Thus, $F(f) \cap F(T) = F(f^n) \cap F(T^n)$. Hence *f* and *T* satisfy property Q.

Special case of Theorem 3.2 is contractive condition appearing in Theorem 3 of [7].

Theorem 3.3.Let (X, d) be a complete metric space. Let f and T be mappings on X satisfying (i)-(iii) in Theorem 3.2. Assume that

$$\frac{1}{2} d(fx, Tx) < d(fx, fy) \text{ implies}$$
$$d(Tx, Ty < \max\left\{d(fx, fy), \frac{d(fx, Tx) + d(fy, Ty)}{2}\right\}$$

(3.3.1)for all *x*, *y* \in *X*, and that for any ϵ > 0, there exists $\delta(\epsilon) > 0$ such that for all *x*, *y* \in *X*

$$\frac{1}{2} d(fx, Tx) < d(fx, fy) \text{ and max}$$
$$\max\left\{d(fx, fy), \frac{d(fx, Tx) + d(fy, Ty)}{2}\right\} < \epsilon + \delta(\epsilon)$$

implies $d(Tx, Ty) \leq \epsilon$.

Then f and T have property Q.

Proof: From theorem 3.1 of [11], f and T have a unique common fixed point.

In other words, $F(f) \cap F(T) \neq \emptyset$. Therefore $F(f^n) \cap F(T^n) \neq \emptyset$ for each positive integer *n*. Let *n* be a fixed positive integer greater than 1 and suppose that $u \in F(f^n) \cap F(T^n)$. We claim that $u \in F(f) \cap F(T)$.

Since $u \in F(f^n) \cap F(T^n)$. Then for any positive integer *i*, *r* satisfying $0 \le i, r \le n$, we obtain

$$\frac{1}{2}d(f(T^{i-1}f^{r-1}u), T(T^{i-1}f^{r-1}u)) < d(T^{i-1}f^{r}u, T^{i}f^{r-1}u)$$

 $= d(f(T^{i-1}f^{r-1}u), f(T^{i}f^{r-2}u)).$

Then contractive condition (3.3.1) implies that

$$d(T^{i}f^{r-1}u, T^{i+1}f^{r-2}u) \\ < \max\left\{ \frac{d(T^{i-1}f^{r}u, T^{i}f^{r-1}u),}{\frac{d(T^{i-1}f^{r}u, T^{i}f^{r-1}u) + d(T^{i}f^{r-1}u, T^{i+1}f^{r-2}u)}{2} \right\}$$

Define $\delta = \max_{0 \le i, r, l, r \le n} d(T^i f^r u, T^l f^r u)$ (3.3.2)

Since, if i = n, then $T^{i+1}u = Tu$.

- Assuming $\delta > 0$, it then follows from (3.3.2) that $\delta < \max{\delta, \delta}$,
- that is, $\delta < \delta$ which is a contradiction. Therefore $\delta = 0$. Thus d(fu, u) = d(Tu, u) = 0 implies u = fu = Tu.

Hence $u \in F(f) \cap F(T)$.

So $F(f^n) \cap F(T^n) \subseteq F(f) \cap F(T)$.

Also $F(f) \cap F(T) \subseteq F(f^n) \cap F(T^n)$.

Thus, $F(f) \cap F(T) = F(f^n) \cap F(T^n)$. Hence *f* and *T* satisfy property Q.

Special case of Theorem 3.3 is Meir-Keeler contractive condition appearing in Theorem 4 of [7].

4. CONCLUSION

In this paper, we have studied a number of Suzuki-type contractive conditions defined on a metric space for which fixed point sets for maps and their iterates are same. An important fact about this study is that if maps satisfy property P or Q then every periodic point is a fixed point.

5. REFERENCES

- B. Damjanović and D. Dorić, Multivalued generalizations of the Kannan fixed point theorem, *Filomat*, vol. 25 (1), DOI: 10.2298/FIL 1101125D, (2011), 125-131.
- [2] B. E. Rhoades and M. Abbas, Maps satisfying generalized contractive condition of integral type for which $F(T) = F(T^n)$, *International Journal of Pure and Applied Mathematics*, vol. 45, no. 2 (2008), 225-231.
- [3] D. Dorić and R. Lazović, Some Suzuki-type fixed point theorems for generalized multivalued mappings and applications, *Fixed Point Theory and Appl.*,2011:40, (2011), 13 pp.
- [4] G. Moţ and A. Petruşel, Fixed point theory for a new type of contractive multi-valued operators, *Nonlinear Anal.*, 70(9), (2009), 3371–3377.
- [5] G. S. Jeong and B. E. Rhoades, Maps for which $F(T) = F(T^n)$, *Fixed Point Theory and Appl.*, vol. 6(2005), 1-69.
- [6] G. S. Jeong and B. E. Rhoades, More maps for which $F(T) = F(T^n)$, *DemonstratioMathematica*, vol. XL, no. 3 (2007), 671-680.
- [7] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, *Nonlinear Anal.*, 69(9), (2008), 2942– 2949.
- [8] M. Kikkawa and T. Suzuki, Some similarity between contractions and Kannan mappings, *Fixed Point Theory* and Appl., vol. 2008, Art.ID 649749, (2008), 8 pp.
- [9] M. Kikkawa and T. Suzuki, Some similarity between contractions and Kannan mappings II, Bull. Kyushu Inst. Technol. Pure Appl. Math., no. 55 (2008), 1–13.
- [10] M. Kikkawa and T. Suzuki, Some notes on fixed point theorems with constants, *Bull. Kyushu Inst. Technol. Pure Appl. Math.*, no. 56 (2009), 11–18.
- [11] O. Popescu, Two fixed point theorems for generalized contractions with constants in complete metric space, *Cent. Eur. J. Math.*, 7(3), (2009), 529–538.
- [12] Raj Kamal, Renu Chugh, ShyamLal Singh and Swami Nath Mishra, New common fixed point theorems for multivalued maps, Applied general topology, Accepted.
- [13] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76.

International Journal of Computer Applications (0975 – 8887) Volume 50 – No.1, July 2012

- [14] R. Kannan, Some results on fixed points. II, Amer. Math. Monthly, 76 (1969), 405–408.
- [15] S. Banach, Sur les operations dans les ensembles abstraitsetleur application aux equations integrales, Fund. Math., 3 (1922), 133-181.
- [16] S. L. Singh, H. K. Pathak and S. N. Mishra, On a Suzuki type general fixed point theorem with applications, *Fixed Point Theory and Appl.*,vol. 2010, Art. ID 234717, (2010), 15 pp.
- [17] S. L. Singh and S. N. Mishra, Coincidence theorems for certain classes of hybrid contractions, *Fixed Point Theory and Appl.*, vol.2010, Art. ID 898109, (2010), 14 pp.
- [18] S. L. Singh and S. N. Mishra, Remarks on recent fixed point theorems, *Fixed Point Theory and Appl.*, vol. 2010, Art. ID 452905, (2010), 18 pp.

- [19] S. Dhompongsa and H. Yingtaweesittikul, Fixed points for multivalued mappings and the metric completeness, *Fixed Point Theory and Appl.*, vol.2009, Art. ID 972395, (2009), 15 pp.
- [20] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, *Proc. Amer. Math. Soc.*, vol. 136, no. 5, (2008), 1861–1869.
- [21] Tomonari Suzuki, A new type of fixed point theorem in metric spaces, *Nonlinear Anal.*, 71(11), (2009), 5313–5317.
- [22] Y. Enjouji, M. Nakanishi and T. Suzuki, A generalization of Kannan's fixed point theorem, *Fixed Point Theory and Appl.*, vol. 2009, Art.ID 192872, (2009), 10 pp.