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ABSTRACT 

The aim of this paper is to present several results for maps 

defined on a metric space involving contractive conditions of 

Suzuki-type which satisfy properties P and Q. An interesting 

fact about this study is that none of these maps has any 

nontrivial periodic points. 
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1. INTRODUCTION 

The Banach contraction principle [15] states that every 

contraction T on a complete metric space has a unique fixed 

point. Recently, Suzuki [20] introduced a new type of 

mapping and presented a generalization of the Banach 

contraction principle as follows: 

Theorem 1.1.[20] Define a non-increasing function  from 
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Let (X, d) be a complete metric space and let T be a mapping 

from X into itself. Assume that there exists r [0, 1) such 

that for all x, yX 

θ(r) d(x, Tx)  d(x, y) implies d(Tx, Ty)  r d(x, y). 

Then there exists a unique zX such that zTz.  

The elegant technique employed to prove Theorem 1.1 

attracted several authors to work along these lines and 

subsequently Theorem 1.1 was generalized and extended in 

various ways (see for instance, [1], [3], [4], [7-14], [16-19], 

[21], [22] and others). 

We will denote the set all fixed points of a self mapping T 

from X into itself by F(T), i.e., F(T)= {zX:Tz=z}. It is 

obvious that if z is a fixed point of T then it is also a fixed 

point of Tn for each nN, i. e., F(T)⊂F(Tn) if F(T) ≠ϕ . 

However converse is false. Indeed the mapping T: R→R 

defined by Tx= 
1

2
x  has a unique fixed point, i.e., F (T) = 

1

4

 
 
 

, but every xR is a fixed point for T2. If F(T) = F(Tn), 

for each nN, then we say that T has no periodic points. 

In 2005, Jeong and Rhoades [5] examine a number of 

situations in which the fixed point sets for maps and their 

iterates are the same. 

They state that a map T has property P if F(T) = F(Tn) for 

each nN. Also a pair of maps S and T have property Q if 

F(S) ∩ F(T) = F(Sn) ∩ F(Tn) for each nN. 

Several works has been done related to Property P and Q 

(see for instance [2] and [6]). 

Now we continue this study for mappings satisfying Suzuki 

type contractive conditions in metric space. In section I, we 

discuss property P for a map which involve Suzuki 

contractive conditions. In section II, we prove property Q for 

pairs of maps involving above contractive conditions. An 

important of this study is that if a map satisfies property P 

then every periodic point is a fixed point. The same situation 

is true for maps satisfying property Q.  

2. PROPERTY P 
Theorem 2.1.Define a nonincreasing function φ from [0, 1) 

into (0, 1] by  

 φ(r) = 

1
1, 0

2

1
1 , 1.

2

if r

r if r


 


   


 Let (X, d) be a complete metric space and letT be a 

mapping from X into itself. Assume that there exists r [0, 

1) such that for all x, yX 

φ(r) d(x, Tx) d(x, y) implies  

 d(Tx,Ty)

( , ), ( , ), ( , ),

max ( , ) ( , )

2

d x y d x Tx d y Ty

r d x Ty d y Tx

 
 

  
 
 

  . 

 Then T has property P. 

Proof:From corollary 2.3 of [3], T has a fixed point. In other 

words, F(T)  ≠ ∅. Therefore F(Tm) ≠ ∅ for each positive 

integer m.Let n be a fixed positive integer greater than 1 and 

suppose that zF( nT ). We claim that zF(T), that is,  z is a 

fixed point of T. 

Suppose that z ≠ Tz. Then 

d(z, Tz) = d( , ( )n nT z T T z ) = d( 1, )n nT z T z ,                                              

which is of the form d(Tx,Ty), here  

y = 1, .n nT z x T z  

Now φ(r)d(x,Tx)=φ(r) 1 1( , ( ))n nd T z T T z   

 1( ) ( , )n nr d T z T z   ≤ d(x, y),                                

that is,             φ (r) d(x, Tx) d(x, y) implies  

d(Tx, Ty)  r 

( , ), ( , ), ( , ),

max ( , ) ( , )

2

d x y d x Tx d y Ty

d x Ty d y Tx

 
 

 
 
 

    

that is, 1( ( ), ( ))n nd T T z T T z
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thatis, 1( , )n nd T z T z

 
≤ r max

 1 1max ( , ), ( , ) .n n n nr d T z T z d T z T z   

Then 1( , )n nd T z T z

 
≤ r 1( , ).n nd T z T z  

Continuing like this, we have 
1( , )n nd T z T z ≤ r 1( , )n nd T z T z ≤ 2 2 1( , )n nr d T z T z  ≤……..≤ 

nr d(z, Tz), 

that is,        d(z, Tz) ≤ nr d(z, Tz) <d(z, Tz), 

that is,       d(z, Tz) <d(z, Tz), 

which is a contradiction. 

So our supposition that z ≠ Tz is wrong.Thus,   z = Tz and so    

zF(T). 

Therefore F( nT )  F(T).Also F(T)  F( nT ). 

Thus, F(T) = F( nT ).Hence T satisfies property P. 

 

Special cases of Theorem 2.1 are contractive 

conditions appearing in Theorem 3.3 of [19], Theorem 2.2 

and Theorem 3.1 of [8], Theorem 2 of [20], Corollary 3.4 of 

[17] and Corollary 4.4 of [18]. 

 

Theorem 2.2. Let (X, d) be a compact metric space and let T 

be a mapping on X. Assume that 

1

2
d(x, Tx) <d(x, y) implies d(Tx, Ty) <d(x, y) 

forx, yX. Then T has property P. 

Proof: From Theorem 3 of [21], T has a unique fixed 

point.In other words, F(T)  ≠ ∅. Therefore F(Tm) ≠ ∅ for each 

positive integer m.Let n be a fixed positive integer greater 

than 1 and suppose that zF( nT ).We claim that zF(T), 

that is,  z is a fixed point of T. 

Suppose that z ≠ Tz. Then 

d(z, Tz) = d( , ( )n nT z T T z ) = d( 1, )n nT z T z ,                                           

which is of the form d(Tx, Ty), here y = 1, .n nT z x T z  

Now 
1

2
d(x, Tx) = 1 1 11 1

( , ( )) ( , )
2 2

n n n nd T z T T z d T z T z    

< 1( , ),n nd T z T z  

that is,   
1

2
d(x, Tx) <d(x, y) implies d(Tx, Ty) <d(x, y),     

that is, 1( ( ), ( ))n nd T T z T T z < 1( , ),n nd T z T z  

that is, 1( , )n nd T z T z < 1( , ).n nd T z T z  

Continuing like this, we have 

1( , )n nd T z T z <d(z, Tz), 

That is,  d(z, Tz) <d(z, Tz), which is a contradiction. 

So our supposition that z ≠ Tz is wrong.Thus,   z = Tz and so 

zF(T). 

Therefore F( nT )  F(T).Also F(T)  F( nT ). 

Thus, F(T) = F( nT ).Hence T satisfies property P. 

 

Theorem 2.3: Define a function   from [0,1) into (1/2, 1] 

by 

1

1 0 1/ 2
( )

(1 ) 1 / 2 1

if r
r

r if r




   
  

    

. 

Let (X, d) be a complete metric space and let T be a 

mappings form X into CB(X). Assume that there exists r 

[0, 1) such that for all x, yX 

( )r d(x, Tx) d(x, y) implies  (Tx, Ty) rd(x, y).  

    (2.3.1) 

Then T has property P. 

Proof: From theorem 4 of [10], T has a unique fixed point z 

and Tz= {z}. Therefore, F(Tn)  for each positive integer 

n. Let n be a fixed positive integer greater than 1 and 

suppose that uF( nT ). We claim that uF(T), that is,  u  is 

a fixed point of T. 

Let uF( nT )Then for any positive integer i, j satisfying 0 ≤ 

i, j ≤ n, we obtain 

( )r
1 1 1( , ( )) ( ) ( , )i j i jd T u T T u r d T u T u    ≤

1( , ).i jd T u T u  

Then contractive condition (2.3.1) implies that  

1 1( ( ), ( )) ( , )i j i jT T u T T u rd T u T u   .    (2.3.2) 

Define 
0 ,
max ( , ).i j

i j n
T u T u

 
    

Since, if j = n, then 1 .jT u Tu   

Assuming δ > 0, it then follows from (2.3.2) that 

δ ≤ r δ, which is a contradiction.  

Therefore δ = 0. Thus δ (Tu, u) = 0 implies {u}=  Tu. Hence 

uF(T).  

Hence T satisfies property P. 

3.   PROPERTY Q 
Theorem 3.1.  Define a strictly decreasing function  from 

[0, 1) onto 
1

,1
2

 
 
 

by (r) = 
1

1 r
.                                                                                    

 Let (X, d) be a complete metric space and let T and 

S be mappings from X into itself. Assume that there exists 

r [0, 1) such that for all x, yX 

(r) min{d(x, Tx), d(y, Sy)} d(x, y) implies d(Tx, 

Sy) rM(x, y)   (3.1.1) 

whereM(x, y) =

( , ) ( , )
( , ), ,

2
max

( , ) ( , )

2

d x Tx d y Sy
d x y

d x Sy d y Tx

 
  
 

 
  

 

Then S and T have property Q. 

Proof: From corollary 2.3 of [12], S and T have a unique 

common fixed point. In other words, F(S) ∩ F(T) ≠ ∅. 

Therefore, F( mS ) ∩ F( mT ) ≠ ∅ for each positive integer m. 

Let n be a fixed positive integer greater then 1and suppose 

that zF( nS ) ∩ F( nT ).  

We claim that z F(S) ∩ F(T).  To prove this,it is sufficient 

to show that z is a fixed point of T. 

Suppose that z ≠ Tz. Then 

d(z, Tz) = d( , ( )n nS z T T z ) = d( 1( ), ( )n nT T z S S z ), 

which is of the form d(Tx, Sy), here x = 1, .n nT z y S z  

Now   (r) d(x, Tx) =  

(r) 1( , ( )) η( ) ( , )n n n nd T z T T z r d T z T z  

               ≤ 1( , ).n nd T z T z                  (3.1.2) 

Case-I  Ifd(x, Tx) ≤ d(y, Sy). 

Then 1( , )n nd T z T z ≤ 1( , )n nd S z S z = 1( , )nd S z z

 
= d( 1 ,n nS z T z )  = d( n n 1T z,S z ) .   (3.1.3) 

Combining (3.1.2) and (3.1.3) we have 

(r) d(x, Tx) ≤ d(x, y). 

Then by contractive condition (3.1.1), we have 

d(Tx, Sy) 

( , ) ( , )
( , ), ,

2
max

( , ) ( , )

2

d x Tx d y Sy
d x y

r
d x Sy d y Tx

 
  

  
 

  

. 
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This implies that 1( ( ), ( ))n nd T T z S S z 

1 1
1

1 1

( , ) ( , )
( , ), ,

2
max ,

( , ) ( , )

2

n n n n
n n

n n n n

d T z T z d S z S z
d T z S z

r
d T z S z d S z T z

 


 

 
 
 
 

 
  

1That is, ( , )n nd T z S z 

1 1
1

1 1

( , ) ( , )
( , ), ,

2
max .

( , ) ( , )

2

n n n n
n n

n n n n

d T z T z d S z S z
d T z S z

r
d T z S z d S z T z

 


 

 
 
 
 

 
  

 

Case-II  If  d(y, Sy) ≤ d(x, Tx), 

i.e.d( 1 1, ( ) ( , ( )),n n n nS z S S z d T z T T z    

i.e. 1 1( , ) ( , ),n n n nd S z S z d T z T z   

Now(r) d(y, Sy) =(r) 1( , )n nd S z S z ≤ 1( , )n nd S z S z = 
1( , )nd S z z  

       = 1( , )n nd S z T z = d(x, y). 

Asd(y, Sy) ≤ d(x, Tx) and (r) d(y, Sy) ≤ d(x, y). 

So by contractive condition (3.1.1), we have 

d(Tx, Sy) r max

( , ) ( , )
( , ), ,

2
max .

( , ) ( , )

2

d x Tx d y Sy
d x y

r
d x Sy d y Tx

 
  
 

 
  

 

1This implies that ( ( ), ( ))n nd T T z S S z 
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1

1 1

( , ) ( , )
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Thus from bothcase-I and case-II, we obtain  
1( , )n nd T z S z 

1 1
1

1 1

( , ) ( , )
( , ), ,

2
max

( , ) ( , )

2

n n n n
n n

n n n n

d T z T z d S z S z
d T z S z

r
d T z S z d S z T z

 


 

 
 
 
 

 
  

  ,        

that is, d(z, Tz) ≤ 
1

1

1

( , ) ( , )
( , ), ,

2
max ,

( , ) ( , )

2

n
n

n

d z Tz d S z z
d z S z

r
d z z d S z Tz






 
 
 
 

 
  

 

that is,  d(z, Tz) ≤ r max
1 1

1 ( , ) ( , ) ( , )
max ( , ), , .

2 2

n n
n d z Tz d S z z d S z Tz

r d z S z
 

 
 
 

                                                                         (3.1.4)                                                     

 Since, 
1 1( , ) ( , ) ( , )

2 2

n nd S z Tz d z Tz d S z z 
 .                                           

So (3.1.4) takes the form 

d(z, Tz) ≤ 
1

1 ( , ) ( , )
max ( , ), .

2

n
n d z Tz d S z z

r d z S z


 
 
 

 

Case-(a)   If d(z, Tz) ≤ r 1( , )nd z S z . 

Case-(b)   If d(z, Tz) ≤ r
1( , ) ( , )

.
2

nd z Tz d S z z
 

that is,   2d(z, Tz) ≤ rd(z, Tz) + r
1( , ),nd S z z

 

(2−r) d(z, Tz) ≤ r
1( , ),nd S z z

 

d(z, Tz) ≤ 
2

r

r

 
 

 

1( , ),nd S z z
 

that is,d(z, Tz) ≤ 
1r

1( , )nd S z z , where 
1r < 1 . 

Thus from case-(a) and case-(b), we have 

d(z, Tz) ≤ β 1( , )nd S z z , where β < 1 , 

that is,  d(Tz, z) ≤ β
1( , ),nd z S z

 

that is,d( ( ),n nT T z S z ) ≤ β 
1( , ).n nd T z S z

 

Thus we get d( 1 ,n nT z S z ) ≤ β 
1( , )n nd T z S z

 

Continuing like this, we have 

d( 1 ,n nT z S z ) ≤ n d(Tz, z)<d(Tz, z), 

that is, d(Tz, z) < d(Tz, z), which is a contradiction. 

So, oursupposition that z ≠ Tz is wrong.Thusz = Tz. 

Analogouslyz = Sz.Therefore   z∈F(T) ∩ F(S). 

So  F( nS ) ∩ F( nT )  F(T) ∩ F(S). 

Also F(T) ∩ F(S)   F( nS ) ∩ F( nT ).  

Thus,  F(T) ∩ F(S) = F( nS ) ∩ F( nT ).  

Hence S and T satisfy property Q. 

 

Theorem 3.2. Define a non-increasing function  as in 

Theorem 1.1 and let X be a complete metric space, f, T: X → 

X satisfying the following: 

(i) f is continuous. 

(ii) T(X)  f(X).  

(iii) fand T commute. 

Assume there exists r∈ [0, 1) such that for each x, y∈X, 

(r) d(fx, Tx) d(fx, fy) implies   

d(Tx, Ty) 

( , ), ( , ), ( , ),

max ( , ) ( , )

2

d fx fy d fx Tx d fy Ty

r d fx Ty d fy Tx

 
 

 
 
 

.(3.2.1) 

Then f and T have property Q.  

Proof: From theorem 2.1 of [11], f and T have a unique 

common fixed point. 

In other words, F(f) ∩ F(T) ≠ ∅. Therefore F(fn) ∩ F(Tn) ≠ ∅ 

for each positive integer n. Let n be a fixed positive integer 

greater than 1 and suppose that uF(fn) ∩ F(Tn). We claim 

that  

u F(f) ∩ F(T). 

Since uF(fn) ∩ F(Tn). Then for any positive integer i,r 

satisfying 0≤i, r ≤ n, we obtain 
1 1 1 1

1 1

( ) ( ( ), ( ))

( , )

i r i r

i r i r

r d f T f u T T f u

d T f u T f u

   

 





     

 

1 1 2( ( ), ( )).

Then contractive condition 3.2.1  implies that

i r i rd f T f u f T f u  

1 1 2( , )i r i rd T f u T f u   

1 1 1 1

1 1 2

1 1 2 1 1

( , ), ( , ),

max ( , ),

( , ) ( , )

2

i r i r i r i r

i r i r

i r i r i r i r

d T f u T f u d T f u T f u

r d T f u T f u

d T f u T f u d T f u T f u

   

  

    

 
 
  
 
 

 
  

 

     
(3.2.2) 
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Define 
0 , , ,

max ( , )i r l t

i r l t n
d T f u T f u

 
   

Since, if i = n, then 1 .iT u Tu   

Assuming δ > 0, it then follows from (3.2.2) that 

δ ≤ rmax{δ, δ, δ, δ}, 

that is, δ < δ which is a contradiction.Therefore δ = 0. 

Thus d(fu, u) = d(Tu, u) = 0 implies u = fu = Tu. 

Hence uF(f) ∩ F(T). 

So  F( nf ) ∩ F( nT )  F(f) ∩ F(T). 

Also F(f) ∩ F(T)  F( nf ) ∩ F( nT ). 

Thus,F(f) ∩ F(T) = F( nf ) ∩ F( nT ). 

Hence f and T satisfy property Q. 

 

Special case of Theorem 3.2 is contractive 

condition appearing in Theorem 3 of [7]. 

 

Theorem 3.3.Let (X, d) be a complete metric space. Let f 

and T be mappings on X satisfying  

(i)-(iii) in Theorem 3.2. Assume that  

1

2
d(fx, Tx) <d(fx, fy) implies 

d(Tx, Ty
( , ) ( , )

max ( , ),
2

d fx Tx d fy Ty
d fx fy

 
  

 

                                                                              (3.3.1)

 

for all x, yX, and that for any ϵ> 0, there exists δ(ϵ) > 0 

such that for all x, yX 

1

2
d(fx, Tx) <d(fx, fy) and max

( , ) ( , )
max ( , ),

2

d fx Tx d fy Ty
d fx fy

 
 
 

<ϵ+ δ(ϵ)  

implies d(Tx, Ty) ≤ ϵ. 
Then f and T have property Q.  

Proof: From theorem 3.1 of [11], f and T have a unique 

common fixed point. 

In other words, F(f) ∩ F(T) ≠ ∅. Therefore F(fn) ∩ F(Tn) ≠ ∅ 

for each positive integer n. Let n be a fixed positive integer 

greater than 1 and suppose that u F(fn) ∩ F(Tn). We claim 

that u F(f) ∩ F(T). 

Since uF(fn) ∩ F(Tn). Then for any positive integer i, r 

satisfying 0 ≤ i, r ≤ n, we obtain 

1 1 1 1 1 11
( ( ), ( )) ( , )

2

i r i r i r i rd f T f u T T f u d T f u T f u     

 

 

 

1 1 2( ( ), ( )).

Then contractive condition 3.3.1  implies that

i r i rd f T f u f T f u  

1 1 2( , )i r i rd T f u T f u  

1 1

1 1 1 1 2

( , ),

max ( , ) ( , )

2

i r i r

i r i r i r i r

d T f u T f u

d T f u T f u d T f u T f u

 

    

 
 

  
 
 

 

(3.3.2) 

Define 
0 , , ,

max ( , )i r l t

i r l t n
d T f u T f u

 
   

Since, if i = n, then 1 .iT u Tu   

Assuming δ > 0, it then follows from (3.3.2) that 

       δ <max{δ, δ}, 

that is, δ < δ which is a contradiction. Therefore δ = 0. 

Thus d(fu, u) = d(Tu, u) = 0 implies u = fu = Tu. 

Hence u F(f) ∩ F(T). 

So  F( nf ) ∩ F( nT )  F(f) ∩ F(T). 

Also F(f) ∩ F(T)  F( nf ) ∩ F( nT ). 

Thus,  F(f) ∩ F(T) = F( nf ) ∩ F( nT ).Hence f and T satisfy 

property Q. 

 

Special case of Theorem 3.3 is Meir-Keeler 

contractive condition appearing in Theorem 4 of [7]. 

4.  CONCLUSION 

In this paper, we have studied a number of Suzuki-type 

contractive conditions defined on a metric space for which 

fixed point sets for maps and their iterates are same. An 

important fact about this study is that if maps satisfy 

property P or Q then every periodic point is a fixed point. 
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