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ABSTRACT

The aim of this paper is to present several results for maps
defined on a metric space involving contractive conditions of
Suzuki-type which satisfy properties P and Q. An interesting
fact about this study is that none of these maps has any
nontrivial periodic points.
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1. INTRODUCTION

The Banach contraction principle [15] states that every
contraction T on a complete metric space has a unique fixed
point. Recently, Suzuki [20] introduced a new type of
mapping and presented a generalization of the Banach
contraction principle as follows:

Theorem 1.1.[20] Define a non-increasing function 6 from

[0, 1) onto [%1} by
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Let (X, d) be a complete metric space and let T be a mapping
from X into itself. Assume that there exists re [0, 1) such
that for all x, yeX

0(r) d(x, Tx) <d(x, y) implies d(Tx, Ty) <r d(x, y).

Then there exists a unique ze X such that zeTz.

The elegant technique employed to prove Theorem 1.1
attracted several authors to work along these lines and
subsequently Theorem 1.1 was generalized and extended in
various ways (see for instance, [1], [3], [4], [7-14], [16-19],
[21], [22] and others).

We will denote the set all fixed points of a self mapping T
from X into itself by F(T), i.e., F(T)= {zeX:Tz=z}. It is
obvious that if z is a fixed point of T then it is also a fixed
point of T" for each neN, i. e., F(T)cF(T") if F(T) #¢ .
However converse is false. Indeed the mapping T: R—R

defined by Tx= %— x has a unique fixed point, i.e., F (T) =

{%} but every xeR is a fixed point for T2 If F(T) = F(T"),

for each neN, then we say that T has no periodic points.

In 2005, Jeong and Rhoades [5] examine a number of
situations in which the fixed point sets for maps and their
iterates are the same.

They state that a map T has property P if F(T) = F(T") for
each neN. Also a pair of maps S and T have property Q if
F(S) N F(T) = F(S" N F(T") for each neN.

Several works has been done related to Property P and Q
(see for instance [2] and [6]).

Now we continue this study for mappings satisfying Suzuki
type contractive conditions in metric space. In section I, we
discuss property P for a map which involve Suzuki
contractive conditions. In section 1, we prove property Q for
pairs of maps involving above contractive conditions. An
important of this study is that if a map satisfies property P
then every periodic point is a fixed point. The same situation
is true for maps satisfying property Q.

2. PROPERTY P
Theorem 2.1.Define a nonincreasing function ¢ from [0, 1)
into (0, 1] by

1, ifo<r<t
2

o(r) = 1
1-r, if =<r<i.
2

Let (X, d) be a complete metric space and letT be a
mapping from X into itself. Assume that there exists re [0,
1) such that for all x, yeX
o(r) d(x, Tx) <d(x, y) implies
d(x,y), d(x,Tx), d(y,Ty),
d(Tx,Ty) < rmax, d(x,Ty) +d(y,Tx)
2

Then T has property P.

Proof:From corollary 2.3 of [3], T has a fixed point. In other
words, F(T) # @. Therefore F(T™) # @ for each positive
integer m.Let n be a fixed positive integer greater than 1 and

suppose that ze F(T" ). We claim that ze F(T), that is, zisa
fixed point of T.
Suppose that z # Tz. Then

d@z, T2) =d(T"z,T(T"2)) =d(T"z, T"2),
which is of the form d(Tx,Ty), here
y=T"z, x=T""z.
Now ¢@(nd(x, Tx)=e(r) d(T"'z, T(T""2))
=o(nd(T"'z,T"z) <d(x,Y),
that is, ¢ (r) d(x, Tx) <d(x, y) implies
d(x,y), d(x,7x), d(y,Ty),
d(Tx, Ty) <1 maxy d(x,Ty) +d(y,Tx)
2
that is, d(T(T""z), T(T"z))

d(T"z,T"2), d(T""2,T"2), d(T "z, T""2),
Srmaxy d(mtz, T™2) + d(T"z, T"z) ,
2

n-1 n+l
=r max{d(T "1z7,T"2), d(T”z,T"*lz),d(TZ’TZ)},

2
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thatis, d(T"z, T"**z) <r max
<rmax{d(T"z,T"z), d(T"z,T""'z)}.
Then d(T"z, T™'z) <rd(T"'z, T"2).

Continuing like this, we have

dT"z,T™2) <rd(T"'z,T"z) < rd(T" 22, T" ) <.......
r'd(z, Tz),

that is, d(z, Tz) < r"d(z, Tz) <d(z, Tz),

thatis,  d(z, Tz) <d(z, T2),

which is a contradiction.

So our supposition that z # Tz is wrong.Thus, z =Tz and so
zeF(T).

Therefore F(T") C F(T).Also F(T) C F(T").

Thus, F(T) = F(T" ).Hence T satisfies property P.

A

Special cases of Theorem 2.1 are contractive
conditions appearing in Theorem 3.3 of [19], Theorem 2.2
and Theorem 3.1 of [8], Theorem 2 of [20], Corollary 3.4 of
[17] and Corollary 4.4 of [18].

Theorem 2.2. Let (X, d) be a compact metric space and let T
be a mapping on X. Assume that

%d(x, Tx) <d(x, y) implies d(Tx, Ty) <d(x, y)

forx, yeX. Then T has property P.

Proof: From Theorem 3 of [21], T has a unique fixed
point.In other words, F(T) # @. Therefore F(T™) # @ for each
positive integer m.Let n be a fixed positive integer greater

than 1 and suppose that zeF(T" ).We claim that ze F(T),
that is, zis a fixed point of T.
Suppose that z # Tz. Then

dz, T2) =d(T"z, T(T"2) ) =d(T"z, T""2),
which is of the form d(Tx, Ty), herey =T"z, x=T""z.

Now %d(x, TX) = %d(T"’lz,T(l'”’lz)) =%d(|’”’1z,T“z)
<d(T""z,T"2),
that is, % d(x, Tx) <d(x, y) implies d(Tx, Ty) <d(x, y),

that is, d(T(T""z), T(T"z2)) <d(T"?z, T"2),

thatis, d(T"z, T"™'z) <d(T""z,T"2).

Continuing like this, we have

d(™"z, T"+1z) <d(z, T2),

That is, d(z, Tz) <d(z, Tz), which is a contradiction.

So our supposition that z # Tz is wrong.Thus, z =Tz and so
zeF(T).

Therefore F(T") C F(T).Also F(T) C F(T").

Thus, F(T) = F(T" ).Hence T satisfies property P.

Theorem 2.3: Define a function » from [0,1) into (1/2, 1]
by

if 0<r<1/2
7o {(1+ Nt if 1/2<r <1} '
Let (X, d) be a complete metric space and let T be a
mappings form X into CB(X). Assume that there exists re
[0, 1) such that for all x, yeX
n(r) d(x, Tx) <d(x, y) implies & (Tx, Ty) <rd(x, y).

(2.3.1)

Then T has property P.
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Proof: From theorem 4 of [10], T has a unique fixed point z
and Tz= {z}. Therefore, F(T") # ¢ for each positive integer

n. Let n be a fixed positive integer greater than 1 and

suppose that ue F(T" ). We claim that ueF(T), that is, u is
a fixed point of T.

Let ueF(T" )Then for any positive integer i, j satisfying 0 <
i, j <n, we obtain
n(r) d(T, T(T ™) =n(Nd (T 7y, T'u) <
d(Tu, Tiu).
Then contractive condition (2.3.1) implies that
ST ), T ) <rd@u,Tlu). (23.2)
Define &= max 3(T'u, Tlu).

<i,j<n
Since, if j=n, then TIu=Tu.
Assuming & > 0, it then follows from (2.3.2) that
d <r §, which is a contradiction.
Therefore 8 = 0. Thus & (Tu, u) = 0 implies {u}= Tu. Hence
ueF(T).
Hence T satisfies property P.

3. PROPERTY Q

Theorem 3.1. Define a strictly decreasing function n from
[0, 1) onto [3,1 byn(r)= —.
2 1+r

Let (X, d) be a complete metric space and let T and
S be mappings from X into itself. Assume that there exists
re [0, 1) such that for all x, yeX

n(r) min{d(x, Tx), d(y, Sy)} <d(x, y) implies d(Tx,

Sy) <rM(x, y) (3.1.1)
d(x,y) d(x,Tx);d(y,Sy)’
whereM(x, y) = max d(x.Sy) + d(y.TY)

2
Then S and T have property Q.
Proof: From corollary 2.3 of [12], S and T have a unique
common fixed point. In other words, F(S) N F(T) # @.
Therefore, F(S™) N F(T™) # @ for each positive integer m.
Let n be a fixed positive integer greater then land suppose
that zeF(S") NF(T").
We claim that ze F(S) N F(T). To prove this,it is sufficient
to show that z is a fixed point of T.
Suppose that z # Tz. Then

d(z, T2) =d(S"z,T(T"z)) =d(T(T"2),S(S""2) ),

which is of the form d(Tx, Sy), here x=T"z,y =S""z.

Now n(r) d(x, Tx) =

n() d(T"z,T(T"2)) =n(r) d(T"2,T""2)
<d(T"z,T"2). (3.1.2)

Case-1 Ifd(x, Tx) < d(y, Sy).

Then d(T"z,T""z) < d(S""z,S"z) = d(S"'z,2)

=d(S""z,T"z) =d(T"z,S"'z). (3.1.3)

Combining (3.1.2) and (3.1.3) we have

n(r) d(x, Tx) < d(x, y).
Then by contractive condition (3.1.1), we have

d(x.y) d(x,Tx)+d(y,Sy)'

d(Tx, Sy) <rmax 2
d(x,Sy)+d(y,Tx)

2
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This implies that d(T(T"z),S(S""2)) <

n n+1 n-1 n
dG’"z,S"‘lz),d(T T z)erd(S z,S z),

r max ,
d(T"z,S"z) +d(S""z2,T""2)

2
That is, d(T"'z,5"2) <

d(T"z,T"'z) +d(S""2,5"2)
> ,
d(T"z,8"z) +d(S""z,T"z)
2
Case-11 If d(y, Sy) <d(x, Tx),
i.e.d(S""z,S(S""2) <d(T"z,T(T"2)),
i.e.d(S""z,S"z) <d(T"z,T""2),
Nown(r) d(y, Sy) =n(r) d(S"*z,S"z)< d(S"'z,S"z) =
d(s"'z,z)
= d(S""z,T"z) = d(x, Y).
Asd(y, Sy) < d(x, Tx) and n(r) d(y, Sy) <d(x, y).
So by contractive condition (3.1.1), we have
d(x.y). d(x,Tx)+d(y,Sy)l

d(Tx, Sy) <r max r max 2
d(x,Sy) +d(y,Tx)

2
This implies that d (T (T"z),S(S"2)) <

d(T"z,5""2),

I max

n n+l n-1 n
d(T”z,S”’lz),d(r z,T z)erd(S z,S z)’

r max ,
d(T"z,S"z) +d(S" "z, T""z)

2
thatis, d(T"2,S"z) <

d(T"z,T"™'2) +d(S""2,5"2)
2 )
d(T"z,5"2) +d(S""z,T"z)
2
Thus from bothcase-1 and case-Il, we obtain
d(T"z,8"z) <

d(T"z,5"2),

d(T"z,T"z) +d(S""2,5"2)
2 ;

d(T"z,S"z) +d(S" "z, T""z)

2

d(T"z,5""2),

thatis, d(z, Tz) <
n-1

d(2,5™2), d(z,Tz) +2d(S z,z),
d(z,2)+d(S""z,Tz)

2
thatis, d(z, Tz) <r max
d(z,Tz)+d(S""z,2) d(S""z,Tz)

2 ’ 2 '

(3.1.4)
d(s"'z,Tz) L4@T)+ d(s""z,z)
2 - 2 '

rmax{d(z,s”‘lz),

Since,

So (3.1.4) takes the form

d(z, T2) < rmax{d(z,s"‘lz), d(z.T2) + d(S"lz,z)}

2
Case-(a) Ifd(z, Tz)<r d(z,S""z).

International Journal of Computer Applications (0975 — 8887)
Volume 50 — No.1, July 2012

d(z,Tz)+d(S""z,2)
> .

thatis, 2d(z, Tz)<rd(z Tz)+rd(S" "z, 2),
@2-nd@z T2 <rd(S"'z,2),

dz T2) < [i] d(s"'z,2),

thatis,d(z, Tz) < I} d(S"z,z) , where I[ <1.
Thus from case-(a) and case-(b), we have

d(z, T2) <Bd(S"'z,z), where B< 1,
thatis, d(Tz,2)<pd(z,S""z),
that is,d(T (T"z),s"z) <p d(T"z,S"'2).

Thus we get d(T™z,5"z)<p d(T"z,S""z)
Continuing like this, we have

d(T"z,5"z) < B" d(Tz, 2)<d(Tz, 2),
that is, d(Tz, z) < d(Tz, z), which is a contradiction.
So, oursupposition that z # Tz is wrong.Thusz = Tz.
Analogouslyz = Sz.Therefore zeF(T) N F(S).

So F(S")NF(T") C F(T) NF(S).
Also F(T) N F(S) < F(S™) NF(T").
Thus, F(T) N F(S) = F(S™) N F(T").
Hence S and T satisfy property Q.

Case-(b) Ifd(z, Tz)<r

Theorem 3.2. Define a non-increasing function 6 as in
Theorem 1.1 and let X be a complete metric space, f, T: X —
X satisfying the following:
(i) fis continuous.
(ii) T(X) < f(X).
(iii) fand T commute.
Assume there exists re [0, 1) such that for each x, yeX,
o(r) d(fx, Tx) <d(fx, fy) implies
d(fx, fy), d(fx,Tx), d(fy,Ty),
d(Tx, Ty) <rmax< d( fx, Ty) + d(fy,TX) (3.2.1)
2
Then f and T have property Q.
Proof: From theorem 2.1 of [11], f and T have a unique
common fixed point.
In other words, F(f) N F(T) # @. Therefore F(f") N F(T") # @
for each positive integer n. Let n be a fixed positive integer
greater than 1 and suppose that ueF(f") N F(T"). We claim
that
ue F(fH) N E().
Since ueF(f") N F(T"). Then for any positive integer i,r
satisfying 0<i, r < n, we obtain
O(r) d(f (T ), T(T™fu))
<d(T ', T )
=d(f (T ), £ 2).

Then contractive condition (3.2.1) implies that

d(-l-i f rflu‘ -|-i+1f r72u) <

d( 'y, TH o), d (T 'u, T F ),
rmax<d(T"f~u, T ),
d a—lflf ru’-l-|+1f rfzu) + d(-l-l f rflu'-l-i f rflu)
2

(3.2.2)
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Define §= max d(T'f'u, T'f'u)

o<i,r,l,t<n
Since, if i =n, then T"u=Tu.
Assuming & > 0, it then follows from (3.2.2) that
& < rmax{s, §, 8, 5},
that is, < 6 which is a contradiction.Therefore & = 0.
Thus d(fu, u) =d(Tu, u) =0 implies u = fu = Tu.
Hence ueF(f) N F(T).
So F(f")NF(T") C F(f) N E(T).
Also FHNET) CF(f")NFE(T").
Thus,F(O NFTM)=F(f")NF(T").
Hence f and T satisfy property Q.

Special case of Theorem 3.2 is contractive
condition appearing in Theorem 3 of [7].

Theorem 3.3.Let (X, d) be a complete metric space. Let f
and T be mappings on X satisfying
(i)-(iii) in Theorem 3.2. Assume that

%d(fx, TX) <d(fx, fy) implies

d(Tx, Ty < max{d(fx, fy), d(f %) ; dcty, Ty)}

(3.3.1)
for all x, yeX, and that for any e> 0, there exists d(€) >0
such that for all x, yeX

%d(fx, Tx) <d(fx, fy) and max

d(fx, Tx)+d(fy, Ty)
2

max{d(fx, fy),

implies  d(Tx, Ty) <e.

Then f and T have property Q.

Proof: From theorem 3.1 of [11], f and T have a unique
common fixed point.

In other words, F(f) N F(T) # @. Therefore F(f") N F(T") # @
for each positive integer n. Let n be a fixed positive integer
greater than 1 and suppose that u eF(f") N F(T"). We claim
that u eF(f) N F(T).

Since ueF(f") N F(T"). Then for any positive integer i, r
satisfying 0 <, r <n, we obtain

%d(f(Ti—lfr—lu)’T(Ti—lfr—lu))<d(Ti—lfru’Tifr—lu)
—d(fT ), f(THF2)).

Then contractive condition (3.3.1) implies that

} <et §(€)

d(Ti f r—lu, Ti+1f r—2u)
d(Tiflf rU,Ti f rflu)’
< max d(-l-iflf rU,Ti f rflu) +d(-|-i f r—lU'THlf rfzu)
2

(3.3.2)
Define §= max d(T'f'u,T'f'u)

0<i,r,l,t<n
Since, if i = n, then T"*'u =Tu.
Assuming & > 0, it then follows from (3.3.2) that
4 <max{9, 9},
that is, < 6 which is a contradiction. Therefore 6 = 0.
Thus d(fu, u) =d(Tu, u) =0 implies u = fu = Tu.
Hence u eF(f) N F(T).
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So F(f")NF(T") C F(f) N E(T).

Also FH NET) <cF(f")NF(T™).

Thus, F(f) N F(T)=F(f") N F(T").Hence fand T satisfy
property Q.

Special case of Theorem 3.3 is Meir-Keeler
contractive condition appearing in Theorem 4 of [7].

4. CONCLUSION

In this paper, we have studied a number of Suzuki-type
contractive conditions defined on a metric space for which
fixed point sets for maps and their iterates are same. An
important fact about this study is that if maps satisfy
property P or Q then every periodic point is a fixed point.
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