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ABSTRACT 

The aim of this paper is to present several results for maps 

defined on a metric space involving contractive conditions of 

Suzuki-type which satisfy properties P and Q. An interesting 

fact about this study is that none of these maps has any 

nontrivial periodic points. 
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1. INTRODUCTION 

The Banach contraction principle [15] states that every 

contraction T on a complete metric space has a unique fixed 

point. Recently, Suzuki [20] introduced a new type of 

mapping and presented a generalization of the Banach 

contraction principle as follows: 

Theorem 1.1.[20] Define a non-increasing function  from 

[0, 1) onto 
1

,1
2

 
 
 

by  

(r) = 
2

1
1 if 0 ( 5 1)
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1 1 1
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Let (X, d) be a complete metric space and let T be a mapping 

from X into itself. Assume that there exists r [0, 1) such 

that for all x, yX 

θ(r) d(x, Tx)  d(x, y) implies d(Tx, Ty)  r d(x, y). 

Then there exists a unique zX such that zTz.  

The elegant technique employed to prove Theorem 1.1 

attracted several authors to work along these lines and 

subsequently Theorem 1.1 was generalized and extended in 

various ways (see for instance, [1], [3], [4], [7-14], [16-19], 

[21], [22] and others). 

We will denote the set all fixed points of a self mapping T 

from X into itself by F(T), i.e., F(T)= {zX:Tz=z}. It is 

obvious that if z is a fixed point of T then it is also a fixed 

point of Tn for each nN, i. e., F(T)⊂F(Tn) if F(T) ≠ϕ . 

However converse is false. Indeed the mapping T: R→R 

defined by Tx= 
1

2
x  has a unique fixed point, i.e., F (T) = 

1

4

 
 
 

, but every xR is a fixed point for T2. If F(T) = F(Tn), 

for each nN, then we say that T has no periodic points. 

In 2005, Jeong and Rhoades [5] examine a number of 

situations in which the fixed point sets for maps and their 

iterates are the same. 

They state that a map T has property P if F(T) = F(Tn) for 

each nN. Also a pair of maps S and T have property Q if 

F(S) ∩ F(T) = F(Sn) ∩ F(Tn) for each nN. 

Several works has been done related to Property P and Q 

(see for instance [2] and [6]). 

Now we continue this study for mappings satisfying Suzuki 

type contractive conditions in metric space. In section I, we 

discuss property P for a map which involve Suzuki 

contractive conditions. In section II, we prove property Q for 

pairs of maps involving above contractive conditions. An 

important of this study is that if a map satisfies property P 

then every periodic point is a fixed point. The same situation 

is true for maps satisfying property Q.  

2. PROPERTY P 
Theorem 2.1.Define a nonincreasing function φ from [0, 1) 

into (0, 1] by  

 φ(r) = 

1
1, 0

2

1
1 , 1.

2

if r

r if r


 


   
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 Let (X, d) be a complete metric space and letT be a 

mapping from X into itself. Assume that there exists r [0, 

1) such that for all x, yX 

φ(r) d(x, Tx) d(x, y) implies  

 d(Tx,Ty)

( , ), ( , ), ( , ),

max ( , ) ( , )

2

d x y d x Tx d y Ty

r d x Ty d y Tx

 
 

  
 
 

  . 

 Then T has property P. 

Proof:From corollary 2.3 of [3], T has a fixed point. In other 

words, F(T)  ≠ ∅. Therefore F(Tm) ≠ ∅ for each positive 

integer m.Let n be a fixed positive integer greater than 1 and 

suppose that zF( nT ). We claim that zF(T), that is,  z is a 

fixed point of T. 

Suppose that z ≠ Tz. Then 

d(z, Tz) = d( , ( )n nT z T T z ) = d( 1, )n nT z T z ,                                              

which is of the form d(Tx,Ty), here  

y = 1, .n nT z x T z  

Now φ(r)d(x,Tx)=φ(r) 1 1( , ( ))n nd T z T T z   

 1( ) ( , )n nr d T z T z   ≤ d(x, y),                                

that is,             φ (r) d(x, Tx) d(x, y) implies  

d(Tx, Ty)  r 

( , ), ( , ), ( , ),

max ( , ) ( , )

2

d x y d x Tx d y Ty

d x Ty d y Tx
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that is, 1( ( ), ( ))n nd T T z T T z
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thatis, 1( , )n nd T z T z

 
≤ r max

 1 1max ( , ), ( , ) .n n n nr d T z T z d T z T z   

Then 1( , )n nd T z T z

 
≤ r 1( , ).n nd T z T z  

Continuing like this, we have 
1( , )n nd T z T z ≤ r 1( , )n nd T z T z ≤ 2 2 1( , )n nr d T z T z  ≤……..≤ 

nr d(z, Tz), 

that is,        d(z, Tz) ≤ nr d(z, Tz) <d(z, Tz), 

that is,       d(z, Tz) <d(z, Tz), 

which is a contradiction. 

So our supposition that z ≠ Tz is wrong.Thus,   z = Tz and so    

zF(T). 

Therefore F( nT )  F(T).Also F(T)  F( nT ). 

Thus, F(T) = F( nT ).Hence T satisfies property P. 

 

Special cases of Theorem 2.1 are contractive 

conditions appearing in Theorem 3.3 of [19], Theorem 2.2 

and Theorem 3.1 of [8], Theorem 2 of [20], Corollary 3.4 of 

[17] and Corollary 4.4 of [18]. 

 

Theorem 2.2. Let (X, d) be a compact metric space and let T 

be a mapping on X. Assume that 

1

2
d(x, Tx) <d(x, y) implies d(Tx, Ty) <d(x, y) 

forx, yX. Then T has property P. 

Proof: From Theorem 3 of [21], T has a unique fixed 

point.In other words, F(T)  ≠ ∅. Therefore F(Tm) ≠ ∅ for each 

positive integer m.Let n be a fixed positive integer greater 

than 1 and suppose that zF( nT ).We claim that zF(T), 

that is,  z is a fixed point of T. 

Suppose that z ≠ Tz. Then 

d(z, Tz) = d( , ( )n nT z T T z ) = d( 1, )n nT z T z ,                                           

which is of the form d(Tx, Ty), here y = 1, .n nT z x T z  

Now 
1

2
d(x, Tx) = 1 1 11 1

( , ( )) ( , )
2 2

n n n nd T z T T z d T z T z    

< 1( , ),n nd T z T z  

that is,   
1

2
d(x, Tx) <d(x, y) implies d(Tx, Ty) <d(x, y),     

that is, 1( ( ), ( ))n nd T T z T T z < 1( , ),n nd T z T z  

that is, 1( , )n nd T z T z < 1( , ).n nd T z T z  

Continuing like this, we have 

1( , )n nd T z T z <d(z, Tz), 

That is,  d(z, Tz) <d(z, Tz), which is a contradiction. 

So our supposition that z ≠ Tz is wrong.Thus,   z = Tz and so 

zF(T). 

Therefore F( nT )  F(T).Also F(T)  F( nT ). 

Thus, F(T) = F( nT ).Hence T satisfies property P. 

 

Theorem 2.3: Define a function   from [0,1) into (1/2, 1] 

by 

1

1 0 1/ 2
( )

(1 ) 1 / 2 1

if r
r

r if r




   
  

    

. 

Let (X, d) be a complete metric space and let T be a 

mappings form X into CB(X). Assume that there exists r 

[0, 1) such that for all x, yX 

( )r d(x, Tx) d(x, y) implies  (Tx, Ty) rd(x, y).  

    (2.3.1) 

Then T has property P. 

Proof: From theorem 4 of [10], T has a unique fixed point z 

and Tz= {z}. Therefore, F(Tn)  for each positive integer 

n. Let n be a fixed positive integer greater than 1 and 

suppose that uF( nT ). We claim that uF(T), that is,  u  is 

a fixed point of T. 

Let uF( nT )Then for any positive integer i, j satisfying 0 ≤ 

i, j ≤ n, we obtain 

( )r
1 1 1( , ( )) ( ) ( , )i j i jd T u T T u r d T u T u    ≤

1( , ).i jd T u T u  

Then contractive condition (2.3.1) implies that  

1 1( ( ), ( )) ( , )i j i jT T u T T u rd T u T u   .    (2.3.2) 

Define 
0 ,
max ( , ).i j

i j n
T u T u

 
    

Since, if j = n, then 1 .jT u Tu   

Assuming δ > 0, it then follows from (2.3.2) that 

δ ≤ r δ, which is a contradiction.  

Therefore δ = 0. Thus δ (Tu, u) = 0 implies {u}=  Tu. Hence 

uF(T).  

Hence T satisfies property P. 

3.   PROPERTY Q 
Theorem 3.1.  Define a strictly decreasing function  from 

[0, 1) onto 
1

,1
2

 
 
 

by (r) = 
1

1 r
.                                                                                    

 Let (X, d) be a complete metric space and let T and 

S be mappings from X into itself. Assume that there exists 

r [0, 1) such that for all x, yX 

(r) min{d(x, Tx), d(y, Sy)} d(x, y) implies d(Tx, 

Sy) rM(x, y)   (3.1.1) 

whereM(x, y) =

( , ) ( , )
( , ), ,

2
max

( , ) ( , )

2

d x Tx d y Sy
d x y

d x Sy d y Tx

 
  
 

 
  

 

Then S and T have property Q. 

Proof: From corollary 2.3 of [12], S and T have a unique 

common fixed point. In other words, F(S) ∩ F(T) ≠ ∅. 

Therefore, F( mS ) ∩ F( mT ) ≠ ∅ for each positive integer m. 

Let n be a fixed positive integer greater then 1and suppose 

that zF( nS ) ∩ F( nT ).  

We claim that z F(S) ∩ F(T).  To prove this,it is sufficient 

to show that z is a fixed point of T. 

Suppose that z ≠ Tz. Then 

d(z, Tz) = d( , ( )n nS z T T z ) = d( 1( ), ( )n nT T z S S z ), 

which is of the form d(Tx, Sy), here x = 1, .n nT z y S z  

Now   (r) d(x, Tx) =  

(r) 1( , ( )) η( ) ( , )n n n nd T z T T z r d T z T z  

               ≤ 1( , ).n nd T z T z                  (3.1.2) 

Case-I  Ifd(x, Tx) ≤ d(y, Sy). 

Then 1( , )n nd T z T z ≤ 1( , )n nd S z S z = 1( , )nd S z z

 
= d( 1 ,n nS z T z )  = d( n n 1T z,S z ) .   (3.1.3) 

Combining (3.1.2) and (3.1.3) we have 

(r) d(x, Tx) ≤ d(x, y). 

Then by contractive condition (3.1.1), we have 

d(Tx, Sy) 

( , ) ( , )
( , ), ,

2
max

( , ) ( , )

2

d x Tx d y Sy
d x y

r
d x Sy d y Tx

 
  

  
 

  
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This implies that 1( ( ), ( ))n nd T T z S S z 

1 1
1

1 1

( , ) ( , )
( , ), ,

2
max ,

( , ) ( , )

2

n n n n
n n

n n n n

d T z T z d S z S z
d T z S z

r
d T z S z d S z T z

 


 

 
 
 
 

 
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1That is, ( , )n nd T z S z 

1 1
1

1 1

( , ) ( , )
( , ), ,

2
max .

( , ) ( , )

2

n n n n
n n

n n n n

d T z T z d S z S z
d T z S z

r
d T z S z d S z T z
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

 
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 
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Case-II  If  d(y, Sy) ≤ d(x, Tx), 

i.e.d( 1 1, ( ) ( , ( )),n n n nS z S S z d T z T T z    

i.e. 1 1( , ) ( , ),n n n nd S z S z d T z T z   

Now(r) d(y, Sy) =(r) 1( , )n nd S z S z ≤ 1( , )n nd S z S z = 
1( , )nd S z z  

       = 1( , )n nd S z T z = d(x, y). 

Asd(y, Sy) ≤ d(x, Tx) and (r) d(y, Sy) ≤ d(x, y). 

So by contractive condition (3.1.1), we have 

d(Tx, Sy) r max

( , ) ( , )
( , ), ,

2
max .

( , ) ( , )

2

d x Tx d y Sy
d x y

r
d x Sy d y Tx

 
  
 

 
  

 

1This implies that ( ( ), ( ))n nd T T z S S z 

 
1 1

1

1 1

( , ) ( , )
( , ), ,

2
max ,

( , ) ( , )

2

n n n n
n n

n n n n

d T z T z d S z S z
d T z S z

r
d T z S z d S z T z

 


 

 
 
 
 

 
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1that is, ( , )n nd T z S z 

1 1
1

1 1

( , ) ( , )
( , ), ,

2
max .

( , ) ( , )

2

n n n n
n n

n n n n

d T z T z d S z S z
d T z S z

r
d T z S z d S z T z

 


 

 
 
 
 
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Thus from bothcase-I and case-II, we obtain  
1( , )n nd T z S z 

1 1
1

1 1

( , ) ( , )
( , ), ,

2
max

( , ) ( , )

2

n n n n
n n

n n n n

d T z T z d S z S z
d T z S z

r
d T z S z d S z T z

 


 

 
 
 
 

 
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  ,        

that is, d(z, Tz) ≤ 
1

1

1

( , ) ( , )
( , ), ,

2
max ,

( , ) ( , )

2

n
n

n

d z Tz d S z z
d z S z

r
d z z d S z Tz






 
 
 
 
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that is,  d(z, Tz) ≤ r max
1 1

1 ( , ) ( , ) ( , )
max ( , ), , .

2 2

n n
n d z Tz d S z z d S z Tz

r d z S z
 

 
 
 

                                                                         (3.1.4)                                                     

 Since, 
1 1( , ) ( , ) ( , )

2 2

n nd S z Tz d z Tz d S z z 
 .                                           

So (3.1.4) takes the form 

d(z, Tz) ≤ 
1

1 ( , ) ( , )
max ( , ), .

2

n
n d z Tz d S z z

r d z S z


 
 
 

 

Case-(a)   If d(z, Tz) ≤ r 1( , )nd z S z . 

Case-(b)   If d(z, Tz) ≤ r
1( , ) ( , )

.
2

nd z Tz d S z z
 

that is,   2d(z, Tz) ≤ rd(z, Tz) + r
1( , ),nd S z z

 

(2−r) d(z, Tz) ≤ r
1( , ),nd S z z

 

d(z, Tz) ≤ 
2

r

r

 
 

 

1( , ),nd S z z
 

that is,d(z, Tz) ≤ 
1r

1( , )nd S z z , where 
1r < 1 . 

Thus from case-(a) and case-(b), we have 

d(z, Tz) ≤ β 1( , )nd S z z , where β < 1 , 

that is,  d(Tz, z) ≤ β
1( , ),nd z S z

 

that is,d( ( ),n nT T z S z ) ≤ β 
1( , ).n nd T z S z

 

Thus we get d( 1 ,n nT z S z ) ≤ β 
1( , )n nd T z S z

 

Continuing like this, we have 

d( 1 ,n nT z S z ) ≤ n d(Tz, z)<d(Tz, z), 

that is, d(Tz, z) < d(Tz, z), which is a contradiction. 

So, oursupposition that z ≠ Tz is wrong.Thusz = Tz. 

Analogouslyz = Sz.Therefore   z∈F(T) ∩ F(S). 

So  F( nS ) ∩ F( nT )  F(T) ∩ F(S). 

Also F(T) ∩ F(S)   F( nS ) ∩ F( nT ).  

Thus,  F(T) ∩ F(S) = F( nS ) ∩ F( nT ).  

Hence S and T satisfy property Q. 

 

Theorem 3.2. Define a non-increasing function  as in 

Theorem 1.1 and let X be a complete metric space, f, T: X → 

X satisfying the following: 

(i) f is continuous. 

(ii) T(X)  f(X).  

(iii) fand T commute. 

Assume there exists r∈ [0, 1) such that for each x, y∈X, 

(r) d(fx, Tx) d(fx, fy) implies   

d(Tx, Ty) 

( , ), ( , ), ( , ),

max ( , ) ( , )

2

d fx fy d fx Tx d fy Ty

r d fx Ty d fy Tx

 
 
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 
 

.(3.2.1) 

Then f and T have property Q.  

Proof: From theorem 2.1 of [11], f and T have a unique 

common fixed point. 

In other words, F(f) ∩ F(T) ≠ ∅. Therefore F(fn) ∩ F(Tn) ≠ ∅ 

for each positive integer n. Let n be a fixed positive integer 

greater than 1 and suppose that uF(fn) ∩ F(Tn). We claim 

that  

u F(f) ∩ F(T). 

Since uF(fn) ∩ F(Tn). Then for any positive integer i,r 

satisfying 0≤i, r ≤ n, we obtain 
1 1 1 1

1 1

( ) ( ( ), ( ))

( , )

i r i r

i r i r

r d f T f u T T f u

d T f u T f u

   

 





     

 

1 1 2( ( ), ( )).

Then contractive condition 3.2.1  implies that

i r i rd f T f u f T f u  

1 1 2( , )i r i rd T f u T f u   

1 1 1 1

1 1 2

1 1 2 1 1

( , ), ( , ),

max ( , ),

( , ) ( , )

2

i r i r i r i r

i r i r

i r i r i r i r

d T f u T f u d T f u T f u

r d T f u T f u

d T f u T f u d T f u T f u

   

  

    

 
 
  
 
 
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(3.2.2) 
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Define 
0 , , ,

max ( , )i r l t

i r l t n
d T f u T f u

 
   

Since, if i = n, then 1 .iT u Tu   

Assuming δ > 0, it then follows from (3.2.2) that 

δ ≤ rmax{δ, δ, δ, δ}, 

that is, δ < δ which is a contradiction.Therefore δ = 0. 

Thus d(fu, u) = d(Tu, u) = 0 implies u = fu = Tu. 

Hence uF(f) ∩ F(T). 

So  F( nf ) ∩ F( nT )  F(f) ∩ F(T). 

Also F(f) ∩ F(T)  F( nf ) ∩ F( nT ). 

Thus,F(f) ∩ F(T) = F( nf ) ∩ F( nT ). 

Hence f and T satisfy property Q. 

 

Special case of Theorem 3.2 is contractive 

condition appearing in Theorem 3 of [7]. 

 

Theorem 3.3.Let (X, d) be a complete metric space. Let f 

and T be mappings on X satisfying  

(i)-(iii) in Theorem 3.2. Assume that  

1

2
d(fx, Tx) <d(fx, fy) implies 

d(Tx, Ty
( , ) ( , )

max ( , ),
2

d fx Tx d fy Ty
d fx fy

 
  

 

                                                                              (3.3.1)

 

for all x, yX, and that for any ϵ> 0, there exists δ(ϵ) > 0 

such that for all x, yX 

1

2
d(fx, Tx) <d(fx, fy) and max

( , ) ( , )
max ( , ),

2

d fx Tx d fy Ty
d fx fy

 
 
 

<ϵ+ δ(ϵ)  

implies d(Tx, Ty) ≤ ϵ. 
Then f and T have property Q.  

Proof: From theorem 3.1 of [11], f and T have a unique 

common fixed point. 

In other words, F(f) ∩ F(T) ≠ ∅. Therefore F(fn) ∩ F(Tn) ≠ ∅ 

for each positive integer n. Let n be a fixed positive integer 

greater than 1 and suppose that u F(fn) ∩ F(Tn). We claim 

that u F(f) ∩ F(T). 

Since uF(fn) ∩ F(Tn). Then for any positive integer i, r 

satisfying 0 ≤ i, r ≤ n, we obtain 

1 1 1 1 1 11
( ( ), ( )) ( , )

2

i r i r i r i rd f T f u T T f u d T f u T f u     

 

 

 

1 1 2( ( ), ( )).

Then contractive condition 3.3.1  implies that

i r i rd f T f u f T f u  

1 1 2( , )i r i rd T f u T f u  

1 1

1 1 1 1 2

( , ),

max ( , ) ( , )

2

i r i r

i r i r i r i r

d T f u T f u

d T f u T f u d T f u T f u

 

    

 
 

  
 
 

 

(3.3.2) 

Define 
0 , , ,

max ( , )i r l t

i r l t n
d T f u T f u

 
   

Since, if i = n, then 1 .iT u Tu   

Assuming δ > 0, it then follows from (3.3.2) that 

       δ <max{δ, δ}, 

that is, δ < δ which is a contradiction. Therefore δ = 0. 

Thus d(fu, u) = d(Tu, u) = 0 implies u = fu = Tu. 

Hence u F(f) ∩ F(T). 

So  F( nf ) ∩ F( nT )  F(f) ∩ F(T). 

Also F(f) ∩ F(T)  F( nf ) ∩ F( nT ). 

Thus,  F(f) ∩ F(T) = F( nf ) ∩ F( nT ).Hence f and T satisfy 

property Q. 

 

Special case of Theorem 3.3 is Meir-Keeler 

contractive condition appearing in Theorem 4 of [7]. 

4.  CONCLUSION 

In this paper, we have studied a number of Suzuki-type 

contractive conditions defined on a metric space for which 

fixed point sets for maps and their iterates are same. An 

important fact about this study is that if maps satisfy 

property P or Q then every periodic point is a fixed point. 
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