
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.6, July 2012

33

Implantation of Dynamically Reconfigurable Systems on

Chip with OS Support

Vaibhawa Mishra

CSIR-CEERI
Digital Systems Group

Pilani, Rajasthan, India-333031

Kota Solomon Raju
CSIR-CEERI

Digital Systems Group
Pilani, Rajasthan, India-333031

Pramod Tanwar
CSIR-CEERI

Digital Systems Group
Pilani, Rajasthan, India-333031

ABSTRACT

This work presents the implementation of dynamically

reconfigurable system with operating system support

specifically Linux. The presented work combines both HW

and SW flows where the complex parts of the architecture are

designed to HW modules. These HW modules can be

reconfigured on the fly by using partial dynamic

reconfiguration. In our work, we are using floating point

computation unit as partial reconfiguration module. Our aim

is to show the idea how an operating system can be involved

in the area of reconfiguration computing. The application that

manages the reconfiguration can be developed either as

standalone software that is specific for the system or with an

operating system support, to achieve code reusability and

code portability. Finally, a prototype is implemented on

Xilinx ML507 board, where a general Linux open source

kernel has been used to handle dynamic reconfigurable

hardware recourses.

Keywords

Partial reconfiguration, Embedded Linux, Floating point

arithmetic units.

1. INTRODUCTION
The leading advantage of the FPGA based embedded system

is that some part of the active circuit may be partially

reconfigured externally or internally [1]. The internal

reconfiguration techniques of various Xilinx devices basically

involve internal configuration access port [2]. By using this

feature of Xilinx platform FPGAs we propose a method of

using a configuration controller to achieve reconfiguration

application that has been supported by a running operating

system especially for complex designs that benefit from

partial reconfiguration by taking all arithmetic operation for

floating point data as an example. The different modules for

reconfiguration region are simply adder, multiplier divider

and subtractor.

Linux may be a good option because many advantages are

associated with it like portability, support for various

processor architecture and open source [3]. A co design flow

for reconfigurable computing system with RTOS support has

been presented in [4]. Our main aim is to develop prototype

for dynamically reconfigurable system with the Linux kernel

support where reconfiguration application will be managed by

OS. To demonstrate this idea, Xilinx ML507 FPGA board

embedded with PowerPC 440 hard core processor has used as

target platform [5]. Linux open source kernel versions 2.6.34

used as main operating system and ELDK 4.1 [6] tool chain

has been used to compile the kernel as well as reconfiguration

controlling application. Some configuration change is

required using “make menuconfig” utility, in original kernel

to use exact drivers for hard core device in Xilinx FPGA

specifically Internal Configuration Access Port. We have

followed the guidelines to develop a Dynamic partial

reconfigurable system as in [7]. As soon the required

hardware peripheral and configurable IP-core are ready, there

is need to establishment the communication channel between

the OS and module itself [8]. A well written device driver is

required to access reconfigurable region as well as hardware

module. All required device driver, partial bit files and

software for application are bundled with final executable

image [9]. Once the target system boots, the image will be

transferred from the host to target via JTAG.

This paper is organized as follows. Section 2 presents brief

description of proposed hardware architecture. The software

part of the design such as cross compiling of the kernel source

has been presented in Section 3. The experimental results and

conclusions have been presented in Section 4 and 5

respectively.

2. HARDWARE IMPLELNTATION
Complete system hardware architecture is shown as in Figure

1. It shows the components of the constructed self-

reconfiguring platforms targeting 32-bit embedded PowerPC

hard processor core.

Proc sys rst JTAG PPC

PLB BRAM
CTLR

BRAM

PLB Bus

PPR1 SysAce CTRL HwIcap UART CTRL

Compact
FLASH

ICAP
HyperTermi

nal

Fig 1: Proposed hardware architecture

The proposed system is designed on a ML507 board having

xc5vfx70t-1ffg1136 with only required modules. Along with

one processor, the system has DDR memory to store kernel

image and partial bit files, UART terminal as input/output

console, ICAP peripheral to achieve reconfiguration and

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.6, July 2012

34

reconfigurable custom IPs that contains floating point

arithmetic unit wrapper to use proposed functionality. All the

peripheral are connected with the processor via Processor

Local Buses. Xilinx EDK is used to design the system and to

generate the memory map for the hardware platform [10]. We

have followed the IEEE 754 32 – bit single precision data

format to represent floating point numbers. All floating point

arithmetic module are designed in such a way that they take

operands in 32 bit hex format and produce the output in same

pattern. The wrappers for these modules are combined with

configurable IP core and connected to the system with

Processor Local Bus and synthesized separately. The

discussions of algorithms to implement these arithmetic

modules are quite straight forward and beyond this paper‟s

scope. The algorithms for arithmetic units have been adopted

from as it is from [11].

3. RECONFIGURATION

MANAGEMENT
Since the proposed work is intended to use Linux kernel

source to manage reconfiguration. So for each and every

device, a unique and well examined driver needs to be

implemented. We have used Xilinx provided driver for ICAP.

For our custom reconfigurable IPs, we have implemented one

character based device driver which implements simple I/O

control based read and write system calls. In read operation

data is copied from the kernel space to user space as our

reconfiguration application is running in user space. On the

other hand, in write operation data is copied from user space

to kernel space. A device can be identified by its major

number and its minor number. On system boot, the

reconfiguration IP is registered in the Linux device

subsystem. The IP may be accessed using standard system

calls such as open, read and write. All the needed steps about

cross compiling of Linux kernel source code and kernel

configuration has been adopted from [12]. The application

that performs reconfiguration is written in C. It has been cross

- compiled to generate object code using ELDK 4.1 for

PowerPC by executing the commands “ppc_4xx-gcc –static

icap.c –o icap”. The program is bundled with the image when

final image is created using “ramdisk” image creation method

by simply using make command “make

simpleImage.initrd.virtex440-ml507”. The reconfiguration

application “icap” is user interactive program. The menu

displayed on the hyper-terminal directs the user to reconfigure

the region by pressing keys from the keyboard like „2‟ for

addition. The data can be provided to the arithmetic floating

point modules by another application “math”.

4. RESULTS
The proposed system has been successfully implemented and

tested with only the required components. We have used

HyperTerminal to see the information related to booting of

Linux OS on PowerPC440 as well as to give commands to

reconfiguration controller and to view results from the

floating point arithmetic IP core. It should be noted that in the

Virtex-5 FXT device, PowerPC cores are the part of the

FPGA fabric with no resource usage even though hard core

processors in the FPGA fabric reduce the available area for

logic in general. Table 1 provides the device utilization

summary of all individual modules. The given resource

utilization is only for the PRRs in the design. As it has been

discussed in the previous section, we have implemented

floating point arithmetic unit as reconfigurable IP core. The

simulation results for addition, subtraction, multiplication and

division are shown in Figure 2, 3, 4 and 5 respectively.

Fig 2: Simulation result of floating point adder

Fig 3: Simulation result of floating point subtractor

Fig 4: Simulation result of floating point multiplier

Fig 5: Simulation result of floating point divider

The device utilization is close for both static and reconfigure

region. The PowerPC system used lesser amount of resources

even though it required the use of extra PLB bus but it should

be considered that the resource usage for the PRMs increases

the utilization of resources.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.6, July 2012

35

Table 1. Resource usage of PRMs for Virtex 5 FXT

Floating Point

Arithmetic

Modules

Resource Used

Slice LUTs

Full Used

LUT FF

pairs

Slice

Registers
DSP48Es

Min Max Min Max Min Max Min Max

PRR1

Add. 956 44800 253 1183 480 44800 - 128

Multi. 127 44800 90 247 215 44800 2 128

Div. 2355 44800 91 2565 300 44800 2 128

Subt. 951 44800 177 1183 485 44800 - 128

When the system boots, an initial bit file is loaded to FPGA to

invoke all the required hardware. The FPGA is configured

with Xilinx impact tool and once system is ready, the final

kernel image is transferred via JTAG. UART terminal will

show the booting process of Linux kernel as in Figure 6. The

execution mode of the application need to change with

“chmod” command before running the software and the

output of the code is as in Figure 7.

Fig 6: HyperTerminal output window

Fig 7: Application output

5. CONCLUSION
This paper attempts to provide the proof of concept for the

implementation of Dynamically Reconfigurable Systems with

Linux Operating System. We have tried to use the simple

algorithmic blocks to demonstrate this. This approach can be

extended for more complex systems like having CDMA &

GSM blocks on a single chip etc. All the domains having a

requirement of Low power & On-demand computation are

best suited for the applications of these systems.

6. ACKNOWLEDGEMET
The authors would like to thank Dr. Chandra Shakher,

Director, CSIR-CEERI and Dr. P. Bhanu Prasad, Group

Leader, Digital Systems Group, CSIR-CEERI for allowing to

utilize the resources of the institute.

7. REFERENCES
[1] Scott Hauk, Andr‟e DeHon, “Reconfiguration

Computing: The theory and practice of FPGA- based

computation” Elsevier Inc. 2008.

[2] Xilinx, Inc., “Partial Reconfiguration User Guide”, User

Guide UG702, Version 12.3, October-5, 2010.

[3] Zhou Qingguo; Yao Qi; Li Chanjuan; Hu Bin;, “Port

embedded Linux to XUP Virtex-II Pro development

board,” IT in Medicine & Education, 2009. ITIME‟09.

IEEE international Symposium on , vol. 1, no., pp.165-

169, 14-16 Aug. 2009doi: 10.1109/ITIME.2009.5236439

[4] Xiao-Wei Wang; Wei-Nan Chen; Ying Wang ; Chen-

Lian Peng; , “ A Co-design Flow for Reconfigurable

Embedded Computing System with RTOS Support,

“Embedded Software and Systems, 2009. ICESS ‟09.

International conference on , vol., no., pp.467-474, 25-26

May 2009 doi: 10.1109/ICESS.2009.84.

[5] Xilinx, Inc., “Virtex-5 FPGA Configuration User

Guide”, User Guide UG191, Version 3.9.1, August 20,

2010.

[6] www.denx.de/en/News/PressReleaseELDK41.

[7] Xilinx, Inc., “PlanAhead Software Tutorials: Partial

Reconfiguration of a processor Peripheral” User Guide

UG744, Version 12.3, September 21, 2010.

[8] Santambrogio, M.D.; Rana, V.; Sciuto, D.; , "Operating

system support for online partial dynamic

reconfiguration management," Field Programmable

Logic and Applications, 2008. FPL 2008. International

Conference on , vol., no., pp.455-458, 8-10 Sept. 2008

doi: 10.1109/FPL.2008.4629982.

[9] J. W. Williams and N. Bergmann, “Embedded Linux as a

platform for dynamically self-reconfiguring systems-on-

chip,” in Proceedings of the International Conference on

Engineering of Reconfigurable Systems and Algorithms

(ERSA '04), T. P. Plaks, Ed., pp. 163–169, CSREA

Press, Las Vegas, Nev, USA, June 2004.

[10] Xilinx Inc., “Embedded System Tools Reference

Manual,” Version 3.0, 2004.

[11] http://www.ece.uvic.ca/~elec499/2004a/group05/html/m

ath.html.

[12] http://wilki.xilinx.com/powerpc-linux.

