
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.6, July 2012

10

An Efficient Overhead-Aware Leader Election Algorithm
for Distributed Systems

Muneer Bani Yassein

Department of Computer
Science

School of Computer and
Information Technology

Jordan university of Science
and Technology

Irbid 22110, Jordan

Ala’a N. Alslaity
Department of Computer

Science

School of Computer and
Information Technology

Jordan university of Science
and Technology

Irbid 22110, Jordan

Sana’a A. Alwidian
Department of Computer

Science

School of Computer and
Information Technology

Jordan university of Science
and Technology

Irbid 22110, Jordan

ABSTRACT

In the area of distributed computing, the leader election

process is meant with selecting a single node as a leader or a

coordinator for a particular task that is distributed among

other members. In such environments, if the leader got

crashed, all other nodes have to elect another leader. In the

literature, many leader election algorithms have been

proposed. Most popular is the Garcia Molina’s Bully

algorithm. In this paper, we propose a new leader election

algorithm that is based on sending a lower number of

messages to perform leader election. The results show that our

proposed algorithm reduces the overhead associated with the

classical Garcia’s Bully algorithm and efficiently outperform

it in terms of reducing latency and message complexity.

General Terms

Leader Election Algorithms, Distributed Systems.

Keywords

Distributed System, Leader Election, Leader, Bully Algorithm

1. INTRODUCTION
 In recent years, distributed systems are growing rapidly.

Therefore, managing and controlling these systems becomes a

challenging issue. In distributed systems, each node must

efficiently and accurately cooperate with other nodes to

perform a specific job [1]. In such systems, particular nodes

are selected to handle the responsibility of leadership and

coordination. Examples of these nodes are file servers, time

servers and central lock coordinators. These servers are called

leaders [2]. Algorithms through which leaders are elected

called: leader election algorithms.

In leader election algorithms, a single node is designated as

the organizer (or leader) of some task that is distributed

among several nodes [3]. Generally, it does not matter which

node should take over the leader’s job, but one of them has to

do it. After a leader is elected however, each node throughout

the network should respect the elected node and recognize it

as the group leader.

When the leader is crashed, other nodes must elect another

leader. Many algorithms have been proposed for electing

leaders in distributed systems such as Bully algorithm [4] and

ring algorithm [5].

Bully algorithm is one of the most widely applicable

algorithms for electing leaders in distributed computing

systems [6]. It was proposed by Garcia Molina in 1982. In this

algorithm, when a node N detects that the leader is crashed, it

sends an ELECTION message to all nodes with higher ID. If

no one of these nodes responds, node N will win the election

and becomes the leader. If one of the higher nodes responds

however, it will take over, and node N’s job is done. When a

higher-ID node receives a message, it sends an OK message

back to the sender declaring that it is available and will take

over. The receiver then holds an election, unless it is already

holding one. All nodes give up but one and that one is the new

leader [4]. The available and absolutely higher-ID node

announces its victory by sending a COORDINATE message

back to all nodes telling them that it is the new leader. Figure

1 illustrates the steps of Bully algorithms in details. Bully

algorithm is simple in terms of its concept and

implementation. However, its main drawback is the high

number of message passing which is of order O(n2) which

causes a heavy traffic and overhead on the network.

In this paper, we propose a new leader election algorithm that

performs the task of electing leaders with lower number of

messages, and therefore, reduces the overhead associated with

Garcia’s Bully algorithm.

The rest of this paper is organized as follows: Section 2

provides a set of related work in leader election, Sections 3

and 4 illustrates our algorithm assumptions and the proposed

algorithm respectively. A mathematical analysis is presented

in section 5. And finally, Section 6 concludes the paper

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.6, July 2012

11

2. RELATED WORK
Bully algorithm is one of the most important election

algorithms that were proposed for solving the leader election

problem. In the literature, many modifications for the original

Bully algorithm were proposed for the purpose of enhancing

its performance. Among these modifications is the algorithm

proposed by Kordafshari et al [7]. In this work, the authors

discussed the drawbacks of the original bully algorithm and

enhance it using an optimal message algorithm.

When a process P detects the leader crash, it starts election by

sending an ELECTION message to all processes that has

higher process IDs. If P got no response, it announces itself as

the new leader. Otherwise, all other alive processes with

higher IDs respond by sending their own IDs along with the

OK messages. After that, process P selects the process with

higher ID and sends back a GRANT message to that elected

process. Then, the later sends a COORDINATOR message to

all other processes declaring that it is the leader. For the

purpose of reducing concurrent election, when process P

detects that the current leader is down, it starts election. If a

process A receives an ELECTION message from process P

and from another process, B which has a lower-ID ,it waits for

a short period of time and replies to B and stops its own

algorithm. However, if P got neither ELECION message nor a

response from any other process with lower ID, it declares

itself as a leader. Although this method reduces message

passing complexity to some extent, it produces redundant

elections which in turn, consume resources, increase total

message passing and increase network traffic.

Another modification for Garcia’s Bully algorithm was

proposed by Gholipour et al [9], where they proposed an

algorithm that decreases the number of messages that should

be exchanged between processes. In their work, the authors

proposed the use of “Coordination group” which is a set of

several ordered nodes that includes the current coordinator

and K alternatives to that coordinator. The IDs of alternative

process are sent to all other processes. When a process P

detects the crash of the coordinator, it sends a “crash-leader”

message to the first alternative process. If the later is alive, it

re-checks the availability of the coordinator before it

announces itself as the new leader. Otherwise, if the first

alternative process is crashed, the process P repeats the same

previous operation with all other alternatives constituting the

“Coordination group”. In the case where all alternatives are

crashed, process P initiates another election algorithm and

generates another “coordination group” (which consists of all

available processes with IDs higher than P) and repeats the

same previously mentioned steps. After this long operation, if

P still didn’t receive a response, it is selected as a coordinator.

In Gholipour's algorithm, nodes depend on the "Coordination

group" as a base for the leader election operations, and this

group should be updated continuously. Unfortunately,

maintaining such group need extra message passing

operations which in turn increases the overhead.

Sung-Hoon Park [10] proposed a safety-strengthened leader

election protocol that allows processes to elect a new leader

only when all of them agree upon the current leader’s crash.

The election made by this protocol is much stronger than the

election performed by the classical Bully algorithm since if no

set of processes agree upon the leader’s crash, no election will

happen, yet, no progress is made. The proposed algorithm is

based on a standard three asynchronous phases: the prepare

phase, in which a particular process proposes a leader to the

other processes which are required to agree on. The ready

phase in which all processes that agree on the newly elected

leader acknowledge the reservation of the potential leader.

And the commit phase where the elected leader is announced

and all other process accept it. The algorithm of [10] is fully

distributed. However, since all processes must admit the

leader’s crash, progress of the algorithm can be guaranteed

only in case of minimal violating a safety property. In

addition, leader election is performed with an unreliable

failure detector. This is because it does not extend the

asynchronous model of concurrent computation to include

1

5

6

2

4

7

3 0

OK

OK

Step 2

1

5

6

2

4

7

3 0

ELECTION

Step

1

1

5

6

2

4

7

3 0

ELECTION

Step

3

1

5

6

2

4

7

3 0

LEADER

Step 5

Step 4

1

5

6

2

4

7

3 0

OK

Fig1: The Traditional Bully Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.6, July 2012

12

global failure. Moreover, this algorithm needs more messages

to ensure its condition (i.e. the entire processes should agree

upon the current leader’s crash to elect new leader). Hence,

traffic load and the overhead will increase.

In [11], Mahdi proposed an election algorithm based on

electing a leader and an assistant to that leader, such that in

the case of the current leader’s crash, the assistant will take

over the responsibilities of the leader and becomes the new

leader. The assistant-based election algorithm proposed in

[11] works as follows: if a any process detects that the current

leader fails, the detector process will send a message to the

assistant of the crashed leader. Once the assistant receives the

message, it communicates first with the leader by sending a

message to check if the leader is really crashed or still alive.

If the leader is crashed, the assistant becomes the new leader

and sends “I am a leader” message to all other processes. In

turn, the assistant (which becomes the new leader), and based

on the request of all nodes, elects a new assistant to be the

“vice-leader” for the future. The problem of this approach

becomes evident when the assistant itself got crashed. Here,

the processes need to initiate a complete election process to

elect a new leader and an assistant to that leader, thus,

increases the message complexity

3. ALGORITHM ASSUMPTIONS
 For our proposed algorithm, we assume that the distributed

system is consisting of a set of processes or nodes, and each

node has a unique ID. Such that the set N= {1, 2, 3, …, n-1,

n} where N[1] is the node with ID=1 and N[2] is the node

with ID=2, and so on. This ID could either represent the

node’s network address (this is applicable in cases where all

nodes are exactly the same with no distinguishing

characteristics), or the ID could represent the capacity of

nodes (this is applicable in unreliable environments such ad

hoc networks, where nodes are varying in their capacities, and

the node with higher capacity will be assigned a higher ID). In

all cases, our election algorithm attempts to locate the node

with higher ID and elect it as a leader. Therefore, in a set of n

nodes, N[n] is usually the leader, and N[n-1] is the next

candidate leader and so on.

 In addition, we assume that each node knows the IDs of all

other nodes. However, it is not mandatory to know which

nodes are currently up and which ones are currently down.

For the purpose of our proposed algorithm, we assume also

that each node not only knows the IDs of other nodes (as in

the case of Bully algorithm), but also order them in a

descending-ordered list. To distinguish this list from the list in

the original Bully algorithm, we will call our descending-

ordered list as: MAP.

After the completion of election task, we assume that all

nodes should be informed about and agree upon the newly

elected leader.

4. THE PROPOSED ALGORITHM
As we have mentioned before, the number of messages that

should be exchanged between nodes in Bully algorithm is

high, imposing heavy traffic on the network. To overcome

this problem, we present an optimized algorithm that

significantly decreases the number of messages (ELECTION

and OK messages) that should be exchanged between nodes

to perform leader election task. Moreover, the amount of time

each node should wait in order to know about the elected

leader is also decreased.

Moreover, in the descending-sorted list (the MAP) that we

propose, the first item in the list represents the node with the

highest ID, the successor item is the node with the next higher

ID, and so on. Based on the main concept of Bully algorithm

(that we also follow in our work), which states that the bigger

guy wins the war, it is easy to conclude that the first item in

the MAP is the leader node, the second item is the next

candidate node to be the leader and so on. This way of

organizing nodes in the nodes’ MAP assists in decreasing (or

even preventing) the global election that takes place in the

classical Bully algorithm.

In this algorithm, when a node A detects that the leader is

crashed, A does not send an ELECTION message to all nodes

with higher ID (as the case of Bully algorithm), rather, it

looks its MAP up and checks the next candidate node whose

ID is right after the crashed node and sends it an ELECTION

message. We refer to the next candidate node as C. If C is

available (alive), it sends an OK message back to A to indicate

that it is alive and will take over. Then, C sends a

COORDINATOR message to all other nodes (including A)

telling them that it is the newly elected leader.

Note that in our algorithm, and after the candidate node C

receives the ELECTION message, it needs not to hold another

election (as in the case of Bully algorithm). This is because

this node (i.e. C) is chosen from the beginning with a

guarantee that it will be the next candidate leader (unless it is

crashed).

It is worthwhile to mention that node A waits for a period of

time T for receiving an OK message from C. If node A does

not receive any OK messages after the duration T, it will

realize that the candidate node, C, is not available or it is

currently crashed, and therefore, it sends an ELECTION

message to the successor node. If after T time the successor

does not reply, A will skip over the successor and goes to the

next node along the MAP, or the one after that until a running

node is found. The worst case happens when all nodes with

higher IDs are all crashed, in this situation, node A itself will

be the leader.

If two or more nodes, say A and B simultaneously detect the

crash of the leader, both of them will do the same previously

mentioned job. In this case, the candidate node will consider

the ELECTION message that has been received first and send

an OK message to the sender that initiate the election first to

inform it that it is alive. At the same step, it sends a STOP

message to the second node that initiates the election to

inform it to stop waiting and to indicate that the election

process is running. In our algorithm, we assume that all nodes

maintain an up-to-date MAP; therefore, there is no chance that

any two nodes will send an ELECTION message to two

different candidates.

It is worthy to mention here that during the election process, if

the previously crashed leader wakes up and becomes available

again, it resumes the leadership without the need to initiate

election. This is done by directly sending LEADER message

to all other (lower-ID) nodes.

From here, we can conclude that our algorithm depends on the

advantageous assumptions of Bully algorithm in addition to

proposing further new assumptions that enhance the

performance of our work.

Figure 2 represents the pseudo code which is triggered when

any node detects the leader crash and Figure 3 represents the

working of our algorithm where node 4 detects that the

current leader (node 7) is crashed. Node 4 checks its MAP to

see that node 6 is the successor and the most prior node to be

the leader. Therefore, node 4 sends node 6 an ELECTION

message. Since node 6 is alive, it replies back with an OK

message to node 4 and immediately sends all other nodes

(including node 4) a LEADER message declaring that it is the

winner of the leadership.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.6, July 2012

13

5. MATHEMATICAL ANALYSIS

 In this section, we analyze the performance of our algorithm

and show its efficiency in terms of reducing the number of

sent messages. In order to provide a comprehensive analysis,

we investigate all the possible cases that might occur in the

leader election process.

We assume that the number of nodes in the distributed system

is n, the number of sent messages by a particular node i is S

and is referred to as Si, and the number of received messages

by a particular node i is R and is referred to as Ri. We

consider the number of sent messages(ELECTION) messages

and the number of received messages (OK)messages as the

main criteria to measure the algorithm overhead. Note that we

will not consider the number of COORDINATOR messages (

LEADER in our algorithm) since these messages are sent as a

final stage in the election process to inform about the new

leader and the number of these messages will be the same in

all algorithms (provided that the number of nodes is the

same).

The message overhead can be denoted by this formula:

Overhead=Si + Ri

In the discussion that follows, we discuss the possible cases

that might occur in the environment of leader election. But

before we get into the details of the mathematical analysis for

each case, it is important to pinpoint the different cases that

take place for both the detector node (i.e. the node that detects

the crash of the leader), and the number of elections that

might be involved (based on how many nodes got crashed). In

our comprehensive analysis, we found out that a single node

might be crashed; yet, a single election will take place. Or

there might be more than one crashed nodes, therefore, there

will be several elections. We study the effect of n/4 and n/2

elections in an environment of n nodes. In addition, we

assume that a single node detects the crash, and this node

might be the lowest node in the system, i.e. N[1], the middle

node, N[n/2], or the next higher node, which is the node right

after the crashed leader, i.e. N[n-1].

5.1. CASE (I): A single election happened,

regardless to the detector node:

If any node i detects that the current leader is crashed, it looks

up its MAP and sends an ELECTION message to the node

that is on the top of the MAP (i.e. the next higher ID node),

which is the candidate node to be elected. In this case we

assume that the candidate node is alive and therefore it will

handle the responsibility of leadership. In this scenario, the

number of sent ELECTION messages Si in our algorithm will

be equal to 1 and the number of received OK messages by the

detector node will also be1. So the overall overhead is 1+1.

This means that we need a maximum of 2 messages for

holding leader election.
The situation is different for Bully algorithm. If we assume, as

above, that the next higher ID node is available and that the

lowest ID node, N[1], detects the leader crash, then the

message overhead will be:

Whereas the number of messages transmitted when the middle

node N[n/2] detects the crash will be:

//When any node A detects the leader crash:

For i=n-1 to 1 // n is the total number of nodes

{

Send ELECTION message to MAP[i].

Wait for T time to receive OK message

If OK message received

{

MAP[i] is the new leader

Send LEADER message to all n-(n-i) nodes

}

else

i=i-1

}

Fig 2: Pseudo code that is triggered when any node

detects the crash of the leader

1

5

6

2

4

7

3 0

LEADER

Step 3

Step 2

1

5

6

2

4

7

3 0

OK

Step 1

1

5

6

2

4

7

3 0

ELECTION

Fig 3: The Proposed Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.6, July 2012

14

In both cases, the message complexity for Bully is in the order

of O(n2), where it is of a constant complexity in our work.

5.2. CASE (II): n/4 elections happened,

regardless to the detector node:

This scenario happened when the current candidate node N[n-

1] is not available and the other next candidate nodes N[n-2],

N[n-3], … might not be available too. In this case, we will

assume that in a system of n nodes, n/4 nodes are crashed, and

therefore, n/4 elections will take place. Regardless to the

index of node that detects the crash, the number of sent

ELECTION messages in our algorithm will be n/4+1, and the

number of OK messages will be 1, thus, the message

complexity is given in the following formula:

For Bully algorithm, if n/4 elections required and either N[1]

or N[n/2] detects the crash, the message overhead will be

given in formulas 4 and 5, respectively:

From the formulas above, it’s easy to conclude that the

message complexity of our algorithm is in the order of O(n),

where in the Bully algorithm, it’s of order O(n2)

5.3. CASE (III): n/2 elections happened and

the node N [1] detects the crash

 If the half of the nodes is not available, then the number of

elections needed is equal to n/2. In this case, if the lowest ID

node, N [1] detects the crash, the message complexity for our

algorithm will be as follows:

 In the same case, the number of messages required by the

Bully algorithm is much more than that in our algorithm and

this is clear in formula 7:

5.4. CASE (IV): n/2 elections happened

and the node N[n/2] detects the crash

This scenario is similar to CASE (III) except that the node

that detects the crashes is the middle one with the index N

[n/2]. In this case it is clear that, in both our algorithm and the

bully algorithm, the node N[n/2] will send n/2 ELECTION

messages before it realizes the crash of all the elected nodes,

and then, chooses itself as a leader. From the time latency

perspective, it’s fair to illustrate here that our algorithm will

be slower than Bully algorithm and it will consume more time

waiting to hear from the nodes that are already crashed. This

time is minimized in Bully algorithm since the node that

detect the crash sends ELECTION messages to the whole

higher n/2 nodes in one shot, and then announces itself as a

leader after knowing the crash of them all. Table 1

summarizes the previously mentioned message complexities

for all cases.

5.5. Special Cases:

 In this section, we demonstrate some of the unusual cases that

might occur in a distributed system during the election

process, namely: when the lowest ID node, N[1], detects the

leader crash, and in the meanwhile, it is the only available

node. In this case, the number of ELECTION messages

required for election will be n-1 (for both our algorithm and

Bully algorithm). With a difference that our algorithm

requires more delay time waiting for a response from the n-1

crashed nodes.

The other case happens when the next higher ID node (i.e. the

node right after the crashed leader) detects the crash. This is

the optimal case for both algorithms since neither ELECTION

message nor OK messages will be sent. In this case, the node

N[n-1] will directly elect itself as a leader and send LEADER

messages to all other nodes announcing its leadership.

Table 1: Mathematical analysis summary results

 # of elections

1 n/4 n/2

D
et

ec
to

r
n

o
d

e N[1]

Ours 2 O(N) O(N)

Bully O(N2) O(N2) O(N2)

N[n/2]

Ours 2 O(N) O(N)

Bully O(N2) O(N2) O(N)

6. CONCLUSION

In the literature, many algorithms were proposed to perform

leader election; one good example is Bully algorithm. Our

proposed algorithm relies on the good assumptions of Bully

algorithm and introduces enhancements on the leader election

operation by sorting the IDs of the nodes and choosing the

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.6, July 2012

15

node with the next higher ID after the leader got crashed. This

mechanism reduces the number of election messages and, in

some cases, the number of steps required to complete the

election process, therefore, time complexity is also reduced as

compared to the Bully algorithm. The complexity of our

proposed algorithm is at most O(n) compared to that in Bully

which is O(n2). As a future work, we will extend our proposed

algorithm to be applicable in more critical environments,

particularly, in the mobile ad hoc distributed systems. Since

these systems are more prone to failures than conventional

distributed systems. Selecting a leader should become more

aware of the aliveness and efficiency of the leader to be

elected so as to survive despite failures or disconnections of

mobile nodes.

7. REFERENCES

[1] Rebecca Ingram, Patrick Shields, Jennifer E. Walter and

Jennifer L. “An Asynchronous Leader Election

Algorithm for Dynamic Networks”. IPDPS '09

Proceedings of the 2009 IEEE International Symposium

on Parallel & Distributed Processing. pp. 1-12, 2009.

[2] Mehdi Mirakhorli, Amir AzimSharifloo,

MaghsoudAbbaspour, "A Novel Method for Leader

Election Algorithm," The 7th IEEE International

Conference on Computer and Information Technology

(CIT 2007), pp.452-456, 2007.

[3] Mina Shirali, Abolfazl Haghighat Toroghi, Mehdi

Vojdani, "Leader Election Algorithms: History and

Novel Schemes". Third International Conference on

Convergence and Hybrid Information Technology

(ICCIT), vol. 1, pp.1001-1006, 2008.

[4] H.Garcial Molina “Election in a distributed Computing

System”. IEEE Trans. Comp, 1982, vol31, no. 1, pp. 48-

59. 1982

[5] N.Fredrickson and Lynch “Electing a Leader in a

Synchronous Ring” ACM, , vol.34 no. 1, pp. 98-115,

1987.

[6] M. Gholipour, M.S. Kordafshari, M. Jahanshahi, A.M.

Rahmani, "A New Approach for Election Algorithm in

Distributed Systems". The Second International

Conference on Communication Theory, Reliability, and

Quality of Service, pp.70-74, 2009.

[7] M. S. Kordafshari, M. Gholipour, M.Jahanshahi, A.T.

Haghighat “Modified bully election algorithm in

distributed systems”. CCOMP'05 Proceedings of the 9th

WSEAS International Conference on Computers, 2005

[8] Junqueira, F., Reed, B., Sera_ni, M.: Zab: High-

performance broadcast for primary-backup systems. In:

Proc. of the IEEE Int'l Conf. on Dependable Systems and

Networks (DSN-DCCS), 2011.

[9] M. Gholipour, M. S. Kordafshari, M. Jahanshahi, A. M.

Rahmani “A New Approach For Election Algorithm in

Distributed Systems”. 2009 Second International

Conference on Communication Theory, Reliability, and

Quality of Service, 2009

[10] Sung-Hoon Park “A Stable Election Protocol based on an

Unreliable Failure Detector in Distributed Systems”.

2011 Eighth International Conference on Information

Technology: New Generations. pp. 979 – 984, April

2011

[11] Zargarnataj, M. “New Election Algorithm based on

Assistant in Distributed Systems”. IEEE/ACS

International Conference on Computer Systems and

Applications, 2007. AICCSA '07. pp. 324 – 331, May

2007.

