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ABSTRACT  

Clustering analysis is the most significant step in data mining. 

This paper discusses the k-means clustering algorithm and 

various distance functions used in k-means clustering 

algorithm such as Euclidean distance function and Manhattan 

distance function. Experimental results are shown to observe 

the effect of Manhattan distance function and Euclidean 

distance function on k-means clustering algorithm. These 

results also show that distance functions furthermore affect 

the size of clusters formed by the k-means clustering 

algorithm. 
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1. INTRODUCTION 
Clustering is a technique that classifies the raw data 

reasonably and searches the hidden patterns that may be 

present in datasets [11]. It is a process of grouping data 

objects into disjointed clusters; these obtained clusters should 

reflect some mechanism at work in the domain from which 

instances or data points are drawn [10], a mechanism that 

causes some instances to bear a stronger resemblance to one 

another than they do to the remaining instances [6].  The 

Greater the similarity (or homogeneity) within a group and 

greater the difference between groups, the better is the 

clustering [7]. There are various techniques available for 

clustering like k-means clustering technique, hierarchical 

clustering technique, density based clustering techniques etc. 

but k-means clustering algorithm is most widely used 

algorithm because it is simple, efficient and easy to implement 

[6]. So the author studies the simple k-means algorithm and 

effect of various distance functions on it because distance 

function plays major role in finding relationship between 

various objects in a dataset. K-means is a numerical, non-

deterministic, iterative method [2]. So for many practical 

applications, this method is proved to be very effective to 

obtain good clustering results. In this paper author first gives 

the introduction then discussion about k-means clustering 

algorithm and various distance functions is done in second 

and third section. In fourth section experimental results are 

shown and in last section conclusion is given. 

2. THE K-MEANS CLUSTERING 

ALGORITHM 
K-means clustering algorithm is first proposed by Macqueen 

in 1967 which was uncomplicated, non-supervised learning 

clustering algorithm [9]. K-means is a partitioning clustering 

algorithm, this technique is used to classify the given data 

objects into k different clusters through the iterative method, 

which tends to converge to a local minimum. So the outcomes 

of generated clusters are dense and independent of each other 

[12]. The algorithm consists of two separate phases. 

(i). In the first phase user selects k centres randomly, where 

the value k is fixed in advance. To take each data object to the 

nearest centre. Several distance functions are considered to 

determine the distance between each data object and the 

cluster centres. When all the data objects are included in some 

clusters, the first step is completed and an early grouping is 

done. 

 (ii). Then the second phase is to recalculate the average of the 

early formed clusters. This iterative process continues 

repeatedly until the criterion function becomes the minimum. 

The process of k-means algorithm as follow: 

Input: 

Number of desired clusters value of k (e.g. 2, 3, 4….etc.), and 

a database D = {d1, d2…dn} containing n data objects. 

Output: 

A set of k clusters 

Steps: 

1. Randomly select k data objects from dataset D as initial 

cluster centres. 

2. Repeat step 3 and 4 until there is no change in the centre of 

clusters 

3. Calculate the distance between each data object di (1 <= i 

<= n) and all k cluster centres cj (1<=j<=k) and assign data 

object di to the nearest cluster. 

4. For each cluster j (1<=j<=k), recalculate the cluster centre. 

Before the k-means algorithm converges, calculations of 

distance and cluster centres are done while loops are executed 

a number of times, where the positive integer t is known as 

the number of k-means iterations. The accurate value of t 

varies which mainly depends on the initial cluster centres. The 

allocation of data points is related to the new clustering 

centre, so the computational time complexity of the k-means 

algorithm is O(nkt).where n is the number of all data objects, 

k is the number of clusters, t is the iterations of algorithm. 

Usually requiring k <<n and t <<n. Computational time 

complexity also depends on the complexity of distance 

function used to measure the distance between the objects of 

databases[7], the distance is calculated from data object x to 

each cluster centre and then find that the distance to the 

cluster C is the smallest. So in the course of several iterations, 

k-means algorithm is to calculate the distance between data 

object x to the other cluster centre, which takes up a long 

execution time thus affecting the efficiency of clustering [1]. 

Major drawbacks of k-means clustering algorithm are first, it 

can be actually slow since in each step the distance between 

each point to each cluster has to be calculated, which can be 

really expensive in the presence of a large dataset. Second, 

this process is really sensitive to the provided initial clusters, 

another drawback is that it only covers numerical attributes; 

also this algorithm lacks scalability and is insensitive with 
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respect to the outliers [8]. In next section the author discuss 

about various distance functions used in k means clustering 

algorithm. 

 

3. VARIOUS DISTANCE FUNCTIONS 
Distance functions in k-means clustering technique plays an 

important role. Different distance functions are provided to 

measure the distance between data objects. These two 

distance functions are discussed as follows  

3.1. Euclidean Distance Function 

Euclidean distance is ordinary distance between two points 

that one would measure with a ruler. It is the most commonly 

used distance function [5]. This distance is given by 

Pythagorean formula. The Euclidean distance between the 

points a and b is the length of the line segment connecting 

them (a, b) [4]. In the Euclidean plane, if a = (a1, a2) and b = 

(b1, b2) then the distance is given by: 

D (a, b) = √ (a1-b1)
2 + (a2-b2)

2. This is equivalent to 

Pythagorean formula. Weakness of the basic Euclidean 

distance function is that if one of the input attributes has a 

relatively large range, then it can overpower the other 

attributes [4] 

 

3.2. Manhattan distance function 
In Manhattan distance function the distance between two 

points is the sum of the absolute differences of their 

coordinates. The Manhattan distance, D1 between two vectors 

a ,b in an n-dimensional real vector space with fixed Cartesian 

coordinate system, is the sum of the lengths of the projections 

of the line segment between the points onto the coordinate 

axis [5]. More formally, 

D1 (a, b) = ║a-b║1 =∑i=1
n׀ai-bi׀, where a = (a1, a2… an) and b 

= (b1, b2… bn) are vectors 

4. EXPERIMENTAL RESULTS 
In this paper WEKA 3.6.5 version software for data mining is 

used and cpu.arff dataset is used for experimentation which 

can be obtained from UCI machine learning repository [3]. 

Author run the software for clustering experiment using k 

means algorithm and see the different results comes by using 

different distance functions. Data set cpu.arff contains 209 

instances and 7 attributes. NOI means number of iterations.  

Table 1.  The Experimental Results with K-Means 

Algorithm (NOI - no. of iterations) 

Value 

of K 

NOI in 

Euclidean 

distance 

function     

NOI in 

Manhattan  

distance 

function 

2 12 7 

3 10 8 

4 10 13 

5 8 10 

6 8 7 

7 12 14 

8 11 11 

9 11 8 

10 12 10 

11 13 6 

12 12 6 

13 12 8 

14 10 9 

15 10 7 

16 10 7 

17 10 6 

18 8 6 

19 14 13 

20 7 7 

21 8 7 

22 11 7 

23 11 7 

24 9 7 

25 9 7 

In above table, readings are shown which came by applying k-

means clustering algorithm on cpu.arff dataset. Seed is taken 

as 10 and maximum iteration is taken as 500 for all above 

readings. Only distance function is changed with respect to 

particular value of k for example for k = 2 , simple k-means 

algorithm is run first by taking Euclidean distance function 

and number of iterations are noted then Manhattan distance 

function is taken for k = 2, and number of iterations are again 

noted down. Similar procedure is repeated for all values of k 

from 2 to 25, number of iterations is noted for both distance 

functions. 

 
Figure 1: Effect of distance functions on k means 

clustering, X axis shows the value of k and Y axis 

represents the number of iterations 

The figure 1 shows the result of number of iterations (NOI) 

comes from using Euclidean distance function and Manhattan 

distance function with respect to the value of k. As seen from 

the experiment that Euclidean distance function require more 

number of iterations than Manhattan distance function except 

when value of k= 4, 5, 7. Manhattan distance and Euclidean 

function has same number of iteration at k = 8 and 20. As 

according to the computational time complexity of k-means 

algorithm which is O (nkt) suggest that time complexity is 

directly proportional to the number of iterations [7]. So the 

computational time complexity is affected by number of 

iterations. From the experimental results the number of 

iterations in the Euclidean distance function is generally more 

than the Manhattan distance function which shows that 

Manhattan distance function makes k-means algorithm less 

computational time complex than Euclidean distance function. 

Figure 1 shows that the efficiency of k-means is more when 

using Manhattan distance function up to k=4 then it decreases 

and at k=6 it again increases but it decreases for k=7 after that 

its efficiency is more than Euclidean distance function 

continuously up to k =25 There is also difference in the 
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clusters like with k=2 using Euclidean distance function 

number of objects in cluster 0 is 171 and in cluster 1 is 38 

whereas for the same case when Manhattan distance function 

is used instead of Euclidean distance function then number of 

objects in cluster 0 is 146 and in cluster 1 is 63, means 

members of clusters are different with different distance 

function which specifies that different distance functions also 

influence the members of a cluster. 

5. CONCLUSION 
Clustering is an NP hard problem of grouping of objects, the 

objects in a group should be related to one another and 

unrelated to the objects in other groups [6]. K means 

clustering algorithm is unsupervised partitioning algorithm 

which is simple and efficient to implement [6]. This algorithm 

classifies the data objects in k different clusters. In k-means 

clustering algorithm different types of distance functions can 

be used to measure the distance between two objects. In the 

experiment Euclidean distance function and Manhattan 

distance functions are taken to see the effect of these distance 

function on clustering. As seen from the experiment 

Manhattan distance function outperform the Euclidean 

distance function from k=2 to 25 except on value k=4, 5, 7 

where Euclidean distance function perform better because the 

number of iteration in Manhattan distance function is less than 

the Euclidean distance function. This is because 

computational time complexity is directly proportional to the 

number of iterations. Also the efficiency of k-means 

clustering is increases when Manhattan function is used as 

seen from figure 1 except with k= 4, 5, 7 where Euclidean 

distance function have better efficiency. Whereas both 

distance function have same efficiency for k= 8 and 20. 

Furthermore Manhattan distance function requires less 

computation than Euclidean distance function which in turn 

improves the computational time complexity of k-means [4]. 

Additionally Distance functions also affect the size and 

members of a cluster as different distance functions uses 

different approach to find the distance between the data 

objects which is the most important step of creation of 

clusters. So distance functions should be chosen wisely and 

according to the dataset. 
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