
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

34

Ultra Encryption Algorithm (UEA): Bit level Symmetric
key Cryptosystem with Randomized Bits and Feedback

Mechanism

 Satyaki Roy

Department of Computer
Science (Autonomous),

St. Xavier’s College, Kolkata,
India

Navajit Maitra

Department of Computer
Science (Autonomous),

St. Xavier’s College, Kolkata,
India

 Shalabh Agarwal
Department of Computer
Science (Autonomous),

St. Xavier’s College, Kolkata,
India

Joyshree Nath
A.K

.
Chaudhuri School of IT,

Raja Bazar Science College,
Calcutta University, Kolkata,

India

Asoke Nath

Department of Computer
Science (Autonomous),

St. Xavier’s College, Kolkata,
India

ABSTRACT
The present paper proposes a new cryptographic algorithm

called Ultra Encryption Algorithm (UEA). Nath et al recently

developed few efficient encryption methods such as UES

version-I, Modified UES-I, UES version-II, TTJSA, DJMNA

Nath et. al showed that TTJSA and DJMNA is most suitable

methods to encrypt password or any small message. The name

of the present method is Ultra Encryption Algorithm (UEA)

as it is a Symmetric key Cryptosystem which includes

multiple encryption, advanced bit-wise randomization, new

serial feedback generation and bit-wise encryption technique

with feedback. Evidenly, in the result section the authors have

shown the spectral analysis of encrypted text as well as plain

text to show the effectiveness of the bit-level algorithm. The

spectral analysis reveal that the present module offers

encryption that is free from repetitive text patterns and strong

enough against the standard cryptographic attacks.

General Terms

Data Security, Cryptography

Keywords
UES, multiple encryption, TTJSA, bit extraction,

randomization, feedback, password, shift

1. INTRODUCTION
Due to massive growth in communication technology and the

tremendous growth in internet technology in the last decade, it

has become a real challenge for a sender to send confidential

data from one computer to another. It has become very

important to protect the integrity of date at every cost. Public

softwares are available to decode password of some unknown

e-mail. The data must be protected from any unwanted

intruder otherwise a massive disaster may take place. Any

intrusion into protected information could cause damage to

any organization. Cryptography algorithms are of two types

(i) Symmetric key cryptography where we use single key for

encryption and decryption purpose. And (ii) Public key

cryptography where we use one key for encryption purpose

and one key for decryption purpose.. Both the methods have

their advantages as well as disadvantages.

The current algorithm is a symmetric key cryptosystem

however its uniqueness lies in the fact that it works at the bit-

level and our tests on various types of known text files reveal

that even if there is repetition in the input file, the encrypted

file contains no repetition of patterns. The test results for the

UEA algorithm shall prove that the rarest of text inputs and

texts with subtle alteration when encrypted, yields vast

variations in the corresponding cipher text files.

2. UEA ALGORITHM
The UEA algorithm includes a number of modules (i) Bit-level

Randomization and Integration Module (ii) Advanced Bit-wise

Encryption Technique with Feedback (ABETF). (iii) A simple

serial encryption module. The integration module combines

the randomization module with the two feedback modules.

(i). Bit-wise Randomization and Integration

 ENCRYPTION:

Step 1: Enter the names of the plain text file, cipher file and

the password that may have a maximum length of 64-bytes.

Step 2: Calculate le=length (secret key).

Step 3: Calculate cod= ∑ [key[i]*(i+1)], where i is the

index value of array 'key' (0 < i < le).

Step 4: Calculate enc=mod (cod, 60) and rand=mod (cod,

20) where enc=encryption number and rand = randomization

number. If enc<10 then enc=10. If rand < 10 then rand=10.

Step 5: Invoke bit-wise encryption on the plain file with

feedback with the ABETF algorithm.

Step 6: Compute l=sizeof (plain text file).

Step 7: Compute count = (siz*siz)/8 where siz=64. It

signifies the number of bytes encrypted at once. By default

count=512 bytes.

Step 8: Compute z=l/count. It signifies the number of

iterations that are needed to encrypt a file.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

35

Step 9: Create key matrix 'mat' of dimension siz X siz. It

holds the values 1 to [(siz*siz) -1] row-wise.

Step 10: Define s=0

Step 11: If s > = enc then GOTO 26

Step 12: Randomize the key matrix „mat‟ by MSA algorithm

as many as „rand‟ times.

Step 13: Extract count bytes of plain file and split them into

respective bits and store in 1d array „parr‟.

Step 14: Define auxiliary array „parr2‟. Define i=0.

Step 15: If i> = (siz*siz) then GOTO 18

Step 16: Define ro=i/siz, co=mod (i, siz) and n= mat

[ro][co] where n is the position corresponding to position i of

the plain bits array.

Step 17: Perform parr2 [i] = parr[n] in order to randomize the

bits of the plain file by exchanging the bits according to the

randomized key matrix. Increment i. GOTO 15

Step 18: Convert the bits in the array parr2 into corresponding

bytes. GOTO 13

Step 19: Now the algorithm processes the residual bytes. The

residual bytes are again split into bits and stored in 1d array

„parr‟.

Step 20: Randomize the residual key matrix „matt‟ using the

module rant which takes the number of residual bytes „rem‟ as

parameter. We perform leftshift, cycling, downshift, chaining

operations on the key matrix „matt‟. The chaining operation is

shown below.

Fig 1: Chaining operation

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 6

7 8

4

 5

9 10

11

 14 15 16 12

 13 1 3 2

Step 21: The size of the array 1d array „parr‟= (rem*8) where

rem = number of residual bytes. Define i=0.

Step 22: If i >= (rem*8) then GOTO 24. Define ro=i/8,

co=i%8 and n=matt [ro][co].

Step 23: Perform parr2 [i] = parr[n] in order to randomize the

bits of the plain file where parr2 is again the auxiliary array of

plain bits. Increment i. GOTO 22.

Step 24: The cipher bits are now serially encrypted using the

serial encryption module.

Step 25: Convert the bits into the respective bytes to yield

residual cipher bytes. Increment s. GOTO 11.

Step 26: END

DECRYPTION

The decryption process applies the randomization of bits, the

bit-wise feedback generation and the feedback generation in

the exact opposite order to yield the plain text.

(ii). Serial feedback generation module

ENCRYPTION

1. Enter the name of the file containing the

plain bits.

2. Define character ch1 = Starting value of

feedback=ASCII 48 (ASCII for character

0)

3. Define character ch2=1 extracted bit of

plain text.

4. Perform ch1=ch1+ch2-96 to generate the

serial bit feedback. Character ch1can have

values 0 or 1 i.e. ASCII 48 or 49.

5. Write the encrypted bit ch1 into the cipher

file.

6. Goto 3 until the entire plain text bits is

processed.

7. End

Table I: Serial feedback generation.

Initial feedback=0

Plain bits: 1010

Cipher bits: 1100

DECRYPTION

1. Enter the name of the file containing the

cipher bits.

2. Define character ch1=1 extracted bit of

cipher file.

Plain text 1 0 1 0

Feedback 0 1 1 0

Cipher Text 1 1 0 0

Original Matrix

After chaining is performed

Altered Matrix after chaining

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

36

3. Define character ch2=another extracted

bit of cipher file.

4. Perform ch1=ch1+ch2-96 where

ch1=decrypted bit. The variable ch1 may

have values 0 or 1 i.e. ASCII 48 or 49.

5. Write the character ch1 into the cipher

file.

6. Perform ch2=ch1. Goto 3 until the entire

cipher file is processed.

7. End

(iii). The Bitwise encryption module using bit-

level feedback generation.

ENCRYPTION

Step-1: Compute cod=∑key[i]*(i+1) from the password

„key‟ provided by the user.

Step-2: Compute k=modulus (cod, 256). Define i=0.

Step-3: Write the character with ASCII value k in the file

containing the feedback keypad. Increment k and i. If i<l

GOTO 3.

Step-4: Randomize the feedback keypad using simple

character randomization.

Step-5: Split the plain and feedback keypad into respective

bits and store them in two files.

Step-6: Extract one bit from the plain file and the feedback

file each and store them in characters „ch‟ and „chb‟

respectively. Define c=0.

Step-7: Compute m= (ch + chb + c)-96

Step-8: If m>=2 then perform m=m-2.

Table-II: ABETF ENCYPTION (FEEDBACK

GENERATION): The algorithm takes into consideration that

the ASCII value of „0‟ is 48. Hence, the subtraction of (2*48)

is performed during the computation of m.

After the bitwise OR Cipher bit becomes the feedback and

the carry is ignored

Step-9: Perform c=m

Step-10: Write the integer m in the output file.

Step-11: Goto 6 until the end of the file is reached.

Step-12: Convert the bits in the output file into respective bits

to produce the cipher file.

Step-13: END

DECRYPTION

Step-1: Compute cod=∑key[i]*(i+1) from the password

„key‟ provided by the user.

Step-2: Compute k=modulus (cod, 256). Define i=0.

Step-3: Write the character with ASCII value k in the file

containing the feedback keypad. Increment k and i. If i<l

GOTO 3.

Step-4: Randomize the feedback keypad with bit-wise

randomization.

Step-5: Split the plain and feedback keypad into respective

bits and store them in two files.

Step-6: Extract one bit from the plain file and the feedback

file each and store them in characters „ch‟ and „chb‟

respectively. Define c=0.

Step-7: Compute character chb= (ch + chb + c)-96

Step-8: If chb > = 2 then perform chb=chb-2.

Step-9: Perform c=ch-48

Table-III: ABETF DECYPTION (the cipher bit is feedback)

FEEDBACK: c 0 1 1 0

CIPHER:

ch

1 1 0 0

KEY BITS:

chb

1 0 0 1

PLAIN BITS: 0 0 1 1

FEEDBACK: c 0 1 1 0

PLAIN BITS: ch 0 0 1 1

KEY BITS: chb 1 0 0 1

CIPHER BITS: 1 1 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

37

Step-10: Write the ASCII of character „chb‟ in the

output file.

Step-11: Goto 6 until the end of the file is reached.

Step-12: Convert the bits in the output file into

respective bits to produce the cipher file.

Step-13: END

3. WORKING OF UEA MODULE

4. TEST RESULTS

A number of expansive experiments have been performed on

the plain texts in order to ascertain whether the UEA

algorithms is effective in all possible varieties of plain files

irrespective of their sizes and formats. The authors have

looked closely in order to be able to detect repetitions in

patterns that may make the programs susceptible to

cryptographic attacks like Brute Force. Secondly the

dependence of the encryption on the user password has also

been tested thoroughly to make sure that the algorithm makes

good use of the feature of multiple encryption.

The combination of the three modules have been done in a

manner that the process of encryption is accelerated. The

algorithm works at the bit-level and the test results show that

the quality and strength of encryption obtained is significantly

higher than the techniques that work with bytes. The test

results include (i) Some General plain text inputs (ii) the

change in the cipher text when applied on the same plain

text but with different passwords and (iii) Frequency

analysis of some rare test cases. (iv) Time Performance. (v)

Byte wise comparitive analysis of the cipher files of three

similar inputs.

(i) Some general plain text inputs

Table IV: The miscellaneous text inputs and corresponding

cipher files.

Password: people

Number of times encryption is performed=5 (minimum

encryption number)

Plain Text Cipher Text

Dddddddddddddddddddddd

dddddddd

†_}7S^_¥‹0^Ñð¼þÆ½:Ôa

Ð·óI]-Ùá

He is great 631Iµ_àø_}•

Ce is great 8U?_Dˆ_gô“s_

A Christian Minority

Higher Educational

Institution, St. Xavier's was

founded in 1860 by a

Catholic Minority Religious

body, the Society of Jesus,

and was affiliated to

Calcutta University in

1862. While preference is

shown to the educational

and cultural needs of the

Minority community,

admission is open to all

irrespective of caste, creed

and nationality!

)¼9Ú×ÏŢ•¨Z_œL«õùm3ÏE

Tig„‡¸•o__6DÉÒv+_•!_Ñ

_!pÕËok$H•DSð˜t?)¢Ô/5

�O}J2Ãt›®:G»•Æ{¹êkôÑ

0__¬ŤÈ¥š.±¼¤_*ßv• ÍL`Óø

Eţ]MÊn•Ã=$__2ÔrÞ�•…

�8[Í_ÿ|•ø:{@�••ÈH²ûöA;

±d\Á___Ù‡ó$\Ø_q__R„E¤

”g¤g‰ìö\ß_õ´ÄVÅ¬Ô$È3

Âø•o_@Ť2¨.Csé¼®ª_I†mÃ

TÈ_ßhÈ.`ùïp8_PŤRŢÓ Ù`Ï_

z_Æo__µä„"j~Eñ_¯_<[À2á

ôO_»_ã_Gµ«Š782'ÏÚ___“

b«‰ýU_ëU•¨y/g•__9=_M

išR0Üò¬FlmV_¥•aÂ•¶$Þö

YÆs• &&6['×__U«ØLæK

D@:=€ä¢‡‰¢þï_°0û

aaaaabaaaaa ùæý_¥Ÿ¶ü‚n

(ii) The change in the cipher text when

applied to the same plain text but

with different passwords

Table-V: The following table will help us better understand

the importance of the user password and how the cipher file

changes drastically with changing passwords.

Plain text Password Cipher Text

AAAAAAAAAAAAAA

AAAAAAAAAAAAAA

AAAAAAAAAAAA

10 ´A·õ_êú£&!wÎƒŠ:ÿnY(

=4šbí>èÈ¶jZr™¹ÈøÃìz·

AAAAAAAAAAAAAA

AAAAAAAAAAAAAA

11 3|_yÔ_Cˆ„•G.ŢÖ™†Y

Õ�<_iyµy„d‹„Âô_ºÜA¨

Õø¶

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

38

AAAAAAAAAAAA

AAAAAAAAAAAAAA

AAAAAAAAAAAAAA

AAAAAAAAAAAA

12 ÷J8¡É•_|]^Bn¶DÚ(zã9ñ

Zð�f_5±HdŸ•©ýu³Kn

À„i

AAAAAAAAAAAAAA

AAAAAAAAAAAAAA

AAAAAAAAAAAA

13 ___Ù·*_[ˆŸY_N_Œ_™

+_ñţ>í™_‡„ŤB*ò á¯_J

‰NIë

(iii)Frequency Analysis of Rare text inputs

 The diagram below represent the frequency spectrum of two

rare text inputs. 1000 characters of ASCII 1 have been

shown in Result-I. 1000 characters of ASCII 2 have been

shown in Result-II and ASCII 255 in Result-III. The

objective of this experiment is to understand the distribution

of characters in the cipher file. The dominance of a few

characters in the cipher file is a negative. However in the

frequency distribution in the following figures, it will be

evident that the distribution of characters in the cipher file is

rather balanced.

The Y-AXIS represents the frequency and the X-AXIS

signifies the characters 0-255. The graphs shown in the

diagram represent the distribution of characters in the

cipher file. The spectrum is expected to be balanced with

regard to the distribution of characters.

Fig-II: The result-I Ŕ 1000 characters of ASCII 1.

Fig-III: The result-II Ŕ 1000 characters of ASCII 3.

Fig-IV: The result-III Ŕ 1000 characters of ASCII 3.

(iv) Performance Analysis w.r. t time

Table-VI: The UEA algorithm has been tested under various

conditions in order to ensure that the time taken to perform

the encryption and decryption procedures can be noted down

and studied. The results have been catalogued below.

Plain Text Time to

Encrypt

(in

seconds)

Time to

Decrypt

(in

seconds)

64 characters of „A‟ 1 1

256 characters of „A‟ 2 2

300 characters of „A‟ 2 2

512 characters of „A‟ 3 3

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

39

(v) Byte wise comparitive analysis of the

cipher files of three similar inputs.

Table-VII: The table below shows the cipher files for 30

characters of ASCII 252, 253 and 254 and their byte wise

comparison. We look for any similarity in the corresponding

bytes of cipher files. From the table below, we see that there

are almost no such occurrences.

Byte Number Cipher for

ASCII 252

Cipher for

ASCII 253

Cipher for

ASCII 254

1 Ü Û Þ

2 Q q ?

3 Ê _ •

4 ÷ _ »

{_

5 _ 6 Õ

6 § M Ó

7 e Í ³

8 Ñ Ö •

9 Þ þ @

10 * À _

11 ð X ë

12 _ _ _

13 ™ ¹ ,

14 G Ô ¦

15 | £ ü

16 ¤ ® O

17 Ţ à ¥

18 Õ R s

19 Q ‰ «

20 Ù • "

21 G ß (

22 X ® T

23 V ! ƒ

24 Ñ _ ¯

25 Ê E ²

26 Â „ •

27 Ƒ ‰ Õ

28 ¦ Û Þ

29 Ü q ?

30 Q _ •

5. DISCUSSION ON FUTURE SCOPE

AND CONCLUSIONS

The idea behind this UEA algorithm was to ensure that we

devised a method that could handle all possible files. The

plain text files have been split into respective bits before

applying the aforementioned algorithms. The exhaustive test

results reveal a satisfactory range of cipher files. Even when

the same characters are provided as input, the cipher files

have almost no occurrence of repetitive patterns. The

combination of the three methods of randomization, serial

feedback and the bit-level feedback pad has proved very

effective. The use of multiple encryption and the role of the

password provided by the user have also been demonstrated in

the test result

The stress was largely on rare text inputs which are likely to

suffer from bad encryption. As mentioned before have applied

our method on some known text where the single character

repeats itself for a number of times and we have found that

after encryption there is no repetition of pattern in the output

file.

It was also understood that any tampering of the cipher file

could make the retrieval of plain text impossible.

6. ACKNOWLEDGEMENT
We are grateful to the Department of Computer Science for

giving us the unique opportunity to work on Symmetric Key

Cryptography. One of the authors (AN) sincerely expresses

his gratitude to Fr. Dr. Felix Raj and Fr. Jimmy Keepuram for

allowing us to carry out research work. AN is thankful to the

University Grant Commission for their support and financial

assistance. JN is grateful to A.K. Chaudhuri School of IT and

SR, NM, SA and AN are thankful to St. Xavier‟s College. The

authors extend their thanks to the Computer Science Hons.

(2011-2012)for their encouragement and help.

7. REFERENCES
 [1] Symmetric Key Cryptography using Random Key

generator: Asoke Nath, Saima Ghosh, Meheboob Alam

Mallik: ŖProceedings of International conference on

security and management(SAMř10ŗ held at Las Vegas,

USA Jull 12-15, 2010), P-Vol-2, 239-244 (2010).

 [2] A new Symmetric key Cryptography Algorithm using

extended MSA method :DJSA symmetric key algorithm,

Dripto Chatterjee, Joyshree Nath, Suvadeep Dasgupta

and Asoke Nath : Proceedings of IEEE CSNT-2011 held

at SMVDU(Jammu) 3-5 June,2011, Page-89-94.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

40

[3] New Symmetric key Cryptographic algorithm using

combined bit manipulation and MSA encryption

algorithm: NJJSAA symmetric key algorithm: Neeraj

Khanna,Joel James,Joyshree Nath, Sayantan

Chakraborty, Amlan Chakrabarti and Asoke Nath :

Proceedings of IEEE CSNT-2011 held at

SMVDU(Jammu) 03-06 June 2011, Page 125-130.

[4] Advanced Symmetric key Cryptography using extended

MSA method: DJSSA symmetric key algorithm: Dripto

Chatterjee, Joyshree Nath, Soumitra Mondal, Suvadeep

Dasgupta and Asoke Nath, Jounal of Computing, Vol3,

issue-2, Page 66-71,Feb(2011).

[5] Advanced Steganography Algorithm using encrypted

secret message : Joyshree Nath and Asoke Nath,

International Journal of Advanced Computer Science and

Applications, Vol-2, No-3, Page-19-24, March(2011).

 [6] Symmetric key Cryptography using modified DJSSA

symmetric key algorithm, Dripto Chatterjee, Joyshree

Nath, Sankar Das, Shalabh Agarwal and Asoke Nath,

Proceedings of International conference Worldcomp

2011 held at Las Vegas, USA, July 18-21, Page 312-318,

Vol-I(2011).

 [7] Cryptography and Network, Willian Stallings, Prentice

Hall of India.

[8] Cryptography & Network Security, B.A.Forouzan, Tata

Mcgraw Hill Book Company.

[9] An Integrated symmetric key cryptography algorithm

using generalized vernam cipher method and DJSA

method: DJMNA symmetric key algorithm, Debanjan

Das, Joyshree Nath, Megholova Mukherjee, Neha

Chaudhury and Asoke Nath, Proceedings of IEEE

conference WICT-2011 held at Mumbai University Dec

11-14,2011

[10] Symmetric key cryptosystem using combined

cryptographic algorithms-generalized modified vernam

cipher method, MSA method and NJJSAA method:

TTJSA algorithm, Trisha Chatterjee, Tamodeep Das,

Joyshree Nath, Shyan Dey and asoke Nath, Proceedings

of IEEE conference WICT-2011 held at Mumbai

University Dec 11-14,2011.

[11] Ultra Encryption Standard(UES) Version-I: Symmetric

Key Cryptosystem using generalized modified Vernam

Cipher method, Permutation method and Columnar

Transposition method, Satyaki Roy, Navajit Maitra,

Joyshree Nath,Shalabh Agarwal and Asoke Nath,

Proceedings of IEEE sponsored National Conference on

Recent Advances in Communication, Control and

Computing Technology-RACCCT 2012, 29-30 March

held at Surat, Page 81-88(2012).

 [12] Symmetric key Cryptography using two-way updated Ŕ

Generalized Vernam Cipher method: TTSJA algorithm,

International Journal of Computer Applications(IJCA,

USA), Vol 42, No.1, March, Pg: 34 -39(2012).

