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ABSTRACT  

An accurate three parameter approximate solution of 

fundamental mode, to describe different propagation parameter 

of graded-index optical fiber has been presented. Due to three 

parameter optimization of the fundamental modal solution, the 

results are much more accurate for a wide range of optical fiber 

specifications. Employing variational technique, an estimation 

of effective area and effective index with proposed fundamental 

modal field are carried out. It has been shown that the results 

match identically with the exact available results for step and 

parabolic refractive index profile optical fiber. The accurate 

analytical expressions for the evaluation of effective area and 

effective index are formulated. Optimization of three parameters 

has been carried out for a wide range of normalized frequencies. 

Data for these parameters are also provided, which can be used 

directly while calculating different design parameters of an 

optical fiber.   
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1. INTRODUCTION  
Optical fibers in telecommunication systems now carry more 

channels and higher optical powers than ever before. Systems 

are operating in which the fiber carries such a high optical 

power density that signals can modify the transmission 

properties of the fiber. Hence, an accurate choice of 

fundamental modal field leads to exact description of 

propagation characteristics of an optical fiber. Initially, 

Gaussian approximation [1] was used to describe fundamental 

field, to provide simple analytical expressions for modeling an 

optical fiber. But, Gaussian expression fails to give accurate 

result for lower values of normalized frequency. Also, it is not 

useful to estimate evanescent field exactly. Many attempts have 

been made to achieve higher accuracy than the Gaussian field, 

such as, Gaussian exponential expression [2], Gaussian–Hankel 

[3], the extended Gaussian [4], the generalized Gaussian [5] and 

the Laguerre–Gauss/Bessel expansion approximation [6]. These 

modified approximations are much more accurate than the 

Gaussian field. Among these, Gaussian exponential 

expression[2] provides good result near the cut off frequency of 

next higher mode, but does not give accurate result for lower 

range of normalized frequencies[3]. An analytical expression 

without any requirement of optimization has also been reported 

[7]. But, such an expression may not be capable to meet all 

specifications of an optical fiber. Moreover, efficient optimizing 

software package is readily available in the market. So, dynamic 

optimization for all specification of the optical fiber can be 

preferred as an appropriate process, capable to satisfy variety of 

designer’s demands.  

All approximations for fundamental modal field reported so far, 

are limited to one or two variational parameters. But, recent 

advent of fiber manufacturing technology is associated with 

various design specifications. Thus, to accommodate all kinds 

of design and more flexibility in terms of three parameter 

approximation in formulating various propagation parameters of 

graded–index fibers has been introduced. Implementing 

variational technique, which is considered to be the most 

appropriate technique [8] for such kind of calculations, it has 

been  demonstrated that the proposed  approximation provides 

much more accurate analytical expressions to characterize 

variety of fiber behaviors. Again, the optimization process 

requires accurate analytical expression for propagation constant 

, and core parameter U , which involve various fiber 

parameters, such as, core radius (a), wavelength (=2/ k), 

refractive indices of core and cladding (nco and ncl). Hence, any 

desired specification can be substantiated by varying these fiber 

parameters.    

Nonlinear effects occur more efficiently in optical fibers than in 

bulk samples of their constituent materials because the optical 

field is confined to the small fiber core area over long distances. 

The confinement of the optical field within the core is achieved 

by the refractive index profile, which determines the field 

distribution of the fundamental mode. In general, optical power 

density is given by the optical power divided by the area over 

which it is distributed. The field of the fundamental mode of a 

single mode fiber bears little resemblance to the refractive index 

profile and therefore the area of the doped core region itself 

does not truly represent the area of the mode field. The effective 

area, Aeff, of the mode must be calculated from the field 

distribution but since this falls gradually to zero away from the 

fiber axis, some operational definition of effective area is 

required. A similar problem arises with respect to defining the 

mode field diameter (MFD) of single mode fibers. The proposed 

semi analytical techniques can be used to measure the mode 

field distribution of a single mode fiber and can therefore be 

used to calculate the effective area. 

This report presents to highlight that the proposed 

approximation is capable to estimate the fiber effective area 

over a wide range of normalized frequency, the parameters 

which are being evaluated  are, effective index, effective area, 

of a step and parabolic–index optical fiber, with the proposed 

formulation of fundamental field. All results from calculations 

are in excellent agreement with the exact result.  
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In the proposed semi analytical formulation, Nelder-Mead 

method [9,10,12] of nonlinear unconstrained minimization have 

been  used due to the fact that it is a direct search method [11] 

i.e. it does not require any derivative information, so it can 

optimize non-stationary functions and thus it can optimize core 

parameter U more efficiently[9, 10, 12]. Due to large scale 

availability of optimizing software in present day’s market 

which enables dynamic optimization of core parameter U for 

each and every specification of optical fiber possible.  This 

renders the use of optimization of core parameter U to be an 

efficient and computationally appropriate process. The Nelder-

Mead simplex method gained popularity very quickly. At earlier 

time, due to its simplicity and low storage requirements, it was 

ideally suited for use on minicomputers, especially in 

laboratories i.e. computation burden is less for this method [13]. 

Despite its age and recent advances in direct search methods, 

the Nelder-Mead method is still among the most popular direct 

search methods in practice[11].Therefore, it can be stated that 

our three parameter fundamental modal field solution coupled 

with Nelder-Mead Simplex method for nonlinear unconstrained 

minimization yields computationally appropriate results [14, 

15]. 

 

2. THEORY 

2.1. Basic formulations  
For a weakly guiding fiber, the refractive index profile is given 

by, 
2 2 2 2

2 1 2 1 1
( ) ( ) fn R n n n f n      for, 1R       

2 2 2 2

2 1 2 2 2
( ) ( ) fn R n n n f n      for, 1R            

      (1) 

Here the normalized profile function is given by, 

 f1=1   for, step–index profile, 

 f1=1 – R2  for, parabolic–index profile, 

and,  f2=0 

Here, R (= r/a) is the normalized radius, a is the core radius, n1 

and n2 being the refractive indices of core axis and cladding 

respectively, r is the actual radius of the optical fiber.  

The proposed three parameter approximation for the 

fundamental mode as the trial field is as follows, 
2 ( 1) / 2

0
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To employ variational technique, first we consider the 

expression of propagation constant ,  
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Applying equation (1), we obtain, 
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Here, k is the free space wave number. Now, the core parameter 

U is given by, 
2 2 2 2 2

( )U a k n          (6) 

Here n is the refractive index of the core axis and a is the core 

radius. For a fixed value of normalized frequency V, U is 

minimized with respect to the variational parameters, R0 and 

. With the optimized values of these parameters, propagation 

constant  and other characteristic parameters of an optical fiber 

can be evaluated. 

  

2.1.1. Effective Index (neff):  
The Effective index of an optical fiber is defined as, 

effn
k


      (7) 

Once propagation constant  is found, effective index can be 

obtained from the above equation. 

 

2.1.2. Effective Area (Aeff):   
The effective area of an optical fiber is defined as,   

2

4

0

2
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2eff
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A a

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
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



   (8) 

Integrals given in (8) can be evaluated analytically by using the 

expression of fundamental modal field given in (2). Hence, 

effective area can be formulated. 

 

2.2. Evaluation of integrals: 

Let,
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2.2.1. Analytical expression for propagation 

constant (): 
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  for, parabolic–index profile 
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Putting (12) – (14) in (5), we get analytical expression for 

propagation constant, and hence, expression for U can be 

obtained from (6). 

 

2.2.2. Analytical expressions for Effective Index 

(neff): 
Once propagation constant  is obtained, effective index can be 

estimated from (7). 

  

2.2.3. Analytical expressions for Effective Area 

(Aeff): 
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Substituting (12) and (15), in equation (8), analytic expression 

of effective area (Aeff) can be formulated. 

 

2.3. Nelder-Mead Simplex Method for 

Nonlinear Unconstrained Optimization [12] 

 
The general Nelder-Mead Simplex Method can be given as:  

1) Construct the initial working simplex S.  

2) Repeat the following steps until the termination test is 

satisfied:  

a) calculate the termination test information;  

b) If the termination test is not satisfied then transform 

the working simplex.  

3) Return the best vertex of the current simplex S and the 
associated function value.  

Even though the method is quite simple, it can be implemented 

in many different ways. Apart from some minor computational 

details in the basic algorithm, the main difference between 

various implementations lies in the construction of the initial 

simplex, and in the selection of convergence or termination tests 
used to end the iteration process, as stated hereunder. 

2.3.1 Initial simplex  

The initial simplex S is usually constructed by generating 

   1n    vertices 0 1,  , nx x x  around a given input 

point
n

inx R . In practice, the most frequent choice is 

0  inx x  to allow proper restarts of the algorithm. The 

remaining n vertices are then generated to obtain one of two 
standard shapes of S:  

 S is right-angled at x0, based on coordinate axes, or  

0:    j i jx x he  ,    1, .., ,j n   

where hj is a step size in the direction of unit vector ej 

in 
n

R   

 S is a regular simplex, where all edges have the same 
specified length.  

2.3.2 Simplex transformation algorithm  

One iteration of the Nelder-Mead method consists of the 

following three steps.  

1. Ordering: Determine the indices ,  ,  h s l   of the 

worst, second worst and the best vertex, respectively, 
in the current working simplex S 
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max ,h j
j

f f    max ,s j
j h

f f


  min .l j
j h

f f


  

In some implementations, the vertices of S are ordered 

with respect to the function values, to 

satisfy 0 1 1........ n nf f f f    . Then 

  0,     1,l s n    and   h n  . Consistent 

tie-breaking rules for this ordering were given by [9].  

2. Centroid: Calculate the centroid c of the best side—

this is the one opposite the worst vertex xh 

.

1
: j

j h

c x
n 

   

3. Transformation: Compute the new working simplex 
from the current one.  

 First, try to replace only the worst vertex hx   

with a better point by using reflection, expansion 

or contraction with respect to the best side.  

 All test points lie on the line defined by hx  and 

c, and at most two of them are computed in one 

iteration.  

 If this succeeds, the accepted point becomes the 

new vertex of the working simplex.  

 If this fails, shrink the simplex towards the best 

vertex lx  . In this case, n new vertices are 

computed.  

Simplex transformations in the Nelder-Mead method are 

controlled by four parameters: α for reflection, β for contraction, 

γ for expansion and δ for shrinkage. These should satisfy the 

following constraints 

0,0 1, 1, ,0 1.             

The standard values, used in most implementations, are 

1 1
1, , 2, .

2 2
        

A slightly different choice was suggested by Parkinson and 

Hutchinson [10]. An alternate notation for these four 

parameters: , , , ,     respectively, is used in [9] and 

Matlab implementation.  

The following algorithm describes the working of simplex 

transformations in step 3 [11], and the effects of various 
transformations are shown in the corresponding figures.  

Reflect: Compute the reflection point 

 :     –  r hx c c x   and  :  r rf f x . If 

l r sf f f  , accept rx  and terminate the iteration.  

 Expand: If  r lf f  , compute the expansion 

point : ( )e rx c x c   and : ( )e ef f x . 

If e rf f  , accept ex  and terminate the iteration. 

Otherwise (if e rf f ), accept rx  and terminate the 

iteration. 

This ―greedy minimization‖ approach includes the 

better of the two points rx , ex in the new simplex, 

and the simplex is expanded only if e r lf f f  . 

It is used in most implementations, and in theory [9]. 

The original Nelder-Mead paper [12] uses ―greedy 

expansion‖, where ex is accepted if e lf f  and 

r lf f , regardless of the relationship between 

rf and ef . It may happen that r ef f , so rx  

would be a better new point than ex , and ex is still 

accepted for the new simplex. The working simplex is 

kept as large as possible, to avoid premature 

termination of iterations, which is sometimes useful 
for non-smooth functions [13].  

 Contract: If r sf f , compute the contraction 

point cx by using the better of the two points hx  and 

rx  .  

o Outside: If s r hf f f   , compute 

: ( )c rx c x c    and 

: ( )c cf f x . If cf f , accept cx and 

terminate the iteration. 

Otherwise, perform a shrink transformation.  

o Inside: If r hf f , compute 

: ( )c hx c x c    and 

: ( )c cf f x . If c hf f , accept cx and 

terminate the iteration. 
Otherwise, perform a shrink transformation. 

 Shrink: Compute n new 

vertices : ( )j l j lx x x x   and : ( )j jf f x , 

for 0, , ,j n  with j l . 

The shrink transformation was introduced to prevent the 
algorithm from failing in the following case: 

A failed contraction is much rarer, but can occur when a valley 

is curved and one point of the simplex is much farther from the 

valley bottom than the others; contraction may then cause the 

reflected point to move away from the valley bottom instead of 

towards it. Further contractions are then useless. The action 

proposed contracts the simplex towards the lowest point, and 

will eventually bring all points into the valley. 

2.3.3 Termination tests  
A practical implementation of the Nelder-Mead method must 

include a test that ensures termination in a finite amount of time. 

The termination test is often composed of three different parts: 

term_x, term_f and fail.  

  term_x is the domain convergence or termination 

test. It becomes true when the working simplex S is 
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sufficiently small in some sense (some or all 

vertices jx are close enough).  

  term_f is the function-value convergence test. It 

becomes true when (some or all) function 

values jf are close enough in some sense.  

 fail is the no-convergence test. It becomes true if the 

number of iterations or function evaluations exceeds 
some prescribed maximum allowed value.  

The algorithm terminates as soon as at least one of these tests 

becomes true.  

Various forms of term_x and term_f tests have been used in 

practice, and some common implementations of the algorithm 

have only one of these two tests [14, 15]. 

If the algorithm is expected to work for discontinuous functions 

f, then it must have some form of a term_x test. This test is also 

useful for continuous functions, when a reasonably accurate 

minimizing point is required, in addition to the minimal 

function value. In such cases, a term_f test is only a safeguard 

for ―flat‖ functions. 

Table 1: Values of optimizing parameters for different 

normalized frequency for Step index profile 

 R0  V 

1.068963 1.190014 2.033124 1.4000 

0.810013 0.894742 3.086655 1.6000 

2.139003 1.311694 4.595406 1.8000 

1.708235 1.086141 6.939758 2.0000 

1.533399 0.970482 11.088520 2.2000 

1.142917 0.799907 20.448212 2.4000 

0.033122 0.131163 61.545382 2.6000 

1.839455 0.941374 61.719697 2.8000 

0.726407 0.572523 61.543884 3.0000 

0.000570 0.015588 62.724726 3.2000 

 
Table 2: Values of optimizing parameters with different 

normalized frequency for parabolic–index profile. 

 R0  V 

1.356165 1.258932 1.314966 1.7500 

1.451176 1.070906 1.925299 2.0000 

1.245270 0.864681 2.651519 2.2500 

1.019513 0.705841 3.518595 2.5000 

0.988457 0.641018 4.557522 2.7500 

1.582103 0.759293 5.806230 3.0000 

1.050838 0.585569 7.310931 3.2500 

1.619058 0.693173 9.128715 3.5000 

0.560740 0.391322 11.329089 3.7500 

0.854820 0.465577 13.997434 4.0000 

 

3. RESULTS AND DISCUSSIONS 
Detailed comparison between proposed formulation and 

available exact results [18] has been carried out in this section, 

to investigate the accuracy of the  proposed approximation of 

fundamental modal field. It has been justified by many authors 

[2-6], that two parameter approximation is more accurate than 

single parameter approximation. The proposed approximation 

of fundamental field involves three optimizing parameters, 

which incorporates more flexibility to modify design parameters 

for an optical fibers having wide range of specifications. 

Optimized values of these parameters for different normalized 

frequencies are given in Table 1 and Table 2 for step and 

parabolic index profile respectively, so that one can use it 

directly for practical purposes. Values for other normalized 

frequencies can also be obtained easily, if required. 

In order to verify the feasibility of the proposed 

approximation, a comparison is made  between the results of 

proposed semi analytical formulation and  the exact results [18]. 

Variation of Effective index (Fig. 1, 2)  and effective area (Fig. 

3, 4)  as a function of normalized frequency, are plotted for step 

and parabolic index profile respectively. The curves in figures 

corresponding to the results obtained and exact numerical result 

are indistinguishable, particularly in the lower normalized 

frequency region, where the use of a simple Gaussian function 

may lead to inaccurate result.  

 
Figure.1. Variation of Effective Index with normalized 

frequency (V) for step–index profile (—— exact results;   

results by our approximation.). 

 

 
Figure.2. Variation of Effective Index with normalized 

frequency (V) for parabolic–index profile (—— exact 

results;   results by our approximation.). 

 

4. CONCLUSIONS 
An accurate three parameter approximation of fundamental 

modal field for an optical fiber has been presented, which can 

be effectively used to estimate effective index and effective area 

of graded-index. Taking step and parabolic index fiber as 

examples, it has been shown that the results obtained with the 

proposed function are excellently matching with the exact 

results [18]. Besides providing values of optimizing parameters 

involved in the approximate field, all related analytical 

expressions have also been presented which can be used directly 
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by optical fiber designer while predicting effective area of an 

optical fiber, for a wide range of normalized frequencies. These 

results can be also used as reference results to verify the 

accuracy of other approximate models.  

 

 
Figure.3. Variation of Effective area with normalized 

frequency (V) for step–index profile (—— exact results;   

results by our approximation.). 

 

 
Figure.4. Variation of Effective area with normalized 

frequency (V) for parabolic–index profile (—— exact 

results;   results by our approximation.). 
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