
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

31

Multiple Output Complex Instruction Matching Algorithm

for Extensible Processors

Puneet Goyal
Associate Professor

CS, Graphic Era University Dehradun, Uttarakhand,
India

Narayan Chaturvedi
Assistant Professor

CS, Graphic Era University Dehradun, Uttarakhand,
India

ABSTRACT
In order to meet the increasing challenges concerning the
performance and power demands of embedded applications, a
processor is now embedded with the Application-specific
functional units. Customized Functional Units both as

hardware and the corresponding instructions are embedded to
the base processor in order to improve the computational
efficiency for a target application. During this process of
generating the complex instructions and also for the code
generation on this extended processor, one of the critical
challenges for the compiler is to automatically perform fast
and efficient instruction matching and selection. In this
project, we developed a novel and efficient algorithm for
matching the multiple-output complex Functional Units

(FU's). We will also illustrate that the assumption, which is
the basis of the most of the current covering methodologies,
 may not always hold true. Current covering algorithms,
generally aim to find the optimal cover within each basic
block that minimizes the number of selected matches. Fewer
matches translate to fewer operations for the schedule, and it
is expected that the increased scheduling freedom leads to
better (shorter) schedule. We provide some examples showing

that this assumption need not necessarily achieve the goal of
minimizing the execution time.

General Terms
Matching algorithms, Instruction Set Architecture.

1. INTRODUCTION
Recently in the market, there is explosive demand for the
Mobile phones, PDAs, iPads, digital video cameras, audio
devoices and other high performance special purpose
electronic devices. These devices need to be incorporated with

application-specific hardware design is order to meet the
challenging cost, power and performance demands. One of
the known strategies to provide such special hardware designs
is to build a system comprising a low cost core processor,
such as an ARM [1] and a number of highly specialized
application specific integrated circuits (ASICs) incorporated
within it. The ASICs are specially designed hardware units
that can accelerate the execution of the computationally

demanding portions of the application which would otherwise
run too slowly if using just the core processor. Clark et. al [2]
and Pothineni et. al. [3] mentions that while this approach is
effective, ASICs are costly to design and offer only a
hardwired solution that permits almost no post
programmability.
An alternative approach is to have a processor centric system
with customized accelerators. Here the core processor is
augmented with the instruction set that is capable of

significantly improving the performance and power of
application in a cost-effective manner, compared to general
purpose system. Also the system is post programmable and
here the customized instructions with minor modification can
easily be generalized to have their use across a set of

applications Seeing these potential benefits, couple of
commercial efforts [4,5] had also been made to bolster the
high level design of custom processors.
An ASIP need to efficiently utilize the instruction level
parallelism (ILP) available in the given application, so it can
deliver the high performance. The VLIW architecture
provides a better opportunity of customization, so we consider
a VLIW architecture which consists of some application

specific coarse grain functional units that augmented with a
core set of functional units (FUs). Particularizing or
constructing custom-make FUs for esp. frequent occurring
complex operations in a given application can likely lead to
very significant performance gains.

2. RELATED WORK
Matching and covering algorithms are well-known in the
fields of code generation and logic synthesis. Keutzer [6] was
the first to recognize the similarity between the software
compiler's task of generating code and the technology
mapping problem in automated VLSI design. Both problems
can be handled with a matching algorithm, to find all possible
instantiations of patterns (instructions or standard cells),

followed by a covering algorithm to make a selection of
matches that optimizes some criterion (execution time, code
size, VLSI area or latency, etc.).
Many researchers had studied the potential utility of
customizing the instruction set, but most of them do not
describe the methods to automate the process. Some
algorithms [7, 8] evaluates each node of the DFG via
exploring the corresponding complete binary tree to decide if

it can be a possible candidate. Their time complexity being
exponential limits the size of DFG that can be considered in
order for the algorithm to provide results in timely manner.
For code generation, we need to make the selection from the
given set of instructions (including the complex ones) in a
way that effectively utilizes the VLIW processor and
Application Specific Functional Units (AFU). The goal is
minimizing the schedule length. The complexity arises due to
the fact that we want covering to be architecture driven and

the I/O time-shape of the AFU could be distributed, it gives us
to efficiently use the resources (Functional units and
registers), thereby reducing the execution time. Most methods
[7] generally aim to find the optimal cover within each basic
block that minimizes the number of selected matches. Fewer
matches translate to fewer operations for the schedule, and it
is expected that the increased scheduling freedom leads to
better (shorter) schedule.

2.1 Instruction Matching
As described in [9], there are two main approaches to
handling the matching problem when performing technology
mapping: the Boolean and the structural approach.
The Boolean approach can only be applied to networks of

Boolean functions and Structural matching will work on
networks containing nodes of any type of function.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

32

In a more recent work by Kukimoto et al. [10], a structural
matching method was introduced that can handle DAG-
shaped subject graphs, allowing reconvergence within the
graph. None of the previously described matching algorithms
allow pattern graphs to have more than one output.

Peymandoust et. al. [11] employs symbolic algebra using
commercial symbolic computer algebra systems like Maple
and Mathematica, which can perform matching for even
multiple-output pattern graphs. But it works only for
arithmetic data flow segments, making this approach
infeasible for most of the embedded applications. Paolo Ienne
et. al. [12] make use of symbolic algebra tools for instruction
selection. As opposed to tree covering based algorithms,

mapping is performed simultaneously with algebraic
manipulations in their algorithms. But as mentioned earlier
this is restricted to only arithmetic data flow segments.
Matching algorithm proposed by Arnold and Corporaal [13,
14] does not have this restriction, making it possible to exploit
a larger family of pattern graphs. They perform a detailed
search space exploration. We will experimentally show that
the instruction matching algorithm proposed by us is highly

efficient in comparison to them.

3. PROBLEM DEFINITION
Let CFU-lib be a library of Complex Functional Units (may
be multiple-output), Gpat-i be a data flow graph corresponding

to the ith customized instruction (or CFU) in the CFU-
lib(Figure 1) and Gsub be a data flow graph (DFG)(Figure 2a)
within the control flow graph of a C application,

Instruction Matching:
Given Gsub and CFU-lib, find for each Gpat-i in CFU-lib, all

those dataflow segments of Gsub that match with the Gpat-i.

1 cycle

+ +

- -

x

+ <<

3 cycles

2 cycles

x +

x x

-
<<

x

Figure 1: CFU-lib: A library of functional units

Instruction Selection:
Given subject graph, Gsub with full matches found for all

CFUs, find the subset of full matches that when implemented,
minimizes the data ready time of the slowest subject graph
output in the VLIW processor.

+

-

x+

x

x -

+ <<

-

3 cycles

1 cycle

4 cycles

+
-

x+
x

x -
+ <<

-

2 cycles

 (a) (b)

1 cycle

2 cycles

2 cycles

2 cycles

+
-

x+
x

x -
+ <<

-

2 cycles

 (c)

Figure 2: (a) Gsub Subject Graph (b) Cover selected when

purpose is to minimize number of patterns used to cover -

no. of cycles taken=9 (c) Cover selected when purpose is

to minimize the data ready time - no. of cycles taken=7

4. ALGORITHM FOR INSTRUCTION

MATCHING
Given Gsub and CFU-lib, we must try to find all matches
between pattern graphs Gpat (from pattern library CFU-lib)
and sub graphs of Gsub -The strategy for this is described in
Section 4.1.
After all matches are found, we try to find the best cover, or
selection of matches, that is, the set of matches that, when
implemented, minimizes the data-ready time of the longest
path through the subject graph. The covering approach is

described in Section 4.2.

4.1 Instruction matching
Primary nodes: These are those nodes of Gpat, who’s all input
operands belong to the set of source operands of the
customized instruction, corresponding to that particular Gpat.

Reachability matrix: From the adjacency matrix of a
directed graph, we compute the Reachability matrix where an
element Rij in Reachability matrix is 1, if there exists a path
from node i to node j. Reachability[i][i] is considered to be 1.

compute reachability ()

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

33

{
for (i = 0; i < num_ nodes; i ++)
 Reachability[i][i] = 1
for (j = 1; j < num _nodes; j ++)
 for (i = j-1; i >= 0; i--)

 {
 Reachability[i][j] = Adj_matrix[i][j]
 if (Reachability[i][j] == 0)
 for (k = j; k > i; k--)
 Reachability[i][j]+ = (Adj_matrix[i][k]
*Adj_matrix[k][j])
 }
}

Algorithm 3.1: Reachability

CommonSink matrix: CommonSink[i][j] = 1 if there exist a k
such that Reachability[i][k] = 1 and Reachability[j][k] = 1.
We will attach an attribute degree (> 0) to this Commonsink
matrix.

CommonSink degree 1[][] = CommonSink[][].
CommonSink degree d[][] = (CommonSink[][])d.

Find match (Gsub, Gpat)
 {
for i = 1 to p,
 find nodes in Gsub matching with primary input nodes xi
//If primary node xi matches with ki nodes in Gsub
//then num_partial_matches = k1 * k2 * k3 * : : : * kp
//(partial matches)

for i = 1 to num_partial_matches
{
 //pruning the search space by applying heuristics
 //check if partial_matchi is an eligible candidate
 if(partial_match:Iseligible) num_eligible_candidates + +
}
for each_eligible_candidate {
 //validate this eligible_candidate for full match by traversing
along the data-flow edges.

 if (eligible_candidate_match:Isvalid) {
 n_valid_matches + +
 // update the match_vector list
 }
 }
}

Algorithm 3.2: find_match (Gsub, Gpat)

4.2 Two algorithms for partial match

identification
Let us consider for analysis that Gsub and Gpat has n and m

number of total nodes. And no of primary nodes in each Gpat
is p. Let us compare our algorithm (Algorithm 3.4) for
identifying partial matches with the partial match
identification algorithm (Algorithm 3.5) proposed by Arnold
[13].

Insn_matching ()
 {

For each basic block Gsub

 {
 compute Adjacency, Reachability and Commonsink
matrices for Gsub
 for each CFU graph, Gpat
 find match (Gsub, Gpat)
}}

Algorithm 3.3: Instruction Matching

FindPartialMatches_algorithm1 () {
for each pattern Gpat in pattern library
 for each pattern node Nprime_pat of Gpat{
 For each node Nsub of Gsub

 //check for opcode and outdegree constraint
 if Nodematch (Nsub, Nprime_pat)
 //create a new match
 new Match(Nsub, Nprime_pat)
 //let us say, ith prime node matched with ki nodes in
Gsub
}
Merge_matches()

 //This identify all partial matches.
 // Num_partial_matches = ∏iki, i. e of O(np)
}

Algorithm 3.4: Partial Matching Algorithm 1

FindPartialMatches_algorithm2() {
 for each pattern Gpat in pattern library
 for each Nsub of Gsub

 for each Npat of Gpat
 if Nodematch(Nsub, Npat)
 //create a new match
 new Match(Nsub, Npat)
 //let us say, ith node (Npat, i) matched with ki nodes in
Gsub
Merge_matches()
 //This identify all partial matches.

 // Num_partial_matches = ∏iki, i. e of O(nm)
}

Algorithm 3.5: Partial matching algorithm 2

4.3 Motivating example:
Example 4.1: The example as shown in Figure 2 illustrates
that the common assumption, (heuristic used by many current

methods) that lesser the number of patterns used, better will
be the scheduling time, may not always hold true.

In Fig 2(b), number of FUs used = 4 but it takes 9 cycles.
In Fig 2(c), number of FUs used = 5 but it takes 7 cycles only.

Fewer matches translate to fewer operations for the schedule –
this is generally considered the prime assumption for

developing efficient covering algorithms. So current covering
algorithms, generally aim to find the optimal cover within
each basic block. The above example clarifies that that this
assumption need not necessarily achieve the goal of
minimizing the execution time.

5. EVALUATION FRAMEWORK
For evaluating the efficiency of the Instruction Matching
Algorithm, we need to compile the given application code into
an intermediate representation where the C-code is reduced

into a DFG/CFG representation closer to assembler, although
still largely architecture independent. Dataflow nodes should
resemble generic assembler operations. This process would
ease the process of instruction matching, since the algorithm
is completely dependent on the topological characteristics of
the DAG constructed. Any of the two compiler
infrastructures, MachSuif[15] and Trimaran[16], could be
selected for this purpose. But because of inherent
complexities involved in Trimaran and being already familiar

with Machsuif framework, Machsuif is selected for the
purpose of establishing the efficiency of proposed instruction

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

34

matching algorithm. Afterwards, it is adopted in Trimaran
frame-work with some changes in data-structures, used for
traversing along the data-flow edges.

6. ANALYSIS AND RESULTS
For evaluating the performance of proposed instruction
matching algorithm, we used the bitwise benchmarks new life,
histogram and bubble sort. Our CFU-lib consists of 6 patterns
(or customized instructions) as shown in Fig 3.
Table 1 shows the number of complete (valid) matches found

in a particular Basic block of that application.
Number of partial matches is of O(np) but experimentally we
observed that it is much less than O(np). Also we analysed the
effect of heuristics in pruning the search space.
The Table 2 shows the fraction of eligible matches for
different values of p and for different benchmarks. The
eligible matches are those partial matches that qualify the
outdegree constraint, Common sink constraint, etc. Fraction of

eligible matches is computed as Number of eligible matches /
number of partial matches. Best case = 0% for a certain
benchmark and p, means that for a certain basic block (DFG)
in that benchmark, we observed that after applying the
heuristics, none of the partial match become eligible
candidate. Without going through the complicated task of
traversing through the data flow edges, we have filtered out
lot of unsuitable partial matches. It is important to note that

for p = 3, number of matches that would be considered for full
match are only 0.1 to 2% of the partial matches identified in
the stage1 of our algorithm. It means that for higher values of
p, the eligibility criteria imposed is very effective in pruning
the search space.
For applying the eligibly criteria, it is required to compute the
Reachability matrix, the Commonsink matrix beforehand. The
overhead involved is Reachability matrix and Commonsink
matrix computation time but as it is to be done for each basic

block only once and also, it is very helpful in effectively
pruning the search space, and we can easily choose to pay for
this overhead.
Theoretically, the number of comparisons performed while
checking for eligibility criteria is num_partial_matches*(p*(p-
1)/2). We compare this with the number of comparisons
actually done. On an average, for p = 2, we found the ratio of
actual number of comparisons and

num_partial_matches*(p*(p-1)/2) to be about 2.5 and for p =
3, this ratio is 1 (Table 3).
Comparing two algorithms of finding out partial matches: We
have described in Section 4.2, the two algorithms for finding
partial matches. Table 4 shows for different benchmarks, the
comparison between the two algorithms in terms of the
number of partial matches (that are to be evaluated for
eligibility and validity) found.

We observed that the Algorithm 3.4 to be very efficient than
Algorithm3.5. The number of partial matches identified in
Algorithm3.5 is much more than the number of partial
matches identified in algorithm3.4 by us.

+

x

+

x+

+

x+
x

(a) CFU 0, m=2, (b) CFU 1, m=3, (c) CFU 2, m=4,
p=1 p=2 p=2

+

x+
x

+

+

x+
x

+

+

++

+ +

(d) CFU 3, m=5, (e) CFU 4, m=5, (f) CFU 5, m=5,
 p=2 p=2 p=3

Figure 3: An example pattern Library CFU-lib

Table 1: Matches found

Table 2: Results: Effects of Heuristics

 P Best

case (%)

Worst case

(%)

Average

(%)

Bubblesort

2 0 84 41.67

3 0 11.11 2.23

Histogram

2 0 67 32.97

3 0 1 0.12

Newlife

2 10.74 75 31.05

3 0 5.56 0.21

New life

Patid BB Valid_matches

1 32 1

1 5 2

1 11 2

0 32 2

3 19 3

4 19 3

3 25 3

4 25 3

0 5 4

5 19 4

5 25 4

0 11 5

1 19 10

1 25 10

0 19 20

0 25 20

Bubble sort

Patid BB Valid_matches

 0 3 2

0 8 2

0 9 2

0 14 2

Histogram

Patid BB Valid_matches

1 5 1

0 9 1

1 14 1

0 5 2

0 18 2

0 14 3

1 23 3

0 23 7

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

35

Table 3: Ratio of experimental to Theoretical number of

comparisons in eligibility check

Table 4: Algorithm1(3.4) versus Algorithm2(3.5)

 Avg Max Avg

P=2

Max

P=2

Avg

P=3

Max

P=3

Bubblesort 2.20 3.50 2.58 3.50 0.98 1.29

Histogram 2.07 3.33 2.52 3.33 0.96 1.38

Newlife 2.01 3.50 2.57 3.50 1.19 1.64

7. CONCLUSION AND FUTURE WORK
We have presented a novel and very efficient algorithm for
instruction matching. It successfully matches even multi-
output complex Function units with a sub graph in the DFG of
an application. We observed that the concept of Commonsink
(or common descendent) plays very significant role in
effectively pruning the search space. Matching only primary

input nodes of the Graph Gpat corresponding to customized
instruction and the concept of commonsink constitute the crux
of the algorithm. We evaluated the performance of the
matching algorithm with many benchmarks and compared its
efficiency with some already existing algorithms.
At present we did not include arithmetic-logic reduction in
our instruction matching algorithm. We provide support for
handling commutative cases in instruction matching algorithm
but not for complex arithmetic-logic reductions. The

algorithm can be extended in future to match the Customized
instruction (Gpat) with a sub graph (Gsub) in DFG, where the
same computation is performed as in Gpat but the topology of
Gpat and Gsub may not be the same.

8. ACKNOWLEDGEMENTS

The authors like to acknowledge Prof. Anshul Kumar and
Embedded Systems group of Department of Computer
Science and Engineering at IIT-Delhi for their kind support
and guidance.

9. REFERENCES
[1] D. Seal, ARM Architecture Reference Manual. Addison –

Wesley, 2000.

[2] Nathan T. Clark, Hongtao Zhong, Scott A. Mahlke,
Automated custom instruction generation for domain-
specific processor acceleration. IEEE Transactions on
Computers, October 2005.

[3] N. Pothineni et. al., Exhaustive Enumeration of Legal
Custom Instructions for Extensible Processors, 21st Int’l
Conf. on VLSI design 2008.

[4] R. E. Gonzalez. Xtensa: A configurable and extensible
processor. IEEE Micro, 2000

[5] T. R. Halfhill, Mips embraces configurable
methodology. March 2003

[6] K. K. Dagon. Technology binding and local optimization
by dag matching. In Proceedings of the design
Automation Conference, pages 617-623, May 1987.

[7] A. Aho, R. Sethi and J. Ullman. Compilers: Principles,

Techniques and Tools. Addison-Wesley, 1986

[8] K. Atasu et al., “Automatic Application-Specific
Instruction Set Extensions under Microarchitectural
Constraints,” Proc. 40th Design Automation Conf., June
2003.

[9] Giovanni De Micheli. Synthesis and optimization of
digital circuits. McGraw Hill, 1994

[10] Y. Kukimoto, R. K. Brayton, and P. Sawkar. Delay-

optimal technology mapping by dag covering. In
Proceedings of the Design Automation Conference,
1998.

[11] Armita Peymandoust and Giovanni De Micheli.
Symbolic algebra and timing driven data-flow synthesis.
In Proceedings of International Conference on
ComputerAidedDesign,2001.

[12] Paolo Ienne, Laura Pozzi, and M. Vuletic. On the limits
of processor specialization by mapping data flow

sections on ad-hoc functional units. Technical Report CS
Technical Report 01/376, LAP, EPFL, Lausanne,
December 2001.

[13] Marnix Arnold. Matching and covering with multiple
output patterns. Technical Report 1-68340-44(1999)-01,
Delft University of Technology, January 1999.

[14] Marnix Arnold and Henk Corporaal. Designing domain-
specific processors. ACM, 2001.

[15] Machinesuif.
http://www.eecs.harvard.edu/hube/software.

[16] The trimaran compiler infrastructure.
http://www.trimaran.org

Bubble sort

Patid BB Matches1 Matches2
0 3 2 10
0 8 2 6
0 9 2 4
0 14 2 6

Histogram

Patid BB Matches1 Matches2
0 9 1 2
0 5 2 6
0 14 3 15
0 18 3 15
1 5 6 18
0 23 7 63
1 14 15 75
1 23 63 567

New Life

Patid BB Matches1 Matches2

0 32 2 8

0 5 4 20

0 11 5 30

1 32 8 32

1 5 20 100

0 19 20 680

0 25 20 680

1 11 30 180

1 19 680 23120

3 19 680 >10e
6

4 19 680 >10e
6

1 25 680 23120

3 25 680 >10e
6

4 25 680 >10e
6

5 19 39304 >10e
6

5 25 39304 >10e
6

http://www.eecs.harvard.edu/hube/software

