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ABSTRACT 
In order to meet the increasing challenges concerning the 
performance and power demands of embedded applications, a 
processor is now embedded with the Application-specific 
functional units. Customized Functional Units both as 

hardware and the corresponding instructions are embedded to 
the base processor in order to improve the computational 
efficiency for a target application. During this process of 
generating the complex instructions and also for the code 
generation on this extended processor, one of the critical 
challenges for the compiler is to automatically perform fast 
and efficient instruction matching and selection. In this 
project, we developed a novel and efficient algorithm for 
matching the multiple-output complex Functional Units 

(FU's). We will also illustrate that the assumption, which is 
the basis of the most of the current covering methodologies, 
 may not always hold true. Current covering algorithms, 
generally aim to find the optimal cover within each basic 
block that minimizes the number of selected matches. Fewer 
matches translate to fewer operations for the schedule, and it 
is expected that the increased scheduling freedom leads to 
better (shorter) schedule. We provide some examples showing 

that this assumption need not necessarily achieve the goal of 
minimizing the execution time. 

General Terms 
Matching algorithms, Instruction Set Architecture. 
 

1. INTRODUCTION 
Recently in the market, there is explosive demand for the 
Mobile phones, PDAs, iPads, digital video cameras, audio 
devoices and other high performance special purpose 
electronic devices. These devices need to be incorporated with 

application-specific hardware design is order to meet the 
challenging cost, power and performance demands.  One of 
the known strategies to provide such special hardware designs 
is to build a system comprising a low cost core processor, 
such as an ARM [1] and a number of highly specialized 
application specific integrated circuits (ASICs) incorporated 
within it. The ASICs are specially designed hardware units 
that can accelerate the execution of the computationally 

demanding portions of the application which would otherwise 
run too slowly if using just the core processor. Clark et. al [2] 
and Pothineni et. al. [3] mentions that while this approach is 
effective, ASICs are costly to design and offer only a 
hardwired solution that permits almost no post 
programmability.  
An alternative approach is to have a processor centric system 
with customized accelerators. Here the core processor is 
augmented with the instruction set that is capable of 

significantly improving the performance and power of 
application in a cost-effective manner, compared to general 
purpose system.  Also the system is post programmable and 
here the customized instructions with minor modification can 
easily be generalized to have their use across a set of 

applications Seeing these potential benefits, couple of 
commercial efforts [4,5] had also been made to bolster the 
high level design of custom processors.  
An ASIP need to efficiently utilize the instruction level 
parallelism (ILP) available in the given application, so it can 
deliver the high performance. The VLIW architecture 
provides a better opportunity of customization, so we consider 
a VLIW architecture which consists of some application 

specific coarse grain functional units that augmented with a 
core set of functional units (FUs). Particularizing or 
constructing custom-make FUs for esp. frequent occurring  
complex operations in a given application can likely lead to 
very significant performance gains. 
 
 

2. RELATED WORK 
Matching and covering algorithms are well-known in the 
fields of code generation and logic synthesis. Keutzer [6] was 
the first to recognize the similarity between the software 
compiler's task of generating code and the technology 
mapping problem in automated VLSI design. Both problems 
can be handled with a matching algorithm, to find all possible 
instantiations of patterns (instructions or standard cells), 

followed by a covering algorithm to make a selection of 
matches that optimizes some criterion (execution time, code 
size, VLSI area or latency, etc.). 
Many researchers had studied the potential utility of 
customizing the instruction set, but most of them do not 
describe the methods to automate the process. Some 
algorithms [7, 8] evaluates each node of the DFG via 
exploring the corresponding complete binary tree to decide if 

it can be a possible candidate. Their time complexity being 
exponential limits the size of DFG that can be considered in 
order for the algorithm to provide results in timely manner. 
For code generation, we need to make the selection from the 
given set of instructions (including the complex ones) in a 
way that effectively utilizes the VLIW processor and 
Application Specific Functional Units (AFU). The goal is 
minimizing the schedule length. The complexity arises due to 
the fact that we want covering to be architecture driven and 

the I/O time-shape of the AFU could be distributed, it gives us 
to efficiently use the resources (Functional units and 
registers), thereby reducing the execution time. Most methods 
[7] generally aim to find the optimal cover within each basic 
block that minimizes the number of selected matches. Fewer 
matches translate to fewer operations for the schedule, and it 
is expected that the increased scheduling freedom leads to 
better (shorter) schedule. 

2.1  Instruction Matching 
As described in [9], there are two main approaches to 
handling the matching problem when performing technology 
mapping: the Boolean and the structural approach.               
The Boolean approach can only be applied to networks of 

Boolean functions and Structural matching will work on 
networks containing nodes of any type of function. 
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In a more recent work by Kukimoto et al. [10], a structural 
matching method was introduced that can handle DAG-
shaped subject graphs, allowing reconvergence within the 
graph. None of the previously described matching algorithms 
allow pattern graphs to have more than one output. 

Peymandoust et. al. [11] employs symbolic algebra using 
commercial symbolic computer algebra systems like Maple 
and Mathematica, which can perform matching for even 
multiple-output pattern graphs. But it works only for 
arithmetic data flow segments, making this approach 
infeasible for most of the embedded applications. Paolo Ienne 
et. al. [12] make use of symbolic algebra tools for instruction 
selection. As opposed to tree covering based algorithms, 

mapping is performed simultaneously with algebraic 
manipulations in their algorithms. But as mentioned earlier 
this is restricted to only arithmetic data flow segments. 
Matching algorithm proposed by Arnold and Corporaal [13, 
14] does not have this restriction, making it possible to exploit 
a larger family of pattern graphs. They perform a detailed 
search space exploration. We will experimentally show that 
the instruction matching algorithm proposed by us is highly 

efficient in comparison to them. 
 

3. PROBLEM DEFINITION 
Let CFU-lib be a library of Complex Functional Units (may 
be multiple-output), Gpat-i be a data flow graph corresponding 

to the ith customized instruction (or CFU) in the CFU-
lib(Figure 1) and Gsub be a data flow graph (DFG)(Figure 2a) 
within the control flow graph of a C application,  

Instruction Matching:  
Given Gsub and CFU-lib, find for each Gpat-i in CFU-lib, all 

those dataflow segments of Gsub that match with the Gpat-i. 
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Figure 1: CFU-lib: A library of functional units 

Instruction Selection: 
Given subject graph, Gsub with full matches found for all 

CFUs, find the subset of full matches that when implemented, 
minimizes the data ready time of the slowest subject graph 
output in the VLIW processor. 
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Figure 2: (a) Gsub Subject Graph  (b) Cover selected when 

purpose is to minimize number of patterns used to cover - 

no. of cycles taken=9  (c) Cover selected when purpose is 

to minimize the data ready time - no. of cycles taken=7 

4. ALGORITHM FOR INSTRUCTION 

MATCHING 
Given Gsub and CFU-lib, we must try to find all matches 
between pattern graphs Gpat (from pattern library CFU-lib) 
and sub graphs of Gsub -The strategy for this is described in 
Section 4.1. 
After all matches are found, we try to find the best cover, or 
selection of matches, that is, the set of matches that, when 
implemented, minimizes the data-ready time of the longest 
path through the subject graph. The covering approach is 

described in Section 4.2. 

4.1 Instruction matching 
Primary nodes: These are those nodes of Gpat, who’s all input 
operands belong to the set of source operands of the 
customized instruction, corresponding to that particular Gpat. 

Reachability matrix: From the adjacency matrix of a 
directed graph, we compute the Reachability matrix where an 
element Rij in Reachability matrix is 1, if there exists a path 
from node i to node j. Reachability[i][i] is considered to be 1. 

compute reachability ( )  
 
 



International Journal of Computer Applications (0975 – 8887)  

Volume 49– No.21, July 2012 

33 

{ 
for (i = 0; i < num_ nodes; i ++) 
  Reachability[i][i] = 1 
for (j = 1; j < num _nodes; j ++) 
  for (i = j-1; i >= 0; i--) 

  { 
    Reachability[i][j] = Adj_matrix[i][j] 
     if (Reachability[i][j] == 0) 
      for (k = j; k > i; k--) 
        Reachability[i][j]+ = (Adj_matrix[i][k] 
*Adj_matrix[k][j]) 
  } 
} 

Algorithm 3.1: Reachability 

CommonSink matrix: CommonSink[i][j] = 1 if there exist a k 
such that Reachability[i][k] = 1 and Reachability[j][k] = 1. 
We will attach an attribute degree (> 0) to this Commonsink 
matrix. 
 
CommonSink degree 1[ ][ ] = CommonSink[ ][ ]. 
CommonSink degree d[ ][ ] = (CommonSink[ ][ ])d. 

 

Find match (Gsub, Gpat) 
 { 
for i = 1 to p, 
  find nodes in Gsub matching with primary input nodes xi 
//If primary node xi matches with ki nodes in Gsub 
//then num_partial_matches = k1 * k2 * k3 * : : : * kp 
//(partial matches) 

for i = 1 to num_partial_matches  
{ 
  //pruning the search space by applying heuristics 
  //check if partial_matchi is an eligible candidate 
  if(partial_match:Iseligible) num_eligible_candidates + + 
} 
for each_eligible_candidate { 
  //validate this eligible_candidate for full match by traversing 
along the data-flow edges. 

  if (eligible_candidate_match:Isvalid) { 
    n_valid_matches + + 
    // update the match_vector list 
   } 
      } 
} 

Algorithm 3.2: find_match (Gsub, Gpat) 

4.2 Two algorithms for partial match 

identification 
Let us consider for analysis that Gsub and Gpat has n and m 

number of total nodes. And no of primary nodes in each Gpat 
is p. Let us compare our algorithm (Algorithm 3.4) for 
identifying partial matches with the partial match 
identification algorithm (Algorithm 3.5) proposed by Arnold 
[13]. 
 

Insn_matching ( ) 
 { 

For each basic block Gsub 

  { 
    compute Adjacency, Reachability and Commonsink 
matrices for Gsub 
    for each CFU graph, Gpat 
      find match (Gsub, Gpat) 
}} 
 

 

Algorithm 3.3: Instruction Matching 

FindPartialMatches_algorithm1 ( ) { 
for each pattern Gpat in pattern library 
 for each pattern node Nprime_pat of Gpat{ 
    For each node Nsub of Gsub 

      //check for opcode and outdegree constraint 
          if Nodematch (Nsub, Nprime_pat) 
       //create a new match 
           new Match(Nsub, Nprime_pat) 
           //let us say, ith prime node matched with ki nodes in 
Gsub 
} 
Merge_matches( ) 

  //This identify all partial matches. 
  // Num_partial_matches = ∏iki, i. e of O(np) 
} 

Algorithm 3.4: Partial Matching Algorithm 1 

 

FindPartialMatches_algorithm2( ) { 
  for each pattern Gpat in pattern library 
  for each Nsub of Gsub 

    for each Npat of Gpat 
      if Nodematch(Nsub, Npat) 
      //create a new match 
        new Match(Nsub, Npat) 
          //let us say, ith node (Npat, i) matched with ki nodes in 
Gsub 
Merge_matches( ) 
  //This identify all partial matches. 

  // Num_partial_matches = ∏iki, i. e of O(nm) 
} 

Algorithm 3.5: Partial matching algorithm 2 

4.3 Motivating example: 
Example 4.1: The example as shown in Figure 2 illustrates 
that the common assumption, (heuristic used by many current 

methods) that lesser the number of patterns used, better will 
be the scheduling time, may not always hold true. 
 
In Fig 2(b), number of FUs used = 4 but it takes 9 cycles. 
In Fig 2(c), number of FUs used = 5 but it takes 7 cycles only. 
 
Fewer matches translate to fewer operations for the schedule – 
this is generally considered the prime assumption for 

developing efficient covering algorithms. So current covering 
algorithms, generally aim to find the optimal cover within 
each basic block. The above example clarifies that that this 
assumption need not necessarily achieve the goal of 
minimizing the execution time.  
 

5. EVALUATION FRAMEWORK 
For evaluating the efficiency of the Instruction Matching 
Algorithm, we need to compile the given application code into 
an intermediate representation where the C-code is reduced 

into a DFG/CFG representation closer to assembler, although 
still largely architecture independent. Dataflow nodes should 
resemble generic assembler operations. This process would 
ease the process of instruction matching, since the algorithm 
is completely dependent on the topological characteristics of 
the DAG constructed. Any of the two compiler 
infrastructures, MachSuif[15] and Trimaran[16], could be 
selected for this purpose. But because of inherent 
complexities involved in Trimaran and being already familiar 

with Machsuif framework, Machsuif is selected for the 
purpose of establishing the efficiency of proposed instruction 
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matching algorithm. Afterwards, it is adopted in Trimaran 
frame-work with some changes in data-structures, used for 
traversing along the data-flow edges.  
 

6. ANALYSIS AND RESULTS 
For evaluating the performance of proposed instruction 
matching algorithm, we used the bitwise benchmarks new life, 
histogram and bubble sort. Our CFU-lib consists of 6 patterns 
(or customized instructions) as shown in Fig 3. 
Table 1 shows the number of complete (valid) matches found 

in a particular Basic block of that application. 
Number of partial matches is of O(np) but experimentally we 
observed that it is much less than O(np). Also we analysed the 
effect of heuristics in pruning the search space. 
The Table 2 shows the fraction of eligible matches for 
different values of p and for different benchmarks. The 
eligible matches are those partial matches that qualify the 
outdegree constraint, Common sink constraint, etc. Fraction of 

eligible matches is computed as Number of eligible matches / 
number of partial matches. Best case = 0% for a certain 
benchmark and p, means that for a certain basic block (DFG) 
in that benchmark, we observed that after applying the 
heuristics, none of the partial match become eligible 
candidate. Without going through the complicated task of 
traversing through the data flow edges, we have filtered out 
lot of unsuitable partial matches. It is important to note that 

for p = 3, number of matches that would be considered for full 
match are only 0.1 to 2% of the partial matches identified in 
the stage1 of our algorithm. It means that for higher values of 
p, the eligibility criteria imposed is very effective in pruning 
the search space. 
For applying the eligibly criteria, it is required to compute the 
Reachability matrix, the Commonsink matrix beforehand. The 
overhead involved is Reachability matrix and Commonsink 
matrix computation time but as it is to be done for each basic 

block only once and also, it is very helpful in effectively 
pruning the search space, and we can easily choose to pay for 
this overhead. 
Theoretically, the number of comparisons performed while 
checking for eligibility criteria is num_partial_matches*(p*(p-
1)/2). We compare this with the number of comparisons 
actually done. On an average, for p = 2, we found the ratio of 
actual number of comparisons and 

num_partial_matches*(p*(p-1)/2) to be about 2.5 and for p = 
3, this ratio is 1 (Table 3). 
Comparing two algorithms of finding out partial matches: We 
have described in Section 4.2, the two algorithms for finding 
partial matches. Table 4 shows for different benchmarks, the 
comparison between the two algorithms in terms of the 
number of partial matches (that are to be evaluated for 
eligibility and validity) found. 

We observed that the Algorithm 3.4 to be very efficient than 
Algorithm3.5. The number of partial matches identified in 
Algorithm3.5 is much more than the number of partial 
matches identified in algorithm3.4 by us. 
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(d) CFU 3, m=5,   (e) CFU 4, m=5,   (f) CFU 5, m=5,  
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Figure 3: An example pattern Library CFU-lib 
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Table 2: Results: Effects of Heuristics 

 

 P Best 

case (%) 

Worst case 

(%) 

Average 

(%) 

 

Bubblesort 

2 0 84 41.67 

 
3 0 11.11 2.23 

 

Histogram 

2 0 67 32.97 

3 0 1 0.12 

 

Newlife 

2 10.74 75 31.05 

3 0 5.56 0.21 

 

 

 

 

New life 

Patid BB Valid_matches 

1 32 1 

1 5 2 

1 11 2 

0 32 2 

3 19 3 

4 19 3 

3 25 3 

4 25 3 

0 5 4 

5 19 4 

5 25 4 

0 11 5 

1 19 10 

1 25 10 

0 19 20 

0 25 20 

 

Bubble sort 

Patid BB Valid_matches 

   0 3 2 

0 8 2 

0 9 2 

0 14 2 

 

Histogram 

Patid BB Valid_matches 

1 5 1 

0 9 1 

1 14 1 

0 5 2 

0 18 2 

0 14 3 

1 23 3 

0 23 7 
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Table 3: Ratio of experimental to Theoretical number of 

comparisons in eligibility check 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Algorithm1(3.4) versus Algorithm2(3.5) 

 Avg Max Avg 

P=2 

Max 

P=2 

Avg 

P=3 

Max 

P=3 

Bubblesort 2.20 3.50 2.58 3.50 0.98 1.29 

Histogram 2.07 3.33 2.52 3.33 0.96 1.38 

Newlife 2.01 3.50 2.57 3.50 1.19 1.64 

 

7. CONCLUSION AND FUTURE WORK 
We have presented a novel and very efficient algorithm for 
instruction matching. It successfully matches even multi-
output complex Function units with a sub graph in the DFG of 
an application. We observed that the concept of Commonsink 
(or common descendent) plays very significant role in 
effectively pruning the search space. Matching only primary 

input nodes of the Graph Gpat corresponding to customized 
instruction and the concept of commonsink constitute the crux 
of the algorithm. We evaluated the performance of the 
matching algorithm with many benchmarks and compared its 
efficiency with some already existing algorithms. 
At present we did not include arithmetic-logic reduction in 
our instruction matching algorithm. We provide support for 
handling commutative cases in instruction matching algorithm 
but not for complex arithmetic-logic reductions. The 

algorithm can be extended in future to match the Customized 
instruction (Gpat) with a sub graph (Gsub) in DFG, where the 
same computation is performed as in Gpat but the topology of 
Gpat and Gsub may not be the same. 
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Bubble sort 

Patid BB Matches1 Matches2 
0 3 2 10 
0 8 2 6 
0 9 2 4 
0 14 2 6 

 

Histogram 

Patid BB Matches1 Matches2 
0 9 1 2 
0 5 2 6 
0 14 3 15 
0 18 3 15 
1 5 6 18 
0 23 7 63 
1 14 15 75 
1 23 63 567 

 

New Life 

Patid BB Matches1 Matches2 

0 32 2 8 

0 5 4 20 

0 11 5 30 

1 32 8 32 

1 5 20 100 

0 19 20 680 

0 25 20 680 

1 11 30 180 

1 19 680 23120 

3 19 680 >10e
6
 

4 19 680 >10e
6
 

1 25 680 23120 

3 25 680 >10e
6
 

4 25 680 >10e
6
 

5 19 39304 >10e
6
 

5 25 39304 >10e
6
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