
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

1

A Fuzzy Approach for Evaluation of Maintainability of

Object Oriented Software System

Sanjay Kumar Dubey

Amity University
Sector-125, NOIDA
Uttar Pradesh, India

Prof. Ajay Rana
Phd,Amity University
Sector-125, NOIDA
Uttar Pradesh, India

ABSTRACT

The demand for efficient software system is increasing day by

day. Maintainability is considered as an important quality

factor for developing the efficient software system. Recent

trends show that mostly software systems are using object-

oriented technique to develop the quality software products.

Object-oriented approach enhances the maintainability of

software system. In literature there are no well defined criteria

to evaluate maintainability. This paper proposes a fuzzy model

to quantify maintainability of object-oriented software system.

The model takes object-oriented projects and evaluates its

maintainability. The value obtained by fuzzy model is

validated by using analytical hierarchy processing technique.

General Terms

Software Engineering

Keywords

Maintainability, AHP, Object-oriented, Model, Fuzzy, Metric

1. INTRODUCTION
A software product requires a number of measures to be taken

into account for its designing. The most important measure that

must be considered in any software product is its design

quality [1]. Among all the quality criteria, software

maintainability is broadly accepted as a highly significant

quality criterion in the economic success of engineering

systems and products. There is a need for software engineers to

understand how various components of a design interact in

order to maintain and enhance the reliability of software

during maintenance. Maintenance of software is one of the

most expensive and resource requiring phase of the software

development process. Statistics from various organizations

shows that 40% to 80% of the development expenditure on the

average software is spent in the „maintenance‟ phase in which

bugs are fixed, features are enhanced, and the software is

updated to keep pace with changing domain requirements [2],

[3]. Thus maintainability evaluation is an essential component

of modern software development life cycle. Evaluation of

software maintainability, if done accurately, can be useful in

aiding decision making related to the software, efficiency of

the maintenance process, comparing productivity and costs

among different projects, allocation of resource and staff, and

so on. This minimizes the future maintenance effort [4].

Assessing maintainability of a system is a difficult process as

many contradictory criteria must be considered in order to

reach a decision [5]. Hence a layered approach is used to

evaluate software maintainability [6]. In this approach, fuzzy

evaluation method in combination with Analytic Hierarchy

Process (AHP) is utilized to handle problems involving

multiple indices based on quantitative procedural information

to get the qualitative results. AHP [7] is used since it helps to

capture both subjective and objective evaluation measures,

providing a useful mechanism for checking the consistency of

the evaluation measures and suggested alternatives thus

reducing bias in decision making.

The study has been conducted in object-oriented paradigm.

This is due to the fact that the primary purpose of object-

oriented design is to improve software quality criteria such as

maintainability, reliability, usability, etc by managing software

complexity. The logical complexity of the source code has a

strong correlation to the maintainability of the resultant

software [8], [9]. Reducing the software development and

maintenance costs is the main objective of object-oriented

design. In order to facilitate the analysis and evaluation of

maintainability of an object-oriented system, Chidamber and

Kemerer (CK) metrics [10] have been used. CK metrics are

design complexity metrics that aid in identifying certain design

and code characteristics in object-oriented software which in

turn helps in assessing external software qualities such as

software defects, testing, and maintenance effort [11]. Hence

the main objective of this paper is to evaluate software

maintainability by using fuzzy layered evaluation method in

combination with Analytic Hierarchy Process.

2. FACTORS AFFECTING

MAINTAINABILITY
For evaluating the maintainability of object oriented system,

five factors are taken viz. complexity, class, coupling,

inheritance and number of children. These factors are chosen

since they are the design complexity factors and show more

impact on the maintainability of object-oriented software

system. Brief outlines of all these factors are shown below:

Complexity

By software complexity we mean the difficulty to preserve,

modify and comprehend the software.

Class
A class is a basic unit of OOP and it can be portrayed as a set

of objects that includes same methods, attributes and

relationships.

Coupling

Coupling means the interdependency between different

components or functions. Coupling is the measure of

interconnections among the modules in a software structure.

Inheritance
Inheritance is defined as classes having same methods and

operations based on hierarchy. It is a mechanism whereby one

object acquires the characteristics from one or more other

objects.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

2

Number of Children
Number of Children defines the number of subclasses

subordinate to a class in the hierarchy. It indicates the potential

influence of a class on design and system.

3. METRICS USED FOR EVALUATING

MAINTAINABILITY
Maintainability evaluation into object-oriented paradigm uses

fuzzy layered technique [6]. In order to do so, Chidamber and

Kemerer (CK) software metrics [10] have been used. These

metrics are aimed at assessing the design of object-oriented

system rather than implementation. This makes them more

suited to object-oriented paradigm as object-oriented design

puts great emphasis on the design phase of software system

[12]. The CK metric suite consists of six design complexity

metrics- WMC, DIT, NOC, CBO, RFC and LCOM. Except for

LCOM, all these metrics can be used as maintainability

predictors as LCOM is uncorrelated with the maintainability of

the software [13]. The CK metrics (except LCOM) are briefly

described as follows [10]:

3.1 WMC (Weighted Methods per Class)
It is a weighted sum of all the methods defined in a class. It

measures the complexity of a class. It also predicts how much

time and effort is required to develop and maintain the class.

High WMC indicates greater complexity and hence low

maintainability.

3.2 DIT (Depth of Inheritance Tree)
It is the length of the longest path from a given class to the root

class in the inheritance hierarchy and is measured by the

number of ancestor classes. So this metric calculates how far

down a class is declared in the inheritance hierarchy. High DIT

indicates greater design complexity and more fault-proneness.

3.3 NOC (Number of Children)
It is equal to the number of immediate child classes derived

from a base class. High NOC means greater level of reuse,

more effort required for testing, more complexity and fault-

proneness.

3.4 CBO (Coupling Between Objects)
For a class, CBO is measured by counting the number of other

classes to which it is coupled. Coupling is a measure of

interdependence of two objects. Two classes are coupled if

methods of one use methods and/or instance variables of the

other. High CBO indicates complex design, decreases

modularity, and complicates testing of the class.

3.5 RFC (Response for a Class)
It is the count of all the methods which can potentially be

executed (directly or indirectly) in response to a message to an

object of that class or by some method in the class. (This

includes all methods accessible within class hierarchy). High

RFC means more effort required for testing, greater design

complexity and fault-proneness.

The values of all the above metrics are inversely proportional

to the maintainability of a system [14].

4. FUZZY APPROACH FOR

MAINTAINABILITY EVALUATION

4.1 Proposed Model
There are various methods for maintainability measurement

[15] but none of them was exact approach. Thus we propose a

fuzzy model approach for maintainability measurement of an

object oriented system. Fuzzy logic is a captivating field of

research these days as it considers the fuzzy value instead of

binary values. The benefit of using fuzzy logic is that the fuzzy

logic models can be built even with little or no data. In this

paper, we propose a fuzzy model to measure maintainability.

Fuzzy logic is used because maintainability depends on various

factors. These factors are fuzzy in nature.

4.2 Working of the model
In this model we have taken five inputs as complexity, class,

coupling, inheritance and number of children to provide a crisp

value of maintainability using rule base. Fuzzy Inference

System (FIS) uses fuzzy logic to map the input to output.

Mamdani fuzzy inference method is used.

After the fuzzification process is completed, we take the fuzzy

sets for output variable that requires defuzzification. For

defuzzification the input will be a fuzzy set and output will be

a singleton value. The centroid method which gives center of

area under curve is most commonly used for defuzzification.

There are many types of membership functions but for

simplicity we have used triangular membership function.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

3

Figure 1. Proposed Fuzzy Model

Figure 2. Inputs and Outputs of Fuzzy Model

4.3 Membership Function for Inputs and

Output
For measuring maintainability of an object oriented system we

have considered five inputs- complexity, class, coupling,

inheritance and number of children. These are shown in figure

3, 4, 5, 6, 7. We have taken three membership functions –low,

medium and high for each input. These inputs are taken on an

interval of [0,100].

Figure 3. Membership function for complexity

Figure 4. Membership function for class

 Complexity

 Class

 Coupling

 Inheritance

Number of Children

Fuzzification

Module

Inference Engine

Defuzzification

Module

Maintainability

Data Base Rule Base

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

4

Figure 5. Membership function for coupling

Figure 6. Membership function for inheritance

Figure 7. Membership function for number of children

For the output (maintainability) we have taken five

membership functions –very low, low, medium, high and very

high. The range for this is also taken from [0,100]. This is

shown in the figure 8.

Figure 8. Membership function for maintainability

4.4 Knowledge Base and Evaluation Process
In order to measure maintainability of a software system, all

the five inputs (complexity, class, coupling, inheritance and

number of children) are integrated with the help of fuzzy

model. Each of these inputs contains three terms- Low,

Medium and High. Thus by integrating and forming different

combinations for all the inputs we get 243 rules. In general

terms if there are x inputs with y terms each then total

number of rules R formed will be y*y*y…..x times. Thus

R=yx

In our model we have 5 inputs and 3 terms. Hence our total

number of rules will be 53 =243. For all 243 combinations

maintainability is either classified as very high, high,

medium, low or very low. A survey is taken from n experts

including project managers, software developers, research

scholars and maintainability experts to finalize the set of rules

are found.

4.5 Metric Values
To find the value of factors we need metrics. For this purpose

we have chosen CK metrics. The factor complexity is related

with WMC, class is related with RFC, coupling is related

with CBO, inheritance is related with DIT and number of

children is related with NOC. Value of these metrics is found

using analyst4j standalone tool [16]. We have taken out these

values from object-oriented software developed in java [17].

Now the obtained metric values are given as input and the

crisp value of maintainability is obtained from the proposed

model by using MATLAB. The following rule viewer shows

the obtained value of maintainability as 29.5.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

5

4.6 Value of Maintainability

Figure 9. Value of maintainability obtained using

MATLAB

4.7 Validation of Proposed Model
The proposed model is validated using standard AHP

(Analytic Hierarchy Process) technique given by Saaty [18].

For this technique we first took a survey from the experts of

related field, Survey included the factors that affect

maintainability keeping in mind the CK metrics. For this we

form a square matrix as shown below. Here factors are

complexity (Comp), class (Cl), coupling (Coup), inheritance

(Inhe) and Number of children (NOC).

Table 1. Factor values Using AHP Technique

Consistency Index (CI) = (λmax –n)/(n-1) [n=5]

 = (5.313-5)/4 = 0.078

Consistency Ratio (CR) = 0.078/1.12 = 0.069 < 0.1

for n=5 index of consistency=1.12 [18].

Hence, judgments are acceptably consistent.

The metrics values of the project [17] obtained through the

analyst4j is multiplied by their corresponding weight values

obtained by AHP to get the maintainability of the project.

According to this method we got maintainability of project as

25.65. The relation between CK metrics and maintainability is

already shown in [14].

Similarly for another project taken from [17] we obtained

maintainability as 68.32 from proposed fuzzy model and

maintainability as 66.73 from AHP method. Which indicated

that proposed model is able to evaluate maintainability of

object-oriented software system and can be used by application

developers.

5.CONCLUSION
This paper proposes a fuzzy model to the maintainability of

object-oriented software system. The inputs for the proposed

model are complexity, class, coupling, inheritance and number

of children on which maintainability depends. These inputs

were determined based on study and using extensive survey.

Rule base were generated by expert‟s knowledge, with 243

rules for evaluating object-oriented software system. The

proposed model evaluated the maintainability of two object-

oriented software systems. The results are validated by the

AHP technique. The results by both the methods are almost

same. So, it validates the proposed model. This model will

help maintainability practitioners, software developers and

researchers to select the best maintainable object-oriented

software system when various alternatives are presented before

them. In future the model will be more refined by taking

consideration of other object-oriented metrics and more

number of projects.

6.REFERENCES
[1] Ragab, S. R., Ammar, H. H., 2010 “Object-Oriented

design metrics and tools: a survey”, Proc. Of

Informatics and Systems (INFOS), pp. 1 – 7

[2] Glass, R., 2002 Facts and Fallacies of Software

Engineering, Addison-Wesley Professional.

[3] Pressman, R. S., 2005 Software Engineering - A

Practitioner's Approach, 7th ed., McGraw Hill.

[4] Lucia, A. De, Pompella, E., Stefanucci, S., 2005

"Assessing effort estimation models for corrective

maintenance through empirical studies," Information and

Software Technology, vol. 47, no. 1, pp. 3-15.

[5] Roger, P. S., 2005 Software Engineering, A Practitioner‟s

Approach, McGraw Hill International Edition.

[6] Jing, C., Xuyan, L., 2009 “Software Maintainability

Metrics Based on the Index System and Fuzzy Method”,

The 1st International Conference on Information Science

and Engineering (ICISE2009), pg. 5117-5120.

[7] Saaty, T. L., 1990 “How to make a decision: The

Analytic Hierarchy Process”, European Journal of

Operational Research, vol. 48, pp. 9-26.

[8] Kafura, D., Reddy, R., 1987 “The use of Software

Complexity Metrics in Software Maintenance”, IEEE

Trans. Software Engineering, vol. SE-13, no. 3, pp. 335-

343.

[9] Rizvi, S. W. A., Khan, R. A., 2010 “Maintainability

Estimation Model for Object-Oriented Software in Design

 Comp Cl Coup Inhe NOC
Eigen

vector (w)

Comp 1 1/3 1/3 1/7 1 0.055

Cl 3 1 3 1/7 3 0.165

Coup 3 1/3 1 1/9 2 0.093

Inhe 7 7 9 1 7 0.628

NOC 1 1/3 1/2 1/7 1 0.059

Total 1.00

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.21, July 2012

6

Phase (MEMOOD)”, Journal of Computing, vol. 2, issue

4.

[10] Chidamber, S. R., Kemerer, C. F., 1994 "A Metrics Suite

for Object Oriented Design," IEEE Transactions on

Software Engineering, vol. 20, no. 6, pp. 476-493.

[11] Kaur, A., Singh, S., Kahlon, Dr. K. S., Dr. Parvinder,

Sandhu, S., 2010 “Empirical Analysis of CK & MOOD

Metric Suit”, International Journal of Innovation,

Management and Technology, vol. 1, no. 5

[12] Dubey, S. K., Rana, A., 2010 “A Comprehensive

Assessment of Object-Oriented Software Systems Using

Metrics Approach”, International Journal on Computer

Science and Engineering, vol. 02, no. 08, pp. 2726-2730.

[13] Tϋrk, T., 2009 “The Effect of Software Design Patterns

On Object-Oriented Software Quality And

Maintainability”, M. Tech Thesis, Dept. EE. Eng., Univ.

Middle East Technical University.

[14] Dubey, S. K., Rana, A., 2011 “Assessment of

Maintainability Metrics for Object-Oriented Software

System”, ACM SIGSOFT SEN, vol. 36, No. 5.

[15] Dubey, S. K., Rana, A. and Mridu, 2012 “Analytical

Comparison of usability measurement methods” IJCA,

volume 39 number 15, pp. 11-18.

[16] www.codeswat.com/cswat/index.php? last accessed on

23rd May, 2012.

[17] www.codeproject.com/KB/java/ last accessed on last

accessed on 23rd May, 2012.

[18] Saaty, T. L., 1988 “Muti criteria decision making: the

Analytic Hierarchy process”, RWS publications,

Pittsburgh, PA.

