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ABSTRACT

In the present paper, we analyze the effect of varying
catastrophic intensity on a limited capacity Markovian
queueing system with two identical servers. The time
dependent probabilities for the number in the system are
obtained. The steady state probabilities and various
measures of performance are also provided. Further some
important particulars cases are also derived and discussed.
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1. INTRODUCTION

During the last three decades, the concept of catastrophes
is based on the assumption that with the occurrence of
catastrophe, all the customers in the system are destroyed
instantly and simultaneously, the system becomes ready to
accept new customers. A large number of research papers
have appeared on queues incorporating the effect of
catastrophes. These have a wide range of applications in
computer communication see e.g. Chao (1995), Kumar and
Arivudainambi (2000), Jain and Kumar (2005a, b, c;
2006), and in Biological sciences [Crescenzo et al. (2003),
and Jain and Kanethia (2006)], and in population processes
[see. e.g., Brockwell et al., (1982) and Bartoszynski et al.,
(1989)]. In the above mentioned work, all the researchers’
have used the assumption that with the occurrence of
catastrophe, all the customers in the system are destroyed.
But it is not always the case. In many practical situations
this assumption does not hold good. So necessary
amendment is incorporated in the paper of Jain and Bura
(2010) in the form of varying catastrophic intensity to
destroy a finite number of customers at a time. When the
system is not empty, the catastrophes occur according to a

Poisson Process with rate F; with intensity C,. It depends

upon the intensity of the catastrophe whether it destroys all
the customers or not. If it destroys all the customers,
immediately then the system becomes ready to accept the
new customers. The catastrophic intensity may follow any
distribution. The concept of varying catastrophic intensity
has numerous applications in a wide variety of areas
particularly in agriculture and biosciences etc. In paper
(2010), we studied a Markovian queueing model with
single server subjected to varying catastrophic intensity. In
real life it is not necessary that a queueing system should
have only one server. Practically they may have more than
one server. A similar study was made by Kumar and
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Madheswari (2002) with (degenerated) catastrophe i.e. the
occurrence of a catastrophe destroys all the customers in
the system immediately without affecting the functioning
of the system otherwise. Varying intensity catastrophe
does not destroy all the customers but a finite number

(S N). The introduction of the wvarying intensity

catastrophe makes the system more complicated and
generalized. We in this paper confine ourselves to a
Markovian queue with two identical servers subjected to
varying catastrophic intensity. The time dependent solution
and the steady state solution have been obtained explicitly
recursively. Some important measures of performance and
particular cases have also been derived and discussed.

2. QUEUEING MODEL

The queueing model investigated in this paper is based on
the following assumptions:-

(1) The customers arrive in the system

one by one in accordance with a Poisson process in a
single queue with rate A > 0.

(if) There are two identical servers. The service
times of the customers are independently identically
exponentially distributed with rate i > 0.

(iii) When the system is not empty, catastrophes
occur according to a Poisson process with rate & and

intensity C -
Y ¥ (r=1,2,3,....,N),>.C, =1
r=1
It depends upon the intensity of the catastrophe that how
many customers are destroyed instantaneously.

(v) The queue discipline is first- come- first- served.
(vi) The capacity of the system is limited to N. i.e.,
if at any instant there are N customers in the system, then
the customers arriving in the duration for which the system
remains in state N are not permitted to join the queue and
considered lost for the system with probability
one.
(vi) Initially, there are zero customers in the
system.
Define

Pn (1'): the probability that there are n customers in the
system at time t.
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3. TRANSIENT SOLUTIUON

The differential- difference equations governing the
system are:

PU0) =R () iR (1) <23 Y Ri()

(3.1)
PIt) = —(h+ o+ &P (t)+ Ry (t)+ 20P, (t)+

+§ Ngjcr P(1+r)(t)
3.2)

Po(t) ==+ 20+ P, L)+ 2R 4 (t)}+ 2088 (1)+

n

(3.3
Py (t) == (2 B+ Z—:)PN (t)+}\’P(N—1) (t)

(3.4)
Taking, Laplace Transform of equations (3.1) to (3.4)
w.r.t.t’, we have

N N
sPy (S) =1-AP, (5)"'“})1 (5)"' {SZ_; Z ¢ P, (5)
(3.5)
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sP(s) =—(h+p+E)P(s)+2P;(s)

+ ZHP;(S)_'_E: ;Cr P(z+r)(s)
(3.6)
SPI(s) =—(h+2u+&)P(s)+ AP ) (s)+

* N-n *
ZHP(n+l)(S)+E.> rglcr P(n+r)(s)
3.7)

SPL(s) =—(2r+E)PL(s)+APy 4 (s)
(3.8)

Where P: (S) = I;O e P, (t)dt and

P (O) B 1 ifn=0
n ~ ]0 otherwise

Solving this set of equations recursively, we have

{w}{w} o (Ag]
i1 (1l )it &
[ j ( J" p"*" D, tPy(s)
K(ms1 m+l

(3.9)
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Using normalization condition we have
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Using (3.12) in(3.9), (3.10) and (3.11), we hav
(3.13)
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After taking the Laplace inverse of (3.13), (3.14) and (3.15) we can find all the probabilities.

4. STEADY STATE SOLUTION

Using the property

lims P’(s) = P, We have from (3.13) , (3.14) and (3.15)
s—
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5. MEASURE OF EFFECTIVENESS

The steady state probability distribution for the system size
allows us to calculate what are commonly called measures
of effectiveness. Two, of immediate interest are the
expected number of customers in the system and the

expected number of customers in the queue.To derives the
foregoing measures, let L represents the expected number
in the system and L represents the expected number in the
queue. Thus we have
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6. IMPORTANT PARTICULAR CASE OF THE MODEL

In case the catastrophic intensity follows the uniform distribution then we get:
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7. CONCLUSION

In this paper we consider a two homogeneous server
markovian queueing system subjected to varying
catastrophic intensity. The system size probabilities are
calculated explicitly. The concept of varying catastrophic
intensity is very important from practical point of view in a
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