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ABSTRACT 
In this paper the idea of -locally closed sets in 

generalized topological space is introduced and study some 

of their properties. We introduce the notion of (,’)-

locally closed continuous functions on generalized 

topological space and investigate some of their 

characterizations. 
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1.     INTRODUCTION 
Kuratowski and Sierpinski [5] considered the difference of 

two closed subsets of an n-dimensional Euclidean space. 

Implicit in their work is the notion of a locally closed 

subset of a topological space (X,τ). Following Bourbaki 

[3] we say that a subset of (X, τ) is locally closed in (X, τ) 

if it is the intersection of an open and closed subset of (X, 

τ). Stone [8] has used the term FG for a locally closed 

subset as the spaces that in every embedding are locally 

closed. The results of Borges [2] show that locally closed 

sets play an important role in the context of simple 

extensions. Blumberg [1] introduced the concept of a real 

valued function on Euclidean space being densely 

approached at a point of its domain. This notion was 

generalized in 1958 to general topological spaces by Ptak 

[7] who used the term nearly continuous function. The 

concepts of nearly continuous and nearly open functions 

are important in functional analysis especially in the 

context of open mapping and closed graph theorems. 

Csaszar [4] introduced the concepts of generalized 

neighborhood systems and generalized topological spaces. 

And also introduced the concepts of continuous functions 

and associated interior and closure operators on 

generalized neighborhood systems and generalized 

topological spaces. In particular, it has been investigated 

the characterizations for the generalized continuous 

function by using a closure operator defined on 

generalized neighborhood systems. 

In this paper we introduce the notion of -locally closed 

sets which are denoted by -LC sets and study some of the 

fundamental properties of -LC sets in generalized 

topological spaces. Also we introduce the concept of 

(,’)-locally closed continuous functions on generalized 

topological spaces and investigate the results of these 

functions. 

2. PRELIMINARIES                

We recall some basic definitions and notations.A 

generalized topology or simply GT   [4] on a nonempty 

set X is a collection of subsets of X such that    ϵ  and   

is closed under arbitrary union. The elements of  are 

called -open sets and the complements of –open sets are 

called -closed sets. The pair (X,) is called a generalized 

topological space (GTS). If A is a subset of a space , then 

𝑐𝜇 (𝐴) is the smallest -closed set containing A and i(A) is 

the largest -open set contained in A. Let (X,) and (Y,’) 

be generalized topological spaces. A map f: (X,) → 

(Y,’) is said to be (,’)-continuous if and only if Mϵ ’ 

implies f-1(M) ϵ . 

For our analysis, we require the following basic 

definitions. 

2.1 Definition A subset A of a topological 

space (X,) is called locally closed [3], if A = U∩ F, where 

U ϵ  and F is closed in (X, ).    

2.2  Definition A topological space (X,) is 

called submaximal [3], if every dense subset is open. 

2.3 Theorem [4] Let (X,) be a generalized 

topological space. Then  

 (i) 𝑐𝜇 (𝐴) = X- 𝑖𝜇 (𝑋 − 𝐴). 

 (ii) 𝑖𝜇 (𝐴) = X- 𝑐𝜇 (𝑋 − 𝐴). 

 

2.4 Proposition [6] Let (X,) be a 

generalized topological space. For subsets A and B of X, 

the following properties hold: 

 1. 𝑐𝜇 (𝑋 − 𝐴) = X- 𝑖𝜇 (𝐴) 

 and 𝑖𝜇 (𝑋 − 𝐴) = X- 𝑐𝜇 (𝐴); 

 2. If (X-A) ϵ , then 𝑐𝜇 (𝐴) = A and if Aϵ , then 

𝑖𝜇 (𝐴) = A; 

 3. If AB, then 𝑐𝜇 (𝐴)  𝑐𝜇 (𝐵) 

 and 𝑖𝜇 (𝐴)  𝑖𝜇 (𝐵); 

 4. A  𝑐𝜇 (𝐴) and 𝑖𝜇 (𝐴)  A; 

 5. 𝑐𝜇 (𝑐𝜇 (𝐴)) = 𝑐𝜇 (𝐴) and 𝑖𝜇 (𝑖𝜇 (𝐴)) 

 = 𝑖𝜇 (𝐴). 

 

3.-LOCALLY CLOSED SETS IN 

GENERALIZED TOPOLOGICAL 

SPACES   

3.1    Definition A subset A of a generalized 

topological space (X,) is called -locally closed set 

(briefly -LC set), if A = U ∩ V where U is -open in (X, 

) and V is -closed in (X, ). 

The collection of all -locally closed sets of (X,) will be 

denoted be -LC(X,). 
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3.2     Theorem  For a subset A of (X,) the 

following are equivalent: 

(i)     A is  -locally closed 

(ii)   A=U ∩ 𝑐𝜇 (𝐴) , for some  -open set U. 

Proof 
(i)   (ii): 

 Let A ϵ -LC(X,). Then there exists a -open 

set U and a -closed set V such that A = U∩V. 

Since A  U and A  𝑐𝜇 (𝐴), we have A  U ∩ 𝑐𝜇 (𝐴). 

 Conversely, since 𝑐𝜇 (𝐴)  V, U ∩ 𝑐𝜇 (𝐴)  U ∩ V = A, 

which implies that A = U ∩ 𝑐𝜇 (𝐴). 

(ii)  (i):  

Since U is -open and 𝑐𝜇 (𝐴) is -closed, U ∩ 𝑐𝜇 (𝐴) ϵ -

LC(X,).  

 

3.3 Theorem   For a subset A of (X,) the 

following are equivalent: 

                (i) 𝑐𝜇 (𝐴)-A  is  -closed. 
(ii) A  [X-𝑐𝜇 (𝐴)] is –open. 

Proof   
(i)   (ii): 

Let V = 𝑐𝜇 (𝐴)-A.  

Then V is –closed by the assumption. 

 Then     X-V = X- [𝑐𝜇 (𝐴) -A]  

                     = X ∩ - [𝑐𝜇 (𝐴) -A]c  

                     = A [X-𝑐𝜇 (𝐴)]. 

 But X-V is –open.  

This shows that   A  [X-𝑐𝜇 (𝐴)] is –open. 

 (ii)   (i):  

Let P = A [X- 𝑐𝜇 (𝐴)].   

Then P is –open.  

This implies that X-P is –closed. 

Then X-P = X - [A  [X - 𝑐𝜇 (𝐴)]] 

                 = 𝑐𝜇 (𝐴) ∩ [X-A]  

                 = 𝑐𝜇 (𝐴) - A.  

Thus 𝑐𝜇 (𝐴) - A is –closed.   

 

3.4 Theorem   For a subset A of (X,) the 

following are equivalent: 

(i) A  [X -  𝑐𝜇 (𝐴)] is –open. 

(ii) A = U ∩ 𝑐𝜇 (𝐴), for some –open set U. 

Proof 
(i)    (ii): 

Let P = A  [X-𝑐𝜇 (𝐴)]. Then P is –open. 

Hence we prove that A = P ∩ 𝑐𝜇 (𝐴), for some –open set 

P. 

 Then P ∩ 𝑐𝜇 (𝐴) = [A  [X- 𝑐𝜇 (𝐴)]] ∩ 𝑐𝜇 (𝐴)  

               = [𝑐𝜇 (𝐴)∩ A]  [𝑐𝜇 (𝐴) ∩ [X- 𝑐𝜇 (𝐴)]] 

               = A    = A. 

 Therefore A = P ∩ 𝑐𝜇 (𝐴).                               

 (ii)  (i): 

Let A = U ∩ 𝑐𝜇 (𝐴), for some –open set U.  

Then prove that A [X- 𝑐𝜇 (𝐴)] is -open.  

A  [X- 𝑐𝜇 (𝐴)] = [U ∩ 𝑐𝜇 (𝐴)]  [X- 𝑐𝜇 (𝐴)] 

                          = U∩X = X, which is –open. 

Thus A  [X- 𝑐𝜇 (𝐴)] is –open. 

 

3.5 Remark  Submaximaity, in the 

topological space exist whereas in the generalized 

topological space does not exist as seen from the following 

examples 

 

3.6 Example Let X= {a, b, c} with the 

topology [It is also a generalized topology], (X,) = {, X, 

{a}, {a, b}, {a, c}}. This topology is submaximal, because 

all the dense subsets are open. 

 

3.7 Example  Let X = {a, b, c}. Consider 

the generalized topological spaces  (i) (X,’)  = { , X, {a, 

b}, {a, c}} and (ii) (X,’’) = {,{a},{a,b}}.These 

generalized topological spaces are not submaximal, since 

the dense subsets {a} and {b, c} of (X,’) are not –open 

and also the dense subsets X and {a, c } of (X,’’) are not 

-open.  

 

3.8 Theorem Let A and Z be subsets of a 

generalized topological space (X,) and let A  Z. If Z is 
-open in (X,) and A ϵ -LC(Z, /Z), then A ϵ -LC(X, 

). 

Proof    
Suppose A is -LC set, then there exists a -open set G of 

-LC(Z, /Z) such that  

A= G ∩ (𝑐𝜇 )Z(A). 

 But (𝑐𝜇 )Z(A) = Z ∩ 𝑐𝜇 (𝐴).   

Therefore A = G ∩ Z ∩ 𝑐𝜇 (𝐴), where G ∩ Z is -open.  

Thus A ϵ -LC(X,). 

 

3.9 Remark  The following example 

shows the assumption that z is -open cannot be removed 

from the above theorem.  

 

3.10 Example Let X= {a, b, c, d}. Consider 

(X,) = { , {b}, {c, d}, {b, c, d}}. The elements of (X, ) 

are -open sets. Put Z = A = {a, b, c}. Then Z is not –

open and A ϵ -LC(Z, /Z). However A -LC(X, ). 

Since -LC(X, ) = { , {b}, {c}, {b,c}, {c, d}, {b, c, d}}. 

 

4.(,’)-LOCALLY CLOSED 

CONTINUOUS FUNCTIONS 

4.1 Definition  A function f: X  Y 

between the generalized topological spaces (X,) and 

(Y,’) is called (,’)-locally closed continuous function 

(briefly, (,’)-LC continuous function), if f-1(A) ϵ -

LC(X,), for each A ϵ (Y, ’). 

 

4.2 Definition A function f: X  Y 

between the generalized topological spaces (X, ) and (Y, 

’) is said to be (,’)-locally closed irresolute (briefly, 

(,’)-LC irresolute), if f-1(A) ϵ -LC(X, ), for each A ϵ 

’-LC (Y, ’). 

 

4.3 Theorem Let f: (X, )  (Y, ’) be a 

function. If f is (,’)-LC irresolute, then it is (,’)-LC 

continuous. 
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Proof  
 By the definitions the proof is immediate. 

 

4.4 Theorem If f: (X,)  (Y, ’) is 

(,’)-continuous, then f is (,’)-LC irresolute.    

Proof  
 The proof is obvious from the definitions. 

 

4.5 Remark  Converse of theorem 4.3 

need not be true as seen from the following example. 

4.6 Example  Let X = {a, b, c} with the 

generalized topology (X,) ={, X, {a}, {a, b}} and Y={1, 

2, 3} with the generalized topology  (Y,’)   = { ,Y, {1}}. 

We define a mapping f: (X, )  (Y, ’) such that f(a) = 

2, f(b) = 1 and f(c) = 3. Hence f is (,’)–LC continuous 

but not (,’)–LC irresolute. 

 

4.7 Remark  The following example 

provides a function which is (,’)–LC irresolute but not 

(,’)–continuous. 

 

4.8 Example  Let X = Y = {a, b, c} and f: 

(X,)  (Y, ’) be a function defined by f(a) = a, f(b) = b 

and f(c) = c. Let (X,) = { , {a}, {a, b}} and (Y, ’) = { 

, { b}}. Then f is (,’)–LC irresolute, but not (,’)–

continuous, since f-1({b}) ϵ -LC(X, ), for {b} ϵ ’-LC 

(Y, ’) and f-1({b}) (X, ), for {b} ϵ  (Y, ’). 

 

4.9 Remark From the above theorems 

and examples, we obtain the following relations:

 

(,’)–continuity                             (,’)–LC irresoluteness                              (,’)–LC continuity 

 

where A                      B (resp.,A                     B) represents that A implies B (resp., A does not imply B) 

4.10 Theorem If g: (X,) (Y, ’) is 

(,’)-LC continuous and h : (Y, ’)  (Z, ’’) is (’,’’)-

continuous, then h g: (X, )   (Z, ’’) is (,’’)-LC 

continuous. 

Proof 
Given g: X   Y is (,’)-LC continuous and h: 

Y   Z is (’,’’)-continuous.  By the definitions, g-1(V) 

 -LC (X), V Y and h-1(W) Y, W Z.  Let W  Z.  

Then (h g)-1(W) = (g-1 h-1) (W) = g-1(h-1(W)) = 

g-1(V), for V  Y.   

This implies (h g)-1(W) = g-1(V)  -LC (X), 

W  Z.   

Therefore, h g is (,’’)-LC continuous. 

 

4.11 Theorem If g: (X,) (Y, ’) is 

(,’)-LC irresolute and h: (Y, ’)  (Z, ’’) is (’,’’)-

LC continuous, then  

h g: (X,)   (Z, ’’) is (,’’)-LC continuous. 

Proof  
Let g : X  Y is (,’)-LC-irresolute and h : Y 

 Z is (’,’’)-LC-continuous.   

By definitions, g-1(V)  -LC(X), for V  ’-

LC(Y) and h-1(W)  ’-LC(Y), for W Z.  Let W  Z.   

Then (h g)-1(W) =      g-1(h-1(W)) = g-1(V), for V  ’-

LC(Y). 

 This implies (h g)-1(W) = g-1(V)  -LC(X), 

W  Z.  Therefore h g is (,’’)-LC continuous. 

 

4.12 Theorem  If g: (X,) (Y, ’) is a 

(,’)-LC irresolute and h : (Y, ’)  (Z, ’’) is a  (,’)-

LC irresolute, then h  g: (X, )   (Z, ’’) is also a 

(,’’)-LC irresolute. 

Proof 
By the hypothesis and definition we have, g-1(V) 

 -LC(X), for V ’-LC(Y) and h-1(W) ’-LC(Y), for 

W ’’-LC(Z).        
Let W ’’-LC(Z). 

Then (h g)-1(W) = g-1(h-1(W)) =   g-1(V), for V 

 ’-LC(Y).   

This implies (h  g)-1(W) = g-1(V) -LC(X), 

W’’-LC (Z). Therefore h g is (,’’) –LC irresolute.  
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