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ABSTRACT 
In 2000, Boneh-Durfee extended the bound for low private 
exponent from 0.25 (provided by wiener) to 0.292 with public 
exponent size is same as modulus size. They have used 
powerful lattice reduction algorithm (LLL) with 
coppersmith’s theory of polynomials. In this paper we 

generalize their attack to arbitrary public exponent.  
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1. INTRODUCTION 
Lattice is a discrete subset of . It has found many 

applications in various fields like the geometry of numbers, 
integer relations and Diophantine approximations and notably 
in cryptology. The main problem in lattices is the lattice 
reduction deals with finding the good representation of a 
lattice. For thi good representations many versions exist, but 
the one given by Lenstra-Lenstra-Lovasz is a famous one, 

because the polynomial time algorithm exists for this version, 
called LLL algorithm.  The algorithm not only solves good 
representation for the lattice, It also solves the problem called 
shortest vector problem (SVP) in some extent. In section II, 
we state the algorithm and its complexity issues. In section III, 
we provide some inequalities used in this paper for RSA 
cryptosystem with balanced primes. In section IV, we state the 
attack and given the justification, which is a generalization of 

Boneh-Durfee attack .  

 

2. TERMINOLOGY 

2.1 Lattices  
A lattice is a discrete subgroup of . Equivalently, given 

 linearly independent vectors , 

the set , is a 

lattice. The are called basis vectors of  and 

 is called a lattice basis for  Thus, the lattice 

generated by a basis  is the set of all integer linear 

combinations of the basis vectors in   The determinant of a 

lattice, denoted by  is the square root of the gramian 

determinant , which is independent of 

particular choice of basis. A general treatment of this topic 
see[1]. 

2.2 Lattice reduction:  
Lattice reduction is a problem of finding the basis of vectors 
which are short in terms of norm. There are numerous 
algorithms exists in the literature, but we use LLL algorithm 
here. Because there is a polynomial time algorithm exists and 
vectors are near orthogonal and the first vector solves the 

approximate SVP problem. 
 

2.3 LLL reduced 

The following LLL reduced version given by Lenstra, Lenstra, 
Lovasz[1],[2],[3]. 
LLL reduced: A basis  of a lattice is said to 

be Lovasz-reduced or LLL-reduced if 

  for  

for   where the  

and  are defined by the Gram-Schimdt orthogonalization 

process acting on the . Above in place of   ¾ one can replace 

any quantity   

2.4 LLL Algorithm 
The Lenstra –Lenstra -Lov´asz (LLL) algorithm [1][2][3]  is 

an iterative algorithm that transforms a given lattice basis into 
an LLL-reduced one. Since the definition of LLL-reduced 
uses Gram-Schmidt process, the LLL algorithm performs the 
Gram-Schmidt method as subroutine. Here we listed some of 
the propertied of LLL reduced basis. 
Let  be an LLL reduced basis for a lattice

. Then 

1) ,  

2) if   

3)  ,  

4) For every  with  we have . 

2.5 RSA cryptosystem with balanced 

primes:  
RSA cryptosystem [4] is well known cryptosystem and using 
widely for encryption and signature purposes. In the literature, 
so many versions exist but in this paper, we consider only 
balanced primes, which mean that the two RSA primes are 

roughly the same size. In particular we have

, or equivalently, we assume that . 

It follows that when the RSA primes are balanced, Euler’s 
totient function  satisfies

.  

2.6 Resultant of two bivariate polynomials: 
The resultant of two polynomials  and with 

respect to the variable , is defined as the determinant of 

Sylvester matrix of  and  when considered as 

polynomials in the single indeterminate  The resultant is 

non-zero if and only if the two polynomials are algebraically 
independent. When the polynomials are algebraically 
independent, the resultant yields a new polynomial  such 

that if  is a root of both  and  then 
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Assumption: We assume that the two polynomials return by 
LLL algorithm are algebraically independent. There is no 
theoretical proof for this one, but in practice most of the times 
achieved. 

2.7 Howgrave-Graham Result for Bivariate 

Integer Polynomials: 
Let  be a polynomial in 2 variables with at 
most w monomials and let m be a positive integer. Suppose in 

addition that  
1) h(  where and 

, and 

2) , 

 Then  holds over the integers. 

Here we state the attack and we follow the ideas of Boneh-
Durfee[8]. 

 

3. THE GENERALIZED ATTACK OF 

BONEH AND DURFEE  

3.1 Attack:  
For every , there exists an  such that for every 

the following holds: Let be an -bit RSA modulus 

with balanced primes, let  be a valid public key and  

be its corresponding private exponent defined modulo . 

Let  and . Given the public key, if the private 

exponent satisfies , then the modulus  

can be factored in time polynomial in . 

3.2 Justification  
Consider the key equation . Modulo  

gives the key equation as  where 

 are unknown. From this, consider the bivariate 

polynomial  given by 
 since  is a root of  modulo  

Also we have the upper bounds for  are 

and . Using the above polynomial and the 
bounds  and  we construct a lattice whose every element 

corresponds to a polynomial with root  modulo some 

power of   For some fixed integer , define the 

polynomials 

 Here we will  as -shift polynomials and  
as  shift polynomials. With this construction, notice that 

 and , the root  of  modulo  

is also a root of  and  modulo  Now we 

construct the basis matrix that Boneh and Durfee use, which 
we will denote by , consists of coefficient vectors of 

 for some integer , we will determine 

later.These are the basis vectors for the lattice   Next one 

should arrange these basis vectors such that the matrix is 
lower triangular, we followed the Boneh and Dufee strategy 
here. With that ordering of the basis matrix the diagonal 

elements are given by  for -shift polynomials 

and  for the -shift polynomials. The example 

for a basis matrix for m=2 and t=1 is provided in fig1.  

 

Example for  and : 

 1 x Xy    Y x   

          

x           

Xe E eNX e X Y        

          

Xfe  eX  eN  e      

 1 2NX 2XY  2N      

y           

Yfe   eNXY    eY eX   

y    2NXY   2N  Y 2X   

Fig1. Boneh and durfee lattice for  and  

The empty places are filled with zeros. The determinant of  

is simply the product of its diagonal elements, the volume of  

is 

 

           =   * 

. 

Computing an LLL-reduced basis for the lattice , the two 

smallest reduced basis vectors corresponding to two linearly 

independent polynomials  and  satisfying 

. If both 

polynomials bounded by , then then one can apply 

Howgrave-Graham’s result. But that can be achieved if 

 where  is a 

constant. If the polynomials obtained above are algebraically 

independent, one can compute the resultant of the 

polynomials and . We can get  from the resultant 

polynomial, in turn we can compute the factorization of  To 

derive more general condition, substitute the  ,  ,  values 

into the above condition and let  for some real  

After some tricky calculations we get, 

 Where we consider the  terms, the 

condition on the exponents  be simplified as 

. This inequality is minimized when 

 is equal to . Substituting the value back into the 

inequality, we get 
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 Solving the inequality for  then 

yields the new condition , where  

has been added for neglecting low order terms.  Thus, for 

sufficiently large , if the private exponent  satisfies 

the above condition, then two polynomials with root 
 can be found. If these polynomials are 

algebraically independent, then  can be computed and 

used to factor the modulus. Since all computations can be 
done in time polynomial in , the result follows. 

Observe that whenever , the above condition reduces 

that , which is Boneh-Durfee initial result. They 

have improved this bound by using geometric progressive 
matrices. We use the same technique here to improve the 
above condition to get optimal result. The motivation for the 
improvement is the observation that some basis vectors in  

contribute more to volume to the lattice than others. That is, 

the diagonal elements of some rows are much larger than 
others. If some of the basis vectors with diagonal elements 
exceeding  re removed from the basis matrix, then the 

volume of the resulting lattice will be decreased and the 
bounds on  in the final condition will increase. But the 

resulting lattice is no more full rank lattice, Boneh-Durfee 
used special class of matrices to compute volume of the lattice 
called geometrical progressive matrices. Now we will state 
their attack, generalized for arbitrary public exponent. 
 

4. IMPROVING THE BOUND 

One can improve the above bound by using geometrical 
progressive matrices as Boneh did in his paper[8]. 

4.1 Attack:  
For every , there exists an  such that for every 

 the following holds: Let  be an RSA modulus 

with balanced primes, let  be a valid public exponent 

and let  be its corresponding private exponent defined 

modulo  Given , if the private exponent satisfies 

, then the modulus  can be factored in time 

polynomial in  

4.2 Justification:  
Here also we construct the basis matrix   for some fixed 

 and  using the same above bounds. 

Construct a new basis matrix by removing every basis vector 
that corresponds to a -shift polynomial with diagonal 

element greater than  Let  be a basis generated by the 

new basis matrix. Now compute LLL-reduced basis for , we 

can find again two linearly independent polynomials bounded 

by , where  is the dimension of the lattice 

 If these polynomials satisfy the Howgrave-Graham’s bound 

,  then we can get our desired result.  From the two 

upper bounds above, we can derive    

 (1) 
If this condition is satisfied and if the two polynomials 
obtained are also algebraically independent then we can 

efficiently solve for and factor the modulus. To derive the 

general condition, construct the matrix of blocks as 

, where is the lower triangular sub matrix of   of 

order  corresponding to the -shift polynomials,  is the 
sub mtrix corresponding to the first  columns of the  shift 

polynomials, and  is the lower triangular sub matrix of order 

, corresponding to last   columns of the  shifts. 

Reconstruct above matrix by removing the  shift 

polynomials from the blocks  and D, we get  

where  and  are obtained from  and  by removing the 

appropriate rows. Since  is full rank, there exists an unitary 

matrix  such that  where  is a diagonal 

matrix and  is an integer linear combination of only the 

rows in .  The determinant of above matrix is

. Notice 
that already we compute the determinant of  in the previous 

section and we have 

. Substituting the upper 

bounds of and  into the above yields

, where we ignored the constant factors of 

 and  In other case, computing  is non trivial since 
the matrix  is not a square matrix. In this case Boneh-Durfee 

used the geometrical progressive matrices to compute the 

determinant of  We used the same approach and we can get 

the upper bound for  as   , 
where we ignored all constant factors not depending on  and 

the dimension of the lattice also we can derived as 

.  From this, we have 

, where we have 

ignored all the constant factors not depending on    From 

this, we can reduce the above condition as 

 where we have 
ignored all constant factors that do not depend on . Looking 

only at the exponents of  and ignoring high order terms, this 

is simplified to . This implies 

, where  for ignored constsnts. Since all 

the computations are done in polynomial time, the modulus  

can be factored in time polynomial in  

In a typical instance of small private exponent RSA the public 
exponent will be roughly the same size as modulus. Using the   
approximation , we find that a sufficient condition for 

the attack becomes  which is Boneh-Durfee’s 

original result. 
 

5. EXPERIMENTS 
We have done experiment to test our results when  
and . We used the LLL code from the Victor Shoup’s 

NTL package, which is freely available. 
The prime numbers which have length 512 bits each: 

The first prime number is 
10114792273660656874618568712406420344176220457790

56317809222292933778691637492331874528471835148792

66207841061957158788753119587936299054539196971556

85507 

The second prime number is 

10843221374140991753173625949764386011485161421520

04424630910505348950051925794127279668141749706173

40540814782805188355823533215699617229639228283115

76983 

The encryption exponent is 

49446678600051379228760906286031155509742239832659

70573155924998821057853921181354361242599050783116

04071652590469911949352622005659538425671487860530

40450198919753834397378188932524599840027093290217

61228521410579199967353555655844852344833631440141

46448798271270649298783832374328951704421762119462

86617205 
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The decryption exponent is 
 
21780352155588618020563641971337344243907391969899
764877790673891831527301137 
 

The number of bits for public exponent is 1023. 
The number of bits for private exponent is 254. 
After applying LLL algorithm by taking lattice parameters 
m=3, t=1; LLL returns the reduction matrix, in which we 
apply the resultant methodology for first two vectors, we 
achieve the polynomial in one variable. For LLL reduction, 
for above said parameters takes 70 seconds time under Intel 
core i5 CPU of 2.53GHz. The lattice basis reduction is done 

using shoup’s NTL[18]. 
 

6. CONCLUSION   
By using low private exponent for RSA cryptosystem, one can 
speed up the decryption process or signatures. But one should 
take care to use low private exponent, because Boneh-Durfee 
proved that if low private exponent is less than 0.292, then the 
system is insecure. It is an open problem of the security of 
RSA cryptosystem, if private exponent is greater than 0.292, 
whenever the size of the public exponent is same as modulus 
size.  
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