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ABSTRACT 

Skull stripping is an important image processing step in many 

neuroimaging studies. In this paper, a comparison of three 

brain extraction algorithms is done, namely Brain Surface 

Extractor (BSE), skull stripping algorithm using Geodesic 

Active Contour (GAC), and skull stripping using active 

contours without edges. The comparison is done with respect 

to accuracy of the three algorithms. The results provided by 

the three algorithms are compared against the processed 

results available in the OASIS dataset. A comparison of the 

three algorithms shows that BSE provides the best results with 

respect to the percentage of non-brain matter contained in the 

final segmented output. The algorithm using GAC produces a 

conservative result containing some amount of non-brain 

matter that can be removed using morphological operator. The 

algorithm using active contours without edges produces 

segmentation results containing some amount of brain matter 

removed from the result. This is mainly due to the sensitivity 

of the active contour to intensity values in the sulci present in 

the brain magnetic resonance image. 
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1. INTRODUCTION 
Intracranial segmentation commonly referred to as skull 

stripping, aims to segment the brain tissue (cortex and 

cerebellum) from the skull and nonbrain intracranial tissues in 

magnetic resonance (MR) images of the brain. Skull stripping 

is an important preprocessing step in neuroimaging analyses 

because brain images must typically be skull stripped before 

other processing algorithms such as registration, tissue 

classification, or bias field correction can be applied. In 

practice, skull stripping is widely used in neuroimaging 

analyses such as multimodality image fusion and intersubject 

image comparisons, examination of the progression of brain 

disorders such as Alzheimer’s disease, multiple sclerosis, and 

schizophrenia, monitoring the development or ageing of the 

brain, and creating probabilistic atlases from large groups of 

subjects [1]. 

A number of factors complicate the problem of segmenting 

the skull in MRI volumes. These include partial volume 

effects, variable topology of the skull between individuals, 

regions of the skull with very high curvature, and regions of 

the skull whose thickness is small compared to voxel size 

[11]. Segmentation of brain/non-brain tissue is also one of the 

most time-consuming preprocessing steps performed in 

neuroimaging laboratories, and numerous brain extraction 

algorithms (BEAs) have been developed to perform this step 

automatically. While BEA’s speed up overall image 

processing, their output varies greatly and can affect the 

results of subsequent image analysis. 

Skull-stripping methods can generally be categorized into 

three types: intensity based, morphology based and 

deformable model based. Intensity-based methods rely upon 

modeling the intensity distribution used for threshold 

classification. In [2], a semiautomated classification method is 

proposed for brain tissue classification in brain MR images. 

This method used intensity distribution functions to identify 

major brain tissues (e.g., CSF, GM, and WM). Each brain 

tissue was modeled using a modified log-normal distribution 

function. The limitation for intensity-based methods is that 

they are frequently sensitive to intensity bias caused by 

magnetic field inhomogeneities, sequence variations, scanner 

drift, or random noise. 

Morphology-based methods frequently combine connectivity-

based morphological operations and thresholding or edge-

detection to extract image features and identify brain surfaces. 

In [3], a 2D-skull stripping method was proposed which was 

applied to a midsaggital slice. This method was later extended 

in [4] to all slices in a saggital series. First, thresholds were 

used to separate dark pixels (e.g., background, skull and 

cavities, etc.), then brain regions were identified using a 

connectivity-based algorithm. Brain Surface Extractor (BSE) 

[5] is a popular tool which uses a combination of edge-

detectors and morphological operators to skull-strip the brain. 

A potential disadvantage of these methods is that they are 

often dependent upon many parameters, and the parameters 

are often empirically generated and sensitive to small changes 

in the data. 

Skull-stripping methods based upon deformable models 

typically evolve and deform an active contour to fit the brain 

surface, which is identified using selected image 

characteristics. In [6], a 2D contour is evolved by maximizing 

its corresponding 1D optimization problem which was 

obtained via geometrical transformation from a 2D contour 

using dynamic programming techniques. The 1D optimization 

problem was described by a cost function that consisted of six 

terms including intensity value, morphology, gradient, 

moving speed of the contour, and smoothness of the contour. 

In [7], a system of two level set equations, whose zero level 

curves represented their inner and outer boundaries of the 

gray matter of the cortex was presented. Each level set 

equation was driven towards the inner and outer boundaries 

by a force term determined by the intensity distribution of 

brain tissues (i.e., CSF, WM and GM). The two level set 

equations were further related to each other by constraining 
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the distance between the inner and outer boundaries (i.e., the 

thickness of gray matter). In [8], an active contour algorithm 

that uses the level set methods to evolve the active contour 

was proposed. A fuzzy membership function was used to 

classify images into four components: WM, GM, CSF and 

background followed by a gradient detector and a deformable 

model to evolve an active contour to fit the surface between 

the CSF and GM. In [9], brain data is registered to an atlas 

and the brain surface from the atlas is used as the initial 

contour. Then, an equation based on the level set method was 

used, in which the speed term was determined by the 

curvature of the evolving curve and by a sign function that 

signaled whether to include or exclude a pixel that the curve 

passed. [10] proposed an automated deformable model for 

skull stripping, called the brain extraction tool (BET), in 

which a set of forces were applied in the tangential and 

normal directions of the evolving surface. In general, 

deformable models have the potential to produce more robust 

and accurate skull-stripping results than methods using edge 

detection and threshold classification. Hybrid schemes have 

also been proposed to combine multiple results of different 

algorithms to compensate for problems encountered with 

individual methods [11]. 

The main objective of this paper is to compare three brain 

stripping algorithms with respect to their accuracy of 

segmentation. The first is based on a level sets representation 

of geodesic active contours (GAC) [12-14]. The second is 

based on the minimization of the Mumford-Shah function 

developed by Chan and Vese [15]. The third BEA is Brain 

Surface Extractor [5]. Section 2 deals with a description of 

GAC followed by segmentation using GAC in section 3. 

Section 4 deals with a description of active contours without 

edges followed by a brief description of BSE in section 5. The 

results and discussion are given in section 6. 

2. GEODESIC ACTIVE CONTOURS 
A novel scheme based on a level sets representation of the 

GAC model [12-14] is considered for segmentation of brain 

matter from the MR image of the human brain. This approach 

is based on the relation between active contours and the 

computation of geodesics (minimal length curves). The 

technique is to evolve the contour from inside the MR image 

under the influence of geometric measures of the MR image. 

GACs combine the energy minimization approach of the 

classical “snakes” and the geometric active contours based on 

curve evolution. 

Let 𝛾(𝑡) be the curve that has to gravitate towards the 

boundary of any object at a particular time 𝑡. The time 𝑡 
corresponds to the iteration number. Let 𝜓 be a function 

defined as a signed distance function from the curve 𝛾(𝑡). 

Thus, 𝜓(𝑥, 𝑦) = distance of point (𝑥, 𝑦) to the curve 𝛾(𝑡). 

𝜓 𝑥, 𝑦 =  

0 , 𝑖𝑓  𝑥, 𝑦 𝑖𝑠 𝑜𝑛 𝑡𝑕𝑒 𝑐𝑢𝑟𝑣𝑒

< 0 , 𝑖𝑓  𝑥, 𝑦 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡𝑕𝑒 𝑐𝑢𝑟𝑣𝑒

> 0 , 𝑖𝑓  𝑥, 𝑦 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡𝑕𝑒 𝑐𝑢𝑟𝑣𝑒

  

     (1) 

𝜓 is of the same dimension as that of the image 𝐼(𝑥, 𝑦) that is 

to be segmented. The curve 𝛾(𝑡) is a level-set of the function 

𝜓. Level sets are the set of all points in 𝜓 where 𝜓 = some 

constant. Thus, 𝜓 = 0 is the zeroth level set, 𝜓 = 1 is the first 

level set and so on. 𝜓 is the implicit representation of the 

curve 𝛾(𝑡) and is called as the embedding function since it 

embeds the evolution of 𝛾(𝑡). The embedding function 

evolves under the influence of image gradients and regions 

characteristics so that the curve 𝛾(𝑡) approaches the boundary 

of the object. Thus instead of evolving the parametric curve 

𝛾(𝑡) (e.g., the Lagrangian approach used in snakes), the 

embedding function itself is evolved. In our algorithm, the 

initial curve 𝛾(𝑡) is a polygon initialized near the boundary of 

the skull. 

Let the curve 𝛾(𝑡) be the zeroth-level set of the embedding 

function. This implies that, 

 
𝑑𝜓

𝑑𝑡
= 0    

By the chain rule, 

 
𝑑𝜓

𝑑𝑡
=

𝜕𝜓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝜓

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝜓

𝜕𝑡
  

i.e., 

 
𝑑𝜓

𝑑𝑡
= −∇𝜓 ∙ 𝛾′ (𝑡) 

Splitting the 𝛾′(𝑡) in the normal (𝑁 𝑡 ) and tangential (𝑇 𝑡 ) 

directions, 

 
𝜕𝜓

𝜕𝑡
= −∇𝜓 ∙ (𝑣𝑁𝑁 𝑡 + 𝑣𝑇𝑇 𝑡 )  

Now, since ∇𝜓 is perpendicular to the tangent to 𝛾(𝑡), 

 
𝜕𝜓

𝜕𝑡
= −∇𝜓 ∙ (𝑣𝑁𝑁 𝑡 )  (2) 

The normal component is given by, 

 𝑁 =
∇𝜓

 ∇𝜓 
  

Substituting this in exp. (2), 

 
𝜕𝜓

𝜕𝑡
= − 𝑑𝑖𝑣  𝐾

∇𝜓

 ∇𝜓 
 + 𝑐𝐾  ∇𝜓   

Thus, the evolution equation for 𝜓𝑡  such that 𝛾(𝑡) remains the 

zeroth level set is given by, 

 𝜓𝑡 = −𝐾 𝑐 + 𝜖𝜅  ∇𝜓 + ∇𝜓 ∙ ∇𝐾 (3) 

Where, 𝐾, the stopping term for the evolution is an image 

dependent force and is used to decelerate the evolution near 

the boundaries, 𝑐 is the velocity of the evolution, 𝜖 indicates 

the degree of smoothness of the level-sets, and 𝜅 is the 

curvature of the level sets computed as, 

 𝜅 = −
𝜓𝑥𝑥𝜓𝑦

2−2𝜓𝑥𝜓𝑦𝜓𝑥𝑦 +𝜓𝑦𝑦 𝜓𝑥
2

 𝜓𝑥
2+𝜓𝑦

2 
3
2

 

Where 𝜓𝑥  is the gradient of the image in the x direction, 𝜓𝑦  is 

the gradient of the image in the y direction, 𝜓𝑥𝑥  is the second-

order gradient in the x direction, 𝜓𝑦𝑦  is the second-order 

gradient in the y direction and 𝜓𝑥𝑦  is the second-order 

gradient first in the x direction, then in y direction. Exp. (3) is 

the level-set representation of the GAC model. This means 

that the level-set C of 𝜓 is evolving according to, 

 𝐶𝑡 = 𝐾 𝑐 + 𝜖𝜅 𝑁 −  ∇𝐾 ∙ 𝑁  𝑁  (4) 

Where 𝑁  is the normal to the curve. The first term (𝜅𝑁 ) 

provides the smoothing constraints on the level sets by 

reducing the total curvature of the level sets. The second term 

(𝑐𝑁 ) acts like a balloon force and it pushes the curve outward 

towards the object boundary. The goal of the stopping 

function is to slow down the evolution when it reaches the 

boundaries. However, the evolution of the curve will 

terminate only when 𝐾 = 0, i.e., near an ideal edge. In most 

images, the gradient values will be different along the edge, 

thus, necessitating different 𝐾 values. In order to circumvent 

this issue, the third geodesic term  ∇𝐾 ∙ 𝑁   is necessary so 
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that the curve is attracted towards the boundaries (∇𝐾 points 

towards the middle of the boundary). This term makes it 

possible to terminate the evolution process even if (a) the 

stopping function has different values along the edges, and (b) 

gaps are present in the stopping function. 

The stopping term used for the evolution of level sets is given 

by 

 𝐾 𝑥, 𝑦 =
1

1+ 
 ∇(𝐺(𝑥 ,𝑦)∗𝐼(𝑥 ,𝑦 ) α

𝜅
 
  (5) 

Where 𝐼(𝑥, 𝑦) is the image to be segmented, and 𝜅 and 𝛼 are 

constants. As can be seen, this term 𝐾 𝑥, 𝑦  is not a function 

of t. 

3. SEGMENTATION USING GAC 
The brain extraction algorithm starts by reducing the noise 

artifacts. This is achieved using a Perona-Malik anisotropic 

diffusion filter [16] applied to the MR image. This has the 

effect of noise reduction without blurring the edges. By 

running the diffusion with an edge-seeking diffusion 

coefficient for a certain number of iterations, the image is 

evolved towards a piecewise constant image with the 

boundaries between the constant components being detected 

as edges. 

The stopping function is obtained from exp. (5). The signed 

distance function is obtained from a mask that is initialized 

interactively near the skull boundary. The embedding function 

𝜓 is initialized as this signed distance function to 𝛾(𝑡 = 0) 

which is shown in fig. 3. Discretizing exp. (3) leads to the 

following expression: 

 
𝜓 𝑖,𝑗
𝑡+1−𝜓 𝑖,𝑗

𝑡

∆𝑡
= −𝑐𝐾𝑖,𝑗 ∇𝜓

𝑡 − 𝐾𝑖 ,𝑗  𝜖𝜅𝑖,𝑗
𝑡  ∇𝜓𝑡  +

∇𝜓𝑖,𝑗
𝑡 ∙ ∇𝐾𝑖,𝑗

𝑡     (6) 

Where ∆𝑡 is the time step. In our implementation, the time 

step ∆𝑡 satisfies the Courant-Friedrichs-Lewy (CFL) condition 

to permit numerical stability. In particular this condition also 

assures that the zero level set cannot leave the narrow band in 

a single iteration. The first term 𝑐𝐾𝑖 ,𝑗 ∇𝜓
𝑡  on the right hand 

side of the above equation is the velocity term (advection 

term) and acts as an inflation force. This term could lead to 

singularities and, hence, is discretized using upwind finite 

differences. The upwind scheme for approximating  ∇𝜓  is 

given by, 

 ∇𝜓 =  𝐴 

𝐴 = min  𝐷𝑥
− 𝜓𝑖,𝑗 , 0 

2
 + max  𝐷𝑥

+ 𝜓𝑖,𝑗 , 0 
2
 

+ min  𝐷𝑦
− 𝜓𝑖,𝑗 , 0 

2
 

+ max  𝐷𝑦
+ 𝜓𝑖,𝑗 , 0 

2
  

Where 𝐷𝑥
−𝜓 is the first-order backward difference of 𝜓 in the 

x-direction, 𝐷𝑥
+𝜓 is the first-order forward difference of 𝜓 in 

the x-direction, 𝐷𝑦
−𝜓 is the first-order backward difference of 

𝜓 in the y-direction and 𝐷𝑦
+𝜓 is the first-order forward 

difference of 𝜓 in the y-direction. The second term 

(𝐾𝑖,𝑗  𝜖𝜅𝑖,𝑗
𝑡  ∇𝜓𝑡  ) is a curvature-based smoothing term and 

can be discretized using central differences. The third 

geodesic term (∇𝜓𝑖,𝑗
𝑡 ∙ ∇𝐾𝑖,𝑗

𝑡 ) is also discretized using central 

differences. 

After evolving the embedding function 𝜓 according to exp. 

(6), the curve starts to grow until it satisfies the stopping 

criterion defined by the stopping function 𝐾. Since during the 

evolution process, the primary interest is in the zeroth level 

set of 𝜓, the embedding function can be evolved only in a 

narrowband around the zeroth level set [14]. This accelerates 

the evolution process dramatically. During the evolution 

process, the contour is evolved around a small narrowband 

around the contour. The evolution process is not uniform 

across the contour but can vary due to obstacles such as 

changes in the intensity level.  

The level set function was initialized as a signed distance 

function for computational efficiency. The narrow band 

extension only evolved the level sets within the band and left 

other level sets unchanged, which caused the function 𝜓 to no 

longer represent the distance to the zero level set. So, the level 

set function 𝜓 was reinitialized periodically to approximate 

the signed distance from the new contour.  

A fast method to rectify 𝜓 as proposed in [17] is given by, 

𝜓𝑡 = 𝑆𝜀 𝜓
′  1 −  ∇𝜓  = 𝑆𝜀 𝜓0

′   1 −  𝜓𝑥
2 + 𝜓𝑦

2  

𝑆𝜀 𝜓0
′  =

𝜓0
′

 𝜓0
′2 + 𝜀2

 

Where ψ0
′  is the level set function whose value drifted away 

from the signed distance. The method proposed in [16] 

rectified ψ0
′  to a distance function while keeping its zero-level 

curve. Our experiments showed that this method was fast. In 

that, only one iteration was typically required for ψ to 

converge to a signed distance function. 

4. ACTIVE CONTOURS WITHOUT 

EDGES 
The basic idea in active contour models or snakes is to evolve 

a curve, subject to constraints from a given image 𝑢0, in order 

to detect objects in an image. Let 𝛺 be a bounded open subset 

of ℝ2 with 𝜕𝜔 as its boundary. Let 𝑢0: 𝛺 → ℝ be a given 

image, and 𝐶 𝑠 :  0,1 → ℝ2 be a parametrized curve. Let us 

also define the evolving curve 𝐶 in 𝛺, as the boundary of an 

open subset 𝜔 of 𝛺 (i.e., 𝜔 ⊂ 𝛺, and 𝐶 = 𝜕𝜔. In what 

follows, 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶  denotes the region 𝜔, and 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶  
denotes the region 𝛺\𝜔 . 

In [15], the method comprises a minimization of an energy-

based-segmentation. The idea of the model can be explained 

in a simple manner. Assume that the image u0 is formed by 

two regions of approximately piecewise-constant intensities, 

of distinct values 𝑢0
𝑖  and 𝑢0

𝑜 . Assume further that the object to 

be detected is represented by the region with the value 𝑢0
𝑖 . Let 

denote its boundary by 𝐶0. Then 𝑢0 ≈ 𝑢0
𝑖  inside the object [or 

𝑖𝑛𝑠𝑖𝑑𝑒 𝐶0 ] and 𝑢0 ≈ 𝑢0
𝑜  outside the object [or 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶0 ]. 

Consider the following fitting term: 

𝐹1 𝐶 + 𝐹2 𝐶 =   𝑢0 𝑥, 𝑦 − 𝑐1 
2𝑑𝑥𝑑𝑦

 

𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

+   𝑢0 𝑥, 𝑦 − 𝑐2 
2𝑑𝑥𝑑𝑦

 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶)

 

     (7) 

Where 𝐶 is any other variable curve, and the constants 𝑐1, 𝑐2, 

depending on 𝐶, are the averages of 𝑢0 inside 𝐶 and outside 𝐶 

respectively. 𝐶0, the boundary of the object is the minimize of 

the fitting term, 

𝑖𝑛𝑓
𝐶
 𝐹1 𝐶 + 𝐹2(𝐶) ≈ 0 ≈ 𝐹1 𝐶0 +𝐹2 𝐶0  
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 In the active contour model of [15], the above fitting 

term is minimized and regularizing terms are added such as 

the length of the curve 𝐶 and (or) the area of the region inside 

𝐶. The following energy functional 𝐹 𝑐1 , 𝑐2, 𝐶  is introduced 

in [15]: 

𝐹 𝑐1, 𝑐2, 𝐶 = 𝜇 ∙ 𝐿𝑒𝑛𝑔𝑡𝑕 𝐶 + 𝜐 ∙ 𝐴𝑟𝑒𝑎 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶  

+   𝑢0 𝑥, 𝑦 − 𝑐1 
2𝑑𝑥𝑑𝑦

 

𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

+   𝑢0 𝑥, 𝑦 − 𝑐2 
2𝑑𝑥𝑑𝑦

 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶)

 

     (8) 

Where 𝜇 ≥ 0, 𝜐 ≥ 0, 𝜆1 , 𝜆2 > 0 are fixed parameters. In the 

numerical calculations of [15], 𝜆1 = 𝜆2 = 1 and 𝜐 = 0. 

Therefore, the minimization problem considered is 

𝑖𝑛𝑓
𝑐1 ,𝑐2 ,𝐶

𝐹(𝑐1 , 𝑐2, 𝐶) 

The active contour model with 𝜐 ≥ 0 and 𝜆1 = 𝜆2 = 𝜆 is a 

particular case of the Mumford-Shah minimal partition 

problem in which the search is carried out for the best 

approximation 𝑢 of 𝑢0, as a function taking only two values, 

namely 

 𝑢 =  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑢0  𝑖𝑛𝑠𝑖𝑑𝑒 𝐶

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑢0  𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶
  (9) 

And with one edge 𝐶, represented by the snake or the active 

contour. This particular case of the minimal partition problem 

is formulated and solved using the level set method [15]. 

In the level set method [18], 𝐶 ⊂ Ω is represented by the zero-

level set of a Lipschitz function 𝜙:Ω → ℝ, such that 

 

𝐶 = 𝜕𝜔 =   𝑥, 𝑦 ∈ Ω:𝜙 𝑥, 𝑦 = 0 

𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 = 𝜔 =   𝑥, 𝑦 ∈ Ω:𝜙 𝑥, 𝑦 > 0 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶 = Ω\𝜔 =   𝑥, 𝑦 ∈ Ω: 𝜙 𝑥, 𝑦 < 0 

  

Where 𝜔 ⊂ Ω is open and 𝐶 = 𝜕𝜔. For the level set 

formulation of the variational active contour model, the 

unknown variable 𝐶 is replaced by the unknown variable 𝜙. 

Using the Heaviside function, 𝐻, and the one-dimensional 

Dirac measure 𝛿0, and defined, respectively, by 

𝐻 𝑧 =  
1, 𝑖𝑓 𝑧 ≥ 0
0, 𝑖𝑓 𝑧 < 0

  

𝛿0 =
𝑑

𝑑𝑧
𝐻(𝑧) 

the energy function 𝐹 is expressed in the following manner. 

𝐹 𝑐1 , 𝑐2, 𝜙 = 𝜇 𝛿 𝜙(𝑥, 𝑦)  ∇𝜙(𝑥, 𝑦) 𝑑𝑥𝑑𝑦
 

Ω

+𝜐 𝐻 𝜙 𝑥, 𝑦  𝑑𝑥𝑑𝑦
 

Ω

+ 𝜆1   𝑢0 𝑥, 𝑦 − 𝑐1 
2𝐻 𝜙 𝑥, 𝑦  𝑑𝑥𝑑𝑦

 

Ω

+ 𝜆2   𝑢0 𝑥, 𝑦 − 𝑐2 
2  1

 

Ω

−𝐻 𝜙 𝑥, 𝑦   𝑑𝑥𝑑𝑦 

     (10) 

As defined in exp. (9), 𝑢 the solution of our model as a 

particular case of the Mumford-Shah minimal partition 

problem can simply be written using the level set formulation 

as 

𝑢 𝑥, 𝑦 = 𝑐1𝐻 𝜙 𝑥, 𝑦  + 𝑐2  1 − 𝐻 𝜙 𝑥, 𝑦   , (𝑥, 𝑦) ∈ Ω  

     (11) 

Keeping 𝜙 constant and minimizing the energy 𝐹(𝑐1, 𝑐2, 𝜙) 

with respect to the constants 𝑐1 and 𝑐2, it is easy to express 

these constants function of 𝜙 by 

 𝑐1 𝜙 =
 𝑢0 𝑥,𝑦 𝐻 𝜙 𝑥,𝑦  𝑑𝑥𝑑𝑦

 

Ω

 𝐻 𝜙 𝑥,𝑦  𝑑𝑥𝑑𝑦
 

Ω

 (12) 

if  𝐻 𝜙 𝑥, 𝑦  𝑑𝑥𝑑𝑦 > 0
 

Ω
 (i.e., if the curve has a nonempty 

interior in Ω, and 

 𝑐2 𝜙 =
 𝑢0 𝑥,𝑦  1−𝐻 𝜙 𝑥,𝑦   𝑑𝑥𝑑𝑦

 

Ω

  1−𝐻(𝜙 𝑥,𝑦 ) 𝑑𝑥𝑑𝑦
 

Ω

 (13) 

if    1 − 𝐻(𝜙 𝑥, 𝑦 ) 𝑑𝑥𝑑𝑦
 

Ω
> 0 (i.e., if the curve has a 

nonempty interior in Ω). For the corresponding “degenerate” 

cases, there are no constraints on the values of 𝑐1 and 𝑐2. 

Then, 𝑐1 and 𝑐2 are in fact given by 

  
𝑐1 𝜙 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑢0  𝑖𝑛  𝜙 ≥ 0 

𝑐2 𝜙 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑢0  𝑖𝑛  𝜙 < 0 
  (14) 

The associated Euler-Lagrange expression for 𝜙 is given 

below. Parametrizing the descent direction by an artificial 

time 𝑡 ≥ 0, the initial expression in 𝜙(𝑡, 𝑥, 𝑦) (with 

𝜙 0, 𝑥, 𝑦 = 𝜙0(𝑥, 𝑦) defining the initial contour) is 

𝜕𝜙

𝜕𝑡
= 𝛿𝜖 𝜙  𝜇 div 

∇𝜙

 ∇𝜙 
 − 𝜐 − 𝜆1 𝑢0 − 𝑐1 

2

+ 𝜆2 𝑢0 − 𝑐2 
2 = 0 𝑖𝑛  0,∞ × Ω, 

𝜙 0, 𝑥, 𝑦 = 𝜙0 𝑥, 𝑦  𝑖𝑛 Ω 

𝛿𝜖 𝜙 

 ∇𝜙 

𝜕𝜙

𝜕𝑛 
= 0 𝑜𝑛 𝜕Ω 

     (15) 

The initial contour is initialized interactively near the brain 

boundary. This initial contour is used to generate the mask 

from which a signed distance function, i.e., the initial 

embedding function is created. The embedding function is 

evolved according to exp. (15). Since, during the evolution 

process, the primary interest is in the zeroth level set of 𝜙, the 

embedding function can be evolved only in a narrowband 

around the zeroth level set [14]. Similar to the case of GACs, 

this accelerates the evolution process. The evolution process 

is stopped when a stable and stationary solution is obtained. 

During the evolution process, 𝜙 is again reinitialized to the 

signed distance function using the method given in [17]. 

5. BRAIN SURFACE EXTRACTOR 
Brian Surface Extractor (BSE) [5] uses a combination of 

edge-detectors and morphological operators to skull-strip the 

brain. BSE employs anisotropic diffusion filtering. A 2D 

Marr-Hildreth operator employing low-pass filtering with a 

Gaussian kernel and localization of zero-crossings in the 

Laplacian of the filtered image was first used to identify 

anatomic boundaries. Then, morphological operators were 

used to separate the tissues into component regions. Next, the 

largest central connected component was extracted as the 

brain region. Finally, nonbrain structures still attached to the 

brain region were removed. 

Three parameters are user-adjustable: anisotropic smoothing 

kernel (ASK: default = 25), number of iterations (ITER, 

default = 3), and edge detection 𝜎 (default = 0.64). 
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6. RESULTS AND DISCUSSION 
The brain extraction algorithms using geodesic active 

contours and Chan-Vese active contours have been developed 

using MATLAB 2009b on an Intel Pentium Core2Duo 

machine. The images used for the analysis have been taken 

from the Open Access Series of Imaging Studies (OASIS) and 

The Whole Brain Atlas. Out of the two datasets available on 

the OASIS webpage, the dataset of Cross-sectional MRI Data 

in Young, Middle Aged, Nondemented and Demented Older 

Adults is used. Both T1 and T2-weighted MR images are used 

for the analysis.  

The segmentation results for the images from the OASIS 

dataset are shown in fig. (1). Fig. 1(a) and fig. 1(f) are 

showing the original images. The slice orientation chosen for 

analysis is the transaxial or axial orientation. The processed 

results available in the dataset are shown in fig. 1(b) and fig. 

1(g) for the respective images. The Brain Surface Extractor 

(BSE) algorithm available in the stand alone application 

BrainSuite was applied to the dataset images. BrainSuite is 

available for download via http://users.loni.ucla.edu/.  The 

resulting skull stripped images are shown in fig. 1(c) and fig. 

1(h). From fig. 1(c) it can be seen that some part of the brain 

region has been removed by the BSE algorithm. This is not 

the case with the result obtained by the GAC algorithm in fig. 

1(d). Comparing the original image and the result of the GAC 

algorithm, it can be seen that almost perfect segmentation of 

the brain has been achieved. On the other hand, the result 

obtained using Chan-Vese active contours in fig. 1(e) does not 

fare so well. The result using the GAC algorithm in fig. 1(i) 

contains some non-brain matter on the left and right sides. 

This can be easily removed using simple morphological 

operators. 

We observed that GACs perform well as compared to Chan-

Vese active contours for skull-stripping. This may be because 

of the robustness of the stopping function involved in the 

evolution of the GAC. A well-defined stopping function is 

able to produce effective segmentation. The accuracy of the 

GAC can be further observed from fig. 2 which is showing an 

axial T1-weighted image (fig. 2(a)), axial T2*-weighted 

image (fig. 2(c)), and axial T2-weighted image (fig. 2(e)). The 

corresponding skull-stripped images are shown beside these 

images in fig. 2(b), fig. 2(d), and fig. 2(f) respectively.  

The algorithm implementing GACs for segmenting the brain 

first employs Perona-Malik anisotropic diffusion for pre-

processing. This results in a reduction of image noise without 

removing significant parts of the image content, typically 

edges, lines and other details that are important for the 

interpretation of the image. Anisotropic diffusion resembles 

the process that creates a scale-space, where an image 

generates a parameterized family of successively more and 

more blurred images based on the diffusion process. The next 

step involves the generation of a stopping function from exp. 

(5). Using morphological operations, a pre-segmentation of 

the MR image is roughly done into two regions, brain and the 

background. The centroid of the brain region is obtained. 

Taking the centroid, an ellipse is drawn which is well inside 

the region comprising the brain. This ellipse is taken as the 

initial contour. The signed distance function (SDF) is 

generated from this contour. 

It is observed that the proposed algorithm is able to effectively 

segment the brain region from both T1-weighted as well as 

T2-weighted images. The accuracy of the segmentation 

technique depends on the stopping function generated using 

exp. (5). The more accurate the stopping function is able to 

highlight the boundary between the brain and non-brain 

region, the more accurate the GAC is able to follow the curves 

in the brain region. The proposed algorithm can segment the 

brain region from normal brain MR images as well as those 

containing tumors. The stopping function can be adjusted by 

varying the parameters 𝜅 and 𝛼 so as to avoid weak 

boundaries. The presence of a weak boundary or a kink in the 

detected boundary can cause leakage of the contour through 

that portion, resulting in incorrect segmentation. In our 

experiments, we observed that keeping 𝛼 equal to 8 resulted 

in a strong boundary between the brain and skull. The value of 

𝜅 can be varied from 2 to 5 to obtain an optimal reduction of 

the grayscale information of the brain. Since the initial 

contour is situated near to the brain-skull interface, the model 

converges faster and in a fewer number of iterations, thus 

reducing processing time. 

It can be observed that the GAC model is able to effectively 

overcome the problem of topological changes in the form of 

tumor regions in the brain image. This can be markedly 

observed in fig. 2(d) which shows the tumor region as a 

prominent part. Before obtaining the stopping function for T2-

weighted MR images, morphological operations such as 

erosion and dilation can help to increase the accuracy of the 

stopping function. This is necessary since for T2-weighted 

MR images, to obtain a clear demarcation between brain and 

the surrounding non-brain tissue is difficult because of the 

intensity values of the corresponding regions. Sometimes, it is 

difficult to obtain a clear brain-skull boundary due to the 

gradient involved in the stopping function expression. In this 

case, increasing the width of the Gaussian filter in exp. (5) 

solves this problem, but with the added disadvantage of 

obtaining thick boundaries. This results in a loss of brain 

tissue in the final segmentation. Therefore the crux of the 

proposed algorithm is to achieve correct skull stripping results 

with minimum loss of data. 

We have observed that, as compared to other active contour 

models, segmentation using GAC is more reliable and also 

depends on less number of parameters. The calculation time is 

reduced by using narrow-band propagation of the model. The 

proposed algorithm also displays scope for improvement of 

the results and for increasing the robustness of the algorithm. 

The proposed algorithm is also insensitive to random noise 

scattered in the MR image because the curvature term limits 

artificially sharp changes in the evolving curve that might be 

caused by random noise. Additional research is needed to 

address the potential advantages and limitations of the 

proposed method. 

For the implementation of Chan-Vese active contours, no pre-

processing was employed such as morphological filtering. The 

initial contour was interactively selected to be as much near 

the brain-skull boundary as possible. This was achieved using 

the roipoly function available in MATLAB. Here also the user 

initialized the initial contour near the brain-skull interface thus 

reducing the number of iterations and also effectively 

bypassing the structures present within the brain. This also 

allowed the model to converge in less number of steps For the 

implementation the parameters chosen are: 𝜆1 = 𝜆2 = 1, 𝜈 =
0, 𝜇 = 0.2 and the time step 𝑑𝑡 is calculated according to the 

Courant-Fredrichs-Lewy condition. The model converged to a 

solution after completing the specified number of iterations.  

Table 1 presents the performance indices for the three 

algorithms. Out of the three BSE performs the best with the 

least FP_rate. The FP_rate is calculated as the number of 

voxels incorrectly classified as brain tissue by the automated 

algorithm divided by manually segmented brain masks. Lower 
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the FP_rate coefficient, the more accurate the segmentation 

results. The processed results available in the OASIS dataset 

are taken in this analysis as the gold standard. The results 

obtained using BSE, GAC algorithm, and Chan-Vese active 

contour algorithms are compared against this gold standard. It 

is observed that the FP_rate for the GAC algorithm is slightly 

larger than the FP_rate for BSE. This is attributed mainly to 

the conservative nature of the algorithm, i.e., the tendency to 

avoid removing brain tissue than to remove all non-brain 

tissues for clinical applications. The performance of the skull-

stripping algorithm using Chan-Vese active contours is 

somewhat poor as compared to both BSE and GACs. This is 

because of the tendency of the active contour to align itself 

along the deep sulci of the brain. More work is needed to 

prevent the model from being sensitive to such intensity 

changes. 

Table 1. Performance index of GAC, Chan-Vese, active 

contour algorithm and BSE method of skull stripping 

Sr. No. Method FP_rate 

1 GAC 0.0489 

2 Chan-Vese Active Contours 0.1369 

3 BSE 0.0265 

 

7. CONCLUSION 
In this paper, three methods have been compared which are 

dealing with the problem of skull stripping in MR images of 

the human brain. Out of the three methods, BSE performs the 

best with the lowest FP_rate. The algorithm using GAC has a 

performance comparable to that of BSE but, the results 

obtained using GAC contained some non-brain matter as well. 

Hence, post-processing using morphological operators is 

needed to obtain the final segmented mask. The algorithm 

using Chan-Vese active contours is too sensitive to the 

intensity changes and work is being done to improve it. 
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Figure 1. Skull stripping results for the OASIS dataset using BSE, GAC and Chan-Vese active contour 

 

   

Figure 2. Skull stripping results using GAC for    Figure 3. Skull stripping results using Chan-Vese  

(a), (b) axial T1 weighted, (c), (d) axial T2* weighted,   active Contours for (a), (b) axial T1 weighted, (c), 

(e), (f) axial T2 Weighted      (d) axial T2* Weighted, (e), (f) axial T2 weighted 
 


