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ABSTRACT 
Longest Common Subsequence (LCS) and Shortest Common 

Subsequence (SCS) problems are to find subsequences in 

given sequences in which the subsequence is as long as 

possible and as short as possible subsequence respectively. 

These subsequences are not necessarily contiguous or unique. 

In this paper we have proposed two new approaches to find 

LCS and SCS, of N sequences parallely, using DNA 

operations. These approaches can be used to find LCS and 

SCS, of any window size, from any number of sequences, and 

from any type of input data. The proposed work can be 

applied to finding diverging patterns, constraint LCS, 

redescription mining, sequence alignment, speech recognition, 

find motifs in genetic data bases, pattern recognition, mine 

emerging patterns, contrast patterns in both scientific and 

commercial databases. Implementation results  shown the 

correctness of the algorithms. Finally, the validity of the 

algorithms are checked and their time complexity is analyzed.   

General Terms 
Data Mining, Pattern Recognition, Molecular Computing.  

Keywords 
DNA operations, Motifs, LCS, SCS, CLCS, Pattern 

recognition, Diverging pattern, Exceptional mining.  

1. INTRODUCTION 

One important area of algorithm design is the study of 

algorithms for different character strings. Among the most 

important is, efficiently searching for substrings or generally 

different patterns in large databases. In many instances we do 

not want to find a subsequence exactly, but rather something 

that is ``similar''.  The process of discovery of patterns  in the 

genetic data proves to be essential in many biological 

researches and commercial interpretations. Genetic codes are 

stored in DNA molecules. The DNA strands can be broken 

down into long sequences each of which is one of four basic 

types : A, T, C, G. But the exact matches rarely occur in 

biology because of small changes in DNA mutation. Exact 

substring search will only find exact motifs, like [3,4]. For 

this reason, it is of interest to compute similarities between 

subsequences that do not match exactly. The method of 

sequence similarity should be insensitive of random 

insertions, deletions and type of characters from some 

originating sequence. They are finding the edit distance, 

Generalized Center String [1], LCRS, CPM, gapped 

subsequences [3,4], Longest Common Subsequences [LCS] 

[23] etc. The nature of identifying patterns varies with 

applications, it can be the subsequences from  a large 

sequence  or more number of sequences, patterns with 

misplaced gaps, patterns with rigid continuous sequences or 

rigid gapped sequences, and identifying the longest common 

pattern  from large number of sequences. The concern is also 

on the quality of identified patterns and time taken to discover 

them plays a vital role in huge researches. These prime issues 

motivates the proposed work. 

The task of discovering frequent subsequences as patterns in a 

sequence database is done in  [21,22,28,31,40].  The problem 

addressed by the previous studies was to sought a minimum-

cost consensus sequence that highlights the regions of 

similarity among the input sequences.  Several methods have 

been proposed for dealing with this problem like 

[5,9,13,16,26,35]. A detailed survey of several multiple-string 

alignment algorithms can be found in [11]. They encountered 

many notable problems like, the task of optimally aligning a 

set of strings is computationally very expensive[19] and they 

could only align the global similarities[30]. If the sequences 

under comparison are distantly related or if the relative order 

of their similar regions varies among sequences, it is quite 

possible that no substantial alignment can be produced. To 

overcome the difficulty of alignment problem  a modified 

Position Weight Matrices (PWM)[4] can be used to focus on 

the positions of the patterns in the sequences. Various ways of 

building a PWM have been carried out, some of them are 

found in [10,17,18,33,36]. A number of pattern discovery 

algorithms have been steadily appearing in the literature  

[1,4,7,12,13,14,15,19,25,27].  

We note that solving  the Longest Common Rigid 

Subsequence problem (LCRS), Generalized Centre String 

(GCS) and the Closest Substring Problem (CSP), are 

generalizations of the Longest Common Subsequence (LCS) 

problem  and were found to be NP hard [8,24,29]. 

For huge databases, storing and retrieving of data is 

computationally expensive and time consuming, but with 

DNA strands and DNA operations[2], the storage and 

retrieval are done parallely, thus reducing the time 

complexity. Extracting such sequences and subsequences 

from a database of sequences [32], is an important data 

mining task with plenty of different application domains.  

Motif discovery in sequences, typically involves the discovery 

of binding sites, conserved domains or otherwise 

discriminatory subsequences. In bioinformatics, the two  

predominant applications of motif discovery are sequence 

analysis and micro array data analysis. The majority of the  

tools can be found at the extreme ends of the spectrum with 

tools  that exhaustively enumerate regular expressions at one 

end and probabilistic tools, based on Position Weight 

Matrices(PWMs), at the other. This partitioning of tools is due 

to a computational trade-off: more descriptive motif 

representations such as PWMs frequently make exhaustive 

searches computationally infeasible [18]. The definition of the 

search problem, especially the formulation of objective 

functions, leaves space for substantial improvement in the 

performance of the motif discovery tool [20]. 
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2. LITERATURE REVIEW 

There are studies on mining only representative patterns, such 

as closed sequential patterns by Yan et al [40]. However, 

different from ours, sequential pattern mining ignores the 

(possible frequent) repetitions of patterns within a sequence. 

The support of a pattern is the number of sequences 

containing the given pattern and its commonality between 

various other sequences. 

Simulation of all the DNA operations are done in Simulation 

of all the DNA operations are done in [2], the proposed work 

uses the DNA operations cut and pcr operations. Mining GCS,  

Using DNA operations and modified PWM, given a 

sequential database is performed in [1]. In DNA sequence 

mining, Zhang et al [28] introduce gap requirement, in mining 

periodic patterns from sequences. In particular, all the 

occurrences (both overlapping ones and non overlapping 

ones) of a pattern in a sequence satisfying the gap requirement  

And different other patterns are captured, and the support is 

the total number of such occurrences are found in [3, 4]. This 

paper  deals with finding longest common subsequences of 

any window size ,with given constraint, diverging pattern and 

contrast pattern [6,23,37,38]. 

2.1  Definitions 

Definition1.(Subsequence and Landmark):  Sequence S = 

e1, e2, ...em  is a subsequence of another sequence  S′ = e’1, e’2, 

...e’n (m  ≤  n),  denoted  by S ⊆ S′ (or S′ is a super sequence 

of S) 1 ≤ l1 ≤ l2 ≤ ... ≤ lm  ≤  n such that S[i]  =  S′[li] (i.e., ei = 

e’li) for i = 1, 2, ..., m. Such a sequence of  integers 〈l1, l2, 

...lm〉 is called a landmark of S in S′. 

A pattern P = e1, e2, ...em  is also a sequence. For two patterns 

P and P ′, if P is a subsequence of P ′, then P  is said to be a 

sub-pattern of P ′, and P ′  a super-pattern of P . 

Definition 2 . Instances   of   Pattern:  For   a pattern  P  in  a  

sequence  database  SeqDB = S1, S2, ..., Sn, if 〈l1, e2, ...lm〉   

is   a   landmark   of pattern  P = e1, e2, ...em  in  Si ∈ SeqDB,  

pair (i, 〈l1, e2, ...lm〉) is said to be an instance of P  in 

SeqDB,  and  in  particular,  an  instance  of  P  in sequence Si.  

Definition 3. Repetitive Support and Support Set: The 

repetitive support of a pattern P  in SeqDB is defined to be 

sup(P) = max (I) where I Ɛ SeqDB(P) is non-redundant.  The 

non-redundant instance set I with I = sup(P) is called a 

support set of P  in  SeqDB. 

Definition  4.  Position Weight Matrix:  Given a                             

finite alphabet Σ and a positive integer m, a PWM M is a 

matrix with ||Σ|| rows and m columns. The                                

coefficient M, (p, x) gives the score at position p for the                

letter x in Σ. The PWM defines a function from σm to ʀ, that 

associates a score to each word u = u1,u2,...,up of  σm  : 

Score M (u)=Σmp−1  M (p, up), 

Let α be a score threshold.  We say that M  has an occurrence 

in a text T  at position k if Scor eM (Tk ...Tk+m−1) ≥ α. 

The most recurrent task is to predict binding sites in a large 

DNA sequence, that is to look for                                                        

occurrences  of  a  PWM,  given a  text. 

Definition 5. Longest common subsequence: Given two 

sequences  X = < x1 , x2, …,  xm > and   Z =< z1,  z2, …, zk> ,  

we say that Z is a subsequence of X, if there is a strictly 

increasing sequence of  k indices < i1, i2, ..., ik  > ( 1 ≤  i1 ≤  i2 

≤ ... ≤ ik ≤ n )  such  that  Z = < x1, x2, … xik >. 

For example, let X = < ABRACADABRA >  and let              

Z =< AADAA >, then Z is a subsequence of X. Given two 

strings X and Y for example, let X be as before and let          

Y = <YABBADABBADOO>. Then the LCS is                      

Z = < ABADABA >,  refer Figure 1. 

 

 

 

 

Figure 1. Example of Longest Common Subsequence 

There are many solutions for finding LCS like dynamic 

programming solution [37], Hunt-Szymanski algorithm [23], 

etc. This article proposes new approaches to find LCS using 

DNA operations and modified position weight matrices. 

3. DNA BASED LCS AND DIFFERENT 

RELATED  PATTERNS  DISCOVERY 

In this paper, we propose, two new approaches to study the 

Longest Common Subsequences mining problem and other 

different related patterns.  Algorithms 1 and 2  searches for all 

common sequences of different window sizes and different 

other patterns, in input sequences, using support vector and  

modified Position Weight Matrices (PWM).   

Our approaches makes minimal assumptions about the 

background sequence model and the mechanism by which 

elements affect gene expression. This provides a versatile 

motif discovery method, across all data types and genomes, 

with exceptional sensitivity and near-zero false-positive rates. 

Our  algorithms does not use any complex statistical models 

but rather uses DNA operations and DNA strands to search 

for the presence or absence of patterns. The exponential 

nature of some PWM problems, is a limiting factor for using 

matrices of medium or large length. Here, we use DNA 

strands to store large data and DNA operations to access them 

parallely [1,4], thus solving the above noted problem. 

3.1 Finding LCS using Support Vector (LCSSV) 

Algorithm LCSSV discovers LCS and different related 

patterns, with its support vector using DNA operations. 

Let S = (s1,s2...sN), be the N input sequences, encoded in 0's 

and 1's, refer Figure 2, and the level_number be the maximum 

length of LCS sequence required, that is, the window size of 

LCS. LCS strand along with its supp, that is, number of times 

each subsequence is present in the given sequences be the 

output strands (support). Step 2 generate DNA0, the possible 

combinations of 0's and DNA1, the possible combinations of 

1's [18], depending on the level_number. Let the 

number_of_nodes be the variable, which stores the total 

number of elements present in DNA0 or DNA1. Steps 4 and 5 

performs the pcr operation on DNA0 and DNA1 strands, for N 

sequences and stores in  DNA_01...DNA0N and    

 

              S1        H U M A N 

              S2         C H I M P A N Z E E 

           LCS              HMAN 
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Figure 2. Finding LCS using Support Vector 

DNA11...DNA1N respectively. In steps 6 to 10, for each 

element of DNA01...DNA0N and DNA11...DNA1N, threads are 

created parallely and cut operation is applied to find the 

support count and position of its occurrences and stored in 

supp01...supp0N, pos01...pos0N, supp11...supp1N and pos11...pos1N  

respectively. In steps 12  to 21, the supp and pos strands are 

searched vertically for occurrences of all common 

subsequences for all window sizes and finally the LCS is 

found for the given level_number refer Figure 3 shown 

below. 

 

Figure 3. Illustration  of  LCSSV. 

Algorithm 1:  DNA-based-LCS discovery using Support 

Vector (LCSSV). 

Input:   S,   level_number 

Output:  LCS strand,   supp strand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1  Time Complexity 

TC(LCSSV ) = max(O(max(PCR,CUT)),O(LCS)). 

If  levelnumber ≠  0, then 

      TC(LCS) = O(levelnumber). 

Therefore at its best case 

   TC(LCSSV ) is between O((n/L) + n) and 

                                                           (O(levelnumber)). 

At its average and worst case 

  TC(LCSSV ) is between (O(n/M)+O((n/L)+n)) and 

                                                               O(levelnumber) . 

 

3.1.2 Special Case: Shortest Common Subsequence 

Algorithm LCSSV can be used to find Shortest Common 

Subsequence in S. Since all possible common sequences of all 

window sizes from 1 to level_number is generated, the 

Algorithm LCSSV can be used to find common sequence of 

any small length, thus SCS. From Figure 3 SCS is found by 

varying the window size, that is 1. 

3.2. Finding LCS using modified PWM (LCSPWM) 

DNA based LCS discovery using modified PWM,  discovers 

LCS in the given N sequences  using DNA operations and 

modified PWM. 

 

 

1. begin 

2.    Generate DNA0 and DNA1; 

3.    number_of_ nodes ← size(DNA0) ; 

4.    DNA01…DNA0N ← pcr(DNA0) ; 

5.    DNA11…DNA1N ← pcr(DNA1) ; 

6.   foreach element of DNA01…DNA0N  and 

                                      DNA11…DNA1N  do 

7.     Create threads parallely ; 

8.     let supp01…supp0N[],pos01…pos0N[][]← 

                  cut(S,DNA01…DNA0N[element]) 

; 

9.     let supp11…supp1N[],pos11…pos1N[][]← 

                   cut(S,DNA11…DNA1N[element]) 

; 

10.   end 

11.  [parallely for lcs0 and lcs1] ; 

12.   foreach j from 1 to number_ of_ nodes 

do 

13.      if (supp01[j]…supp0N[j]) > 0 then 

14.          lcs0[] ←  DNA01[j]; 

15.          supp1[] ←  min(supp01…supp0N); 

16.      end 

17.      if (supp11[j]…supp1N[j]) > 0 then 

18.         lcs1[] ←  DNA11[j] ; 

19.         supp2[]← min(supp11…supp1N); 

20.      end 

21.   end 

22.    Extended for any number of sequences; 

23.  end 
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Algorithm 2: DNA-based-LCS discovery using 

modified PWM (LCSPWM). 

Input: S 

Output: LCS strand, PWM strand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Let S = (s1, s2,…sN), be the N input sequences, and LCS and 

PWM are the output strands. Step 2 finds the length of the 

smallest sequence in S and stores in L. Step 3 performs the 

pcr operation on each of the sequence in S and stored in T1, 

T2,…,TN. Steps 4-6 does the cut operation on T1, T2,…,TN, for 

each of sL[element] and their position weight matrices are 

generated as PWM1[1…L], PWM2[1…L], ... PWMN[1…L] 

respectively. Steps 8 to 25 performs a vertical check operation 

on all PWM, checking for the occurrences of elements of sL, 

in order of their presence and stored in LCS strand. Algorithm 

LCSPWM illustrates for PWM1 and PWM2 strands, as shown 

in Figure 4, thus can be extended for N number of PWM 

strands. 

Algorithms LCSSV and LCSPWM can be used to generate 

LCS for different support counts, for any window size, and all 

LCS with position of its occurrences, discover Constrained 

Longest Common Subsequence (CLCS) and find diverging 

and emerging patterns. 

 

           

Figure 4. Discovery of LCS – using modified PWM 

 

  

 

 

 

 

 

 

Figure  5.  Discovery of CLCS 

 

3.2.1  Time Complexity 

TC(LCSPWM) = O(O(max(PCR,CUT)),O(LCS)). 

  If PWM  ∉ ø , then 

        TC(LCS) = O(|min(S)|), 

   Therefore at its best case 

    The TC(LCSPWM) is between O((n/L)+n) and O(|min(S)|), 

At its average and worst case 

The TC(LCSPWM) is between (O(n/M) + O((n/L) + n)) and  

                                                                               O(|min(S)|) 

If  PWM ∈ ø , iff  sL ∉ T [from Lemma 1] 

TC(LCSPWM)  =  O(PCR + CUT) )  implies O(n/M) at its 

average case. 

4. DIFFERENT PATTERNS 

4.1 Special Case 1: Find CLCS and Sequence 

Divergence 

Algorithms LCSSV and LCSPWM can be extended to find  

Constraint Longest Common Subsequence (CLCS) for given 

S. Since all possible LCS are found, the constraint can be can 

be applied and the final CLCS  can be found as shown in 

Figure 5 and thereby find sequence divergence also. 

 

 

 

 

 

 

  S1        T A G T C A C G 

      S2        A G A C T G T C  

   C  =  A T     

                 Possible LCs of window size 4 is  

                                       A G A C & A G T C 

                   CLCS = A G T C 

 

1. begin 
2.    L  ←min(S); 
3.    T1, T2., …, TN  ← pcr(S); 
4.    PWM1[1…L]← cut(T1 , sL[element]); 
5.    PWM2[1…L]← cut(T2 , sL[element]); 
6.    … PWMN[1..L] ← cut(TN , sL[element]); 
7.    j  ←1; 
8.    foreach i ranging from 1 to L do 
9.        if (PWM1[i][j] > 0) then 
10.                test ← PWM2[i][0]; 
11.                lcs[][] ← i; 
12.                lcs[][] ← PWM1[i][j]; 
13.       end 
14.      foreach (i ranging from i + 1 to L) AND  

                        (PWM1..N [i][j] ≠ ø)  do 
15.         if (test < PWM2[i][j]) then 
16.            test←  PWM2[i][j]; 
17.            lcs[][0] ← i; 
18.            lcs[][1]  ←PWM2[i][j] ; 
19.         end 
20.         else 
21.             j++ ; 
22.         end 
23.      end 
24.       Extended for N number of PWM 

strands 
25.     end 
26.  end 
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4.2 Special Case 2: Find Diverging and Emerging 

Patterns 

Algorithms LCSSV and LCSPWM can also be used to find 

diverging and emerging patterns for given S. Steps 13 to 20 in 

Algorithm LCSSV and  steps 14 to 23 in Algorithm 

LCSPWM, can be modified to find diverging and emerging 

patterns for given S. 

4.3 Special Case 3: Re description Mining 

The goal of re description mining is to use the given 

descriptors as a vocabulary and find subsets of data. 

Algorithms LCSSV and LCSPWM can be extended to find 

subsets from a given set of data. 

 

 

 

 

 

 

 

  Figure 6: Illustration of more number of LCS 

Lemma: 1 Let T be set of alphabets. Let S = { s1, s2, s3,…, 

sn}, where S ∈ T.  If  si ∉ T then LCS is ø where 1≤ i ≤ n. 

Proof: LCS is the longest common subsequence in S, thus if 

any of { s1, s2, s3,…, sn}, as elements ∉ T, the set of alphabets, 

then there exists no common subsequence in S, thus LCS is ø . 

Lemma: 2 Let T be set of alphabets. Let S =  { s1, s2, s3,…, 

sn}, where S ∈ T.  Then max(|LCS|) ≤ min(|S||). 

Proof: Let si be the shortest sequence in S, then length of LCS 

of n sequences S = { s1, s2, s3,…, sn}, is at most equal to the 

number of characters of the shortest sequence in S, that is 

max(|LCS|) ≤  min(|si|). 

Lemma: 3 Let T be set of alphabets. Let S  = { s1, s2, s3,…, 

sn},  where S ∈ T. Let CS = {cs1 , cs2, …,  csk}, where 1 ≤k≤ 

n, be the set of common sequences of all window size in S. 

Then LCS ⊆ CS. 

Proof: The LCS of n sequences S, is a longest common 

sequence, that is, the element of common sequences set, of all 

window size. Let cs1 be common sequence of window size 1, 

let cs2 be common sequence of window size 2, and so on, then 

cs1 ⊆  cs2, cs2 ⊆  cs3, …  csk-1 ⊆  csk. Thus  LCS ⊆  CS. 

Lemma: 4 Let T be set of alphabets. Let S { s1, s2, s3,…, sn}, 

where S ∈ T. Let CS = {cs1 , cs2, …,  csk}, where 1 ≤k≤ n, be 

the set of common sequences of all window size in S  and F 

be set of constraint characters, F ∈ T. Then CLCS ⊆ CS. 

Proof : CS is the set of all common sequences in S of all 

window size. So, the CLCS with the elements of F, is also 

present in CS. Thus CLCS ⊆ CS. 

Algorithm LCSSV and LCSPWM can be used to generate 

LCS for different inputs, different support counts, for any 

window size of the sequence, and find all LCS and CLCS 

with position of its occurrences. 

 

 

5. PERFORMANCE 

Algorithms LCSSV and LCSPWM have been implemented 

and tested with simulated and real databases. The random 

DNA sequences of size varying from 100 to 25000, are 

generated from http://old.dnalc.org/bioinformatics/dnalc-

nulceotide-analyzer.htm#randomizer and   

http://old.dnalc.org/bioinformatics.org/sms/rand-dna.html. 

The real data is collected from EMBL database in FASTA 

format. The genome sequences of 3021 viruses are collected 

and tested for the existence of all required patterns. The 

database is got  from   

http://www.ebi.ac.uk/genomes/virus.html.  Algorithms    

LCSSV and LCSPWM proved to be efficient and accurate in 

solving LCS and CLCS in the given sequences. Tested with 

randomly generated and real motifs, our work could discover 

all motifs present, with its positions of existence. All 

implementations are performed  on a dual core computer and 

5 GB main memory using Java. The operating system is 

Windows XP. The resulted data of these experiments are 

consistent. The limitation of these algorithm is that the 

maximum number of threads generated, is dependent on the 

efficiency of the system architecture. 

6. APPLICATIONS 

The assumption behind the discovery of patterns is that a 

pattern that appears often enough in a set of biological 

sequences is expected to play a role in defining the respective 

sequences functional behavior and evolutionary relationships. 

Since the proposed new algorithms use DNA strands for its 

DNA operations and other processing, the storage and 

retrieval processes can be implemented  easily and parallely, 

whatever may be the size of the database. Since the 

applications for finding, the existence of subsequences given a 

large database of commercial or genetic information are 

unlimited, the searching for LCS and CLCS has its 

importance in many industrial, research and scientific 

applications. Especially in medical and genetic field, the 

finding of all patterns of motifs with its diverging pattern, can 

be used to predict, analysis, interpret and conclude the 

existence or future liability of any disease or abnormality 

present in the patient data or defaulters in any commercial 

databases. This work can also be applied to analysis of rule 

based systems, expert systems, rule mining, pattern mining, 

program execution traces, algorithm behavioral patterns and  

other commercial database analysis. 

7. CONCLUSION 

In this paper, we have designed and performed the 

implementations to find LCS, SCS, and different related 

patterns, in a highly parallel way, and can be extended to 

many other data mining applications also. In future, it is 

possible to solve more real time problems in molecular 

biology.  
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