
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.18, July 2012

38

Mining Longest Common Subsequence and other
Related Patterns using DNA Operations

A. Murugan
Department of Computer Science

Dr. Ambedkar Government College
Chennai. INDIA.

B. Lavanya
Department of Computer Science

University of Madras
Chennai. INDIA.

ABSTRACT
Longest Common Subsequence (LCS) and Shortest Common

Subsequence (SCS) problems are to find subsequences in

given sequences in which the subsequence is as long as

possible and as short as possible subsequence respectively.

These subsequences are not necessarily contiguous or unique.

In this paper we have proposed two new approaches to find

LCS and SCS, of N sequences parallely, using DNA

operations. These approaches can be used to find LCS and

SCS, of any window size, from any number of sequences, and

from any type of input data. The proposed work can be

applied to finding diverging patterns, constraint LCS,

redescription mining, sequence alignment, speech recognition,

find motifs in genetic data bases, pattern recognition, mine

emerging patterns, contrast patterns in both scientific and

commercial databases. Implementation results shown the

correctness of the algorithms. Finally, the validity of the

algorithms are checked and their time complexity is analyzed.

General Terms
Data Mining, Pattern Recognition, Molecular Computing.

Keywords
DNA operations, Motifs, LCS, SCS, CLCS, Pattern

recognition, Diverging pattern, Exceptional mining.

1. INTRODUCTION

One important area of algorithm design is the study of

algorithms for different character strings. Among the most

important is, efficiently searching for substrings or generally

different patterns in large databases. In many instances we do

not want to find a subsequence exactly, but rather something

that is ``similar''. The process of discovery of patterns in the

genetic data proves to be essential in many biological

researches and commercial interpretations. Genetic codes are

stored in DNA molecules. The DNA strands can be broken

down into long sequences each of which is one of four basic

types : A, T, C, G. But the exact matches rarely occur in

biology because of small changes in DNA mutation. Exact

substring search will only find exact motifs, like [3,4]. For

this reason, it is of interest to compute similarities between

subsequences that do not match exactly. The method of

sequence similarity should be insensitive of random

insertions, deletions and type of characters from some

originating sequence. They are finding the edit distance,

Generalized Center String [1], LCRS, CPM, gapped

subsequences [3,4], Longest Common Subsequences [LCS]

[23] etc. The nature of identifying patterns varies with

applications, it can be the subsequences from a large

sequence or more number of sequences, patterns with

misplaced gaps, patterns with rigid continuous sequences or

rigid gapped sequences, and identifying the longest common

pattern from large number of sequences. The concern is also

on the quality of identified patterns and time taken to discover

them plays a vital role in huge researches. These prime issues

motivates the proposed work.

The task of discovering frequent subsequences as patterns in a

sequence database is done in [21,22,28,31,40]. The problem

addressed by the previous studies was to sought a minimum-

cost consensus sequence that highlights the regions of

similarity among the input sequences. Several methods have

been proposed for dealing with this problem like

[5,9,13,16,26,35]. A detailed survey of several multiple-string

alignment algorithms can be found in [11]. They encountered

many notable problems like, the task of optimally aligning a

set of strings is computationally very expensive[19] and they

could only align the global similarities[30]. If the sequences

under comparison are distantly related or if the relative order

of their similar regions varies among sequences, it is quite

possible that no substantial alignment can be produced. To

overcome the difficulty of alignment problem a modified

Position Weight Matrices (PWM)[4] can be used to focus on

the positions of the patterns in the sequences. Various ways of

building a PWM have been carried out, some of them are

found in [10,17,18,33,36]. A number of pattern discovery

algorithms have been steadily appearing in the literature

[1,4,7,12,13,14,15,19,25,27].

We note that solving the Longest Common Rigid

Subsequence problem (LCRS), Generalized Centre String

(GCS) and the Closest Substring Problem (CSP), are

generalizations of the Longest Common Subsequence (LCS)

problem and were found to be NP hard [8,24,29].

For huge databases, storing and retrieving of data is

computationally expensive and time consuming, but with

DNA strands and DNA operations[2], the storage and

retrieval are done parallely, thus reducing the time

complexity. Extracting such sequences and subsequences

from a database of sequences [32], is an important data

mining task with plenty of different application domains.

Motif discovery in sequences, typically involves the discovery

of binding sites, conserved domains or otherwise

discriminatory subsequences. In bioinformatics, the two

predominant applications of motif discovery are sequence

analysis and micro array data analysis. The majority of the

tools can be found at the extreme ends of the spectrum with

tools that exhaustively enumerate regular expressions at one

end and probabilistic tools, based on Position Weight

Matrices(PWMs), at the other. This partitioning of tools is due

to a computational trade-off: more descriptive motif

representations such as PWMs frequently make exhaustive

searches computationally infeasible [18]. The definition of the

search problem, especially the formulation of objective

functions, leaves space for substantial improvement in the

performance of the motif discovery tool [20].

39

2. LITERATURE REVIEW

There are studies on mining only representative patterns, such

as closed sequential patterns by Yan et al [40]. However,

different from ours, sequential pattern mining ignores the

(possible frequent) repetitions of patterns within a sequence.

The support of a pattern is the number of sequences

containing the given pattern and its commonality between

various other sequences.

Simulation of all the DNA operations are done in Simulation

of all the DNA operations are done in [2], the proposed work

uses the DNA operations cut and pcr operations. Mining GCS,

Using DNA operations and modified PWM, given a

sequential database is performed in [1]. In DNA sequence

mining, Zhang et al [28] introduce gap requirement, in mining

periodic patterns from sequences. In particular, all the

occurrences (both overlapping ones and non overlapping

ones) of a pattern in a sequence satisfying the gap requirement

And different other patterns are captured, and the support is

the total number of such occurrences are found in [3, 4]. This

paper deals with finding longest common subsequences of

any window size ,with given constraint, diverging pattern and

contrast pattern [6,23,37,38].

2.1 Definitions

Definition1.(Subsequence and Landmark): Sequence S =

e1, e2, ...em is a subsequence of another sequence S′ = e’1, e’2,

...e’n (m ≤ n), denoted by S ⊆ S′ (or S′ is a super sequence

of S) 1 ≤ l1 ≤ l2 ≤ ... ≤ lm ≤ n such that S[i] = S′[li] (i.e., ei =

e’li) for i = 1, 2, ..., m. Such a sequence of integers 〈l1, l2,

...lm〉 is called a landmark of S in S′.

A pattern P = e1, e2, ...em is also a sequence. For two patterns

P and P ′, if P is a subsequence of P ′, then P is said to be a

sub-pattern of P ′, and P ′ a super-pattern of P .

Definition 2 . Instances of Pattern: For a pattern P in a

sequence database SeqDB = S1, S2, ..., Sn, if 〈l1, e2, ...lm〉

is a landmark of pattern P = e1, e2, ...em in Si ∈ SeqDB,

pair (i, 〈l1, e2, ...lm〉) is said to be an instance of P in

SeqDB, and in particular, an instance of P in sequence Si.

Definition 3. Repetitive Support and Support Set: The

repetitive support of a pattern P in SeqDB is defined to be

sup(P) = max (I) where I Ɛ SeqDB(P) is non-redundant. The

non-redundant instance set I with I = sup(P) is called a

support set of P in SeqDB.

Definition 4. Position Weight Matrix: Given a

finite alphabet Σ and a positive integer m, a PWM M is a

matrix with ||Σ|| rows and m columns. The

coefficient M, (p, x) gives the score at position p for the

letter x in Σ. The PWM defines a function from σm to ʀ, that

associates a score to each word u = u1,u2,...,up of σm :

Score M (u)=Σmp−1 M (p, up),

Let α be a score threshold. We say that M has an occurrence

in a text T at position k if Scor eM (Tk ...Tk+m−1) ≥ α.

The most recurrent task is to predict binding sites in a large

DNA sequence, that is to look for

occurrences of a PWM, given a text.

Definition 5. Longest common subsequence: Given two

sequences X = < x1 , x2, …, xm > and Z =< z1, z2, …, zk> ,

we say that Z is a subsequence of X, if there is a strictly

increasing sequence of k indices < i1, i2, ..., ik > (1 ≤ i1 ≤ i2

≤ ... ≤ ik ≤ n) such that Z = < x1, x2, … xik >.

For example, let X = < ABRACADABRA > and let

Z =< AADAA >, then Z is a subsequence of X. Given two

strings X and Y for example, let X be as before and let

Y = <YABBADABBADOO>. Then the LCS is

Z = < ABADABA >, refer Figure 1.

Figure 1. Example of Longest Common Subsequence

There are many solutions for finding LCS like dynamic

programming solution [37], Hunt-Szymanski algorithm [23],

etc. This article proposes new approaches to find LCS using

DNA operations and modified position weight matrices.

3. DNA BASED LCS AND DIFFERENT

RELATED PATTERNS DISCOVERY

In this paper, we propose, two new approaches to study the

Longest Common Subsequences mining problem and other

different related patterns. Algorithms 1 and 2 searches for all

common sequences of different window sizes and different

other patterns, in input sequences, using support vector and

modified Position Weight Matrices (PWM).

Our approaches makes minimal assumptions about the

background sequence model and the mechanism by which

elements affect gene expression. This provides a versatile

motif discovery method, across all data types and genomes,

with exceptional sensitivity and near-zero false-positive rates.

Our algorithms does not use any complex statistical models

but rather uses DNA operations and DNA strands to search

for the presence or absence of patterns. The exponential

nature of some PWM problems, is a limiting factor for using

matrices of medium or large length. Here, we use DNA

strands to store large data and DNA operations to access them

parallely [1,4], thus solving the above noted problem.

3.1 Finding LCS using Support Vector (LCSSV)

Algorithm LCSSV discovers LCS and different related

patterns, with its support vector using DNA operations.

Let S = (s1,s2...sN), be the N input sequences, encoded in 0's

and 1's, refer Figure 2, and the level_number be the maximum

length of LCS sequence required, that is, the window size of

LCS. LCS strand along with its supp, that is, number of times

each subsequence is present in the given sequences be the

output strands (support). Step 2 generate DNA0, the possible

combinations of 0's and DNA1, the possible combinations of

1's [18], depending on the level_number. Let the

number_of_nodes be the variable, which stores the total

number of elements present in DNA0 or DNA1. Steps 4 and 5

performs the pcr operation on DNA0 and DNA1 strands, for N

sequences and stores in DNA_01...DNA0N and

 S1 H U M A N

 S2 C H I M P A N Z E E

 LCS HMAN

40

Figure 2. Finding LCS using Support Vector

DNA11...DNA1N respectively. In steps 6 to 10, for each

element of DNA01...DNA0N and DNA11...DNA1N, threads are

created parallely and cut operation is applied to find the

support count and position of its occurrences and stored in

supp01...supp0N, pos01...pos0N, supp11...supp1N and pos11...pos1N

respectively. In steps 12 to 21, the supp and pos strands are

searched vertically for occurrences of all common

subsequences for all window sizes and finally the LCS is

found for the given level_number refer Figure 3 shown

below.

Figure 3. Illustration of LCSSV.

Algorithm 1: DNA-based-LCS discovery using Support

Vector (LCSSV).

Input: S, level_number

Output: LCS strand, supp strand

3.1.1 Time Complexity

TC(LCSSV) = max(O(max(PCR,CUT)),O(LCS)).

If levelnumber ≠ 0, then

 TC(LCS) = O(levelnumber).

Therefore at its best case

 TC(LCSSV) is between O((n/L) + n) and

 (O(levelnumber)).

At its average and worst case

 TC(LCSSV) is between (O(n/M)+O((n/L)+n)) and

 O(levelnumber) .

3.1.2 Special Case: Shortest Common Subsequence

Algorithm LCSSV can be used to find Shortest Common

Subsequence in S. Since all possible common sequences of all

window sizes from 1 to level_number is generated, the

Algorithm LCSSV can be used to find common sequence of

any small length, thus SCS. From Figure 3 SCS is found by

varying the window size, that is 1.

3.2. Finding LCS using modified PWM (LCSPWM)

DNA based LCS discovery using modified PWM, discovers

LCS in the given N sequences using DNA operations and

modified PWM.

1. begin

2. Generate DNA0 and DNA1;

3. number_of_ nodes ← size(DNA0) ;

4. DNA01…DNA0N ← pcr(DNA0) ;

5. DNA11…DNA1N ← pcr(DNA1) ;

6. foreach element of DNA01…DNA0N and

 DNA11…DNA1N do

7. Create threads parallely ;

8. let supp01…supp0N[],pos01…pos0N[][]←

 cut(S,DNA01…DNA0N[element])

;

9. let supp11…supp1N[],pos11…pos1N[][]←

 cut(S,DNA11…DNA1N[element])

;

10. end

11. [parallely for lcs0 and lcs1] ;

12. foreach j from 1 to number_ of_ nodes

do

13. if (supp01[j]…supp0N[j]) > 0 then

14. lcs0[] ← DNA01[j];

15. supp1[] ← min(supp01…supp0N);

16. end

17. if (supp11[j]…supp1N[j]) > 0 then

18. lcs1[] ← DNA11[j] ;

19. supp2[]← min(supp11…supp1N);

20. end

21. end

22. Extended for any number of sequences;

23. end

41

Algorithm 2: DNA-based-LCS discovery using

modified PWM (LCSPWM).

Input: S

Output: LCS strand, PWM strand

Let S = (s1, s2,…sN), be the N input sequences, and LCS and

PWM are the output strands. Step 2 finds the length of the

smallest sequence in S and stores in L. Step 3 performs the

pcr operation on each of the sequence in S and stored in T1,

T2,…,TN. Steps 4-6 does the cut operation on T1, T2,…,TN, for

each of sL[element] and their position weight matrices are

generated as PWM1[1…L], PWM2[1…L], ... PWMN[1…L]

respectively. Steps 8 to 25 performs a vertical check operation

on all PWM, checking for the occurrences of elements of sL,

in order of their presence and stored in LCS strand. Algorithm

LCSPWM illustrates for PWM1 and PWM2 strands, as shown

in Figure 4, thus can be extended for N number of PWM

strands.

Algorithms LCSSV and LCSPWM can be used to generate

LCS for different support counts, for any window size, and all

LCS with position of its occurrences, discover Constrained

Longest Common Subsequence (CLCS) and find diverging

and emerging patterns.

Figure 4. Discovery of LCS – using modified PWM

Figure 5. Discovery of CLCS

3.2.1 Time Complexity

TC(LCSPWM) = O(O(max(PCR,CUT)),O(LCS)).

 If PWM ∉ ø , then

 TC(LCS) = O(|min(S)|),

 Therefore at its best case

 The TC(LCSPWM) is between O((n/L)+n) and O(|min(S)|),

At its average and worst case

The TC(LCSPWM) is between (O(n/M) + O((n/L) + n)) and

 O(|min(S)|)

If PWM ∈ ø , iff sL ∉ T [from Lemma 1]

TC(LCSPWM) = O(PCR + CUT)) implies O(n/M) at its

average case.

4. DIFFERENT PATTERNS

4.1 Special Case 1: Find CLCS and Sequence

Divergence

Algorithms LCSSV and LCSPWM can be extended to find

Constraint Longest Common Subsequence (CLCS) for given

S. Since all possible LCS are found, the constraint can be can

be applied and the final CLCS can be found as shown in

Figure 5 and thereby find sequence divergence also.

 S1 T A G T C A C G

 S2 A G A C T G T C

 C = A T

 Possible LCs of window size 4 is

 A G A C & A G T C

 CLCS = A G T C

1. begin
2. L ←min(S);
3. T1, T2., …, TN ← pcr(S);
4. PWM1[1…L]← cut(T1 , sL[element]);
5. PWM2[1…L]← cut(T2 , sL[element]);
6. … PWMN[1..L] ← cut(TN , sL[element]);
7. j ←1;
8. foreach i ranging from 1 to L do
9. if (PWM1[i][j] > 0) then
10. test ← PWM2[i][0];
11. lcs[][] ← i;
12. lcs[][] ← PWM1[i][j];
13. end
14. foreach (i ranging from i + 1 to L) AND

 (PWM1..N [i][j] ≠ ø) do
15. if (test < PWM2[i][j]) then
16. test← PWM2[i][j];
17. lcs[][0] ← i;
18. lcs[][1] ←PWM2[i][j] ;
19. end
20. else
21. j++ ;
22. end
23. end
24. Extended for N number of PWM

strands
25. end
26. end

42

4.2 Special Case 2: Find Diverging and Emerging

Patterns

Algorithms LCSSV and LCSPWM can also be used to find

diverging and emerging patterns for given S. Steps 13 to 20 in

Algorithm LCSSV and steps 14 to 23 in Algorithm

LCSPWM, can be modified to find diverging and emerging

patterns for given S.

4.3 Special Case 3: Re description Mining

The goal of re description mining is to use the given

descriptors as a vocabulary and find subsets of data.

Algorithms LCSSV and LCSPWM can be extended to find

subsets from a given set of data.

 Figure 6: Illustration of more number of LCS

Lemma: 1 Let T be set of alphabets. Let S = { s1, s2, s3,…,

sn}, where S ∈ T. If si ∉ T then LCS is ø where 1≤ i ≤ n.

Proof: LCS is the longest common subsequence in S, thus if

any of { s1, s2, s3,…, sn}, as elements ∉ T, the set of alphabets,

then there exists no common subsequence in S, thus LCS is ø .

Lemma: 2 Let T be set of alphabets. Let S = { s1, s2, s3,…,

sn}, where S ∈ T. Then max(|LCS|) ≤ min(|S||).

Proof: Let si be the shortest sequence in S, then length of LCS

of n sequences S = { s1, s2, s3,…, sn}, is at most equal to the

number of characters of the shortest sequence in S, that is

max(|LCS|) ≤ min(|si|).

Lemma: 3 Let T be set of alphabets. Let S = { s1, s2, s3,…,

sn}, where S ∈ T. Let CS = {cs1 , cs2, …, csk}, where 1 ≤k≤

n, be the set of common sequences of all window size in S.

Then LCS ⊆ CS.

Proof: The LCS of n sequences S, is a longest common

sequence, that is, the element of common sequences set, of all

window size. Let cs1 be common sequence of window size 1,

let cs2 be common sequence of window size 2, and so on, then

cs1 ⊆ cs2, cs2 ⊆ cs3, … csk-1 ⊆ csk. Thus LCS ⊆ CS.

Lemma: 4 Let T be set of alphabets. Let S { s1, s2, s3,…, sn},

where S ∈ T. Let CS = {cs1 , cs2, …, csk}, where 1 ≤k≤ n, be

the set of common sequences of all window size in S and F

be set of constraint characters, F ∈ T. Then CLCS ⊆ CS.

Proof : CS is the set of all common sequences in S of all

window size. So, the CLCS with the elements of F, is also

present in CS. Thus CLCS ⊆ CS.

Algorithm LCSSV and LCSPWM can be used to generate

LCS for different inputs, different support counts, for any

window size of the sequence, and find all LCS and CLCS

with position of its occurrences.

5. PERFORMANCE

Algorithms LCSSV and LCSPWM have been implemented

and tested with simulated and real databases. The random

DNA sequences of size varying from 100 to 25000, are

generated from http://old.dnalc.org/bioinformatics/dnalc-

nulceotide-analyzer.htm#randomizer and

http://old.dnalc.org/bioinformatics.org/sms/rand-dna.html.

The real data is collected from EMBL database in FASTA

format. The genome sequences of 3021 viruses are collected

and tested for the existence of all required patterns. The

database is got from

http://www.ebi.ac.uk/genomes/virus.html. Algorithms

LCSSV and LCSPWM proved to be efficient and accurate in

solving LCS and CLCS in the given sequences. Tested with

randomly generated and real motifs, our work could discover

all motifs present, with its positions of existence. All

implementations are performed on a dual core computer and

5 GB main memory using Java. The operating system is

Windows XP. The resulted data of these experiments are

consistent. The limitation of these algorithm is that the

maximum number of threads generated, is dependent on the

efficiency of the system architecture.

6. APPLICATIONS

The assumption behind the discovery of patterns is that a

pattern that appears often enough in a set of biological

sequences is expected to play a role in defining the respective

sequences functional behavior and evolutionary relationships.

Since the proposed new algorithms use DNA strands for its

DNA operations and other processing, the storage and

retrieval processes can be implemented easily and parallely,

whatever may be the size of the database. Since the

applications for finding, the existence of subsequences given a

large database of commercial or genetic information are

unlimited, the searching for LCS and CLCS has its

importance in many industrial, research and scientific

applications. Especially in medical and genetic field, the

finding of all patterns of motifs with its diverging pattern, can

be used to predict, analysis, interpret and conclude the

existence or future liability of any disease or abnormality

present in the patient data or defaulters in any commercial

databases. This work can also be applied to analysis of rule

based systems, expert systems, rule mining, pattern mining,

program execution traces, algorithm behavioral patterns and

other commercial database analysis.

7. CONCLUSION

In this paper, we have designed and performed the

implementations to find LCS, SCS, and different related

patterns, in a highly parallel way, and can be extended to

many other data mining applications also. In future, it is

possible to solve more real time problems in molecular

biology.

8. REFERENCES
[1] Murugan. A. and Lavanya. B. DNA algorithmic approach

to solve GCS problem. Journal of Computational

Intelligence in Bioinformatics,3(2):239-247, 2010.

 [2] Murugan. A., Lavanya. B., and Shyamala. K.A novel

programming approach for DNA computing.

International Journal of Computational Intelligence

Research, 7(2):199-209, 2011.

 S1 C O M P U T E R

 S2 C A L C U L A T I O N

 PWMS2 1,4 10 0 0 5 8 0 0

 LCS 1<5<8 so C U T

 or

 1 < 10 so C O

43

[3] Lavanya. B. and Murugan. A. Discovering sequence

motifs of different patterns parallelly using DNA

operations. International Journal of Computer

Applications, 3(1):18-24, Nov 2011.

 [4] Lavanya. B. and Murugan. A. A DNA based approach to

_nd closed repetitive gapped subsequence from a

sequence database. International Journal of Computer

Applications, 29(5):45-49, Sep 2011.

 [5] Needleman. S. B. and Wunsch. C. D. A general method

applicable to the search of similarities in the amino acid

sequence of two proteins. Journal of Molecular Biology,

48:443-453, 1970.

 [6] James Bailey, Thomas M Anoukian, and Kotagiri

Ramamohanroa. Fast algorithms for mining emerging

patterns. LCNS Springer, pages 39-50, 2002.

 [7] Nikhil Bansal, Moshe Lewenstein, Bin Ma, and Kaishong

Zhang. On the longest common rigid subsequence

problem. Algorithmica, 56:270-280, 2010.

 [8] Maier. D. The complexity of some problems on

subsequences and super sequences. ACM, 25:322-336,

1978.

 [9] Wu. T. D. and Brutlag. D. L. Identification of protein

motifs using conserved amino acid properties and

partitioning techniques. Proceedings of the 3rd

International conference on Intelligent Systems for

Molecular Biology, pages 402-410, 1995.

 [10] Isabelle da Piedade, Man-Hung Eric Tang, and Olivier

Elemento. DISPARE: discriminative pattern refinement

for position weight matrices. BMC Bioinformatics,

10(388):1471-2105, 2009.

 [11] Hirosawa et al. Comprehensive study on iterative

algorithms of multiple sequence alignment.

Computational Applications in Biosciences, 11:13-18,

1995.

 [12] Neuwald. A. F. and Green. P. Detecting patterns in

protein sequences. Journal of Molecular Biology,

239:698-712, 1994.

 [13] Smith. R. F. and Smith. T. F. Automatic generation of

primary sequence patterns from sets of related protein

sequences. Nucleic Acid Research, 18:118-122, 1990..

 [14] Smith. T. F. and Waterman. M. S. Identification of

common molecular subsequences. Journal of Molecular

Biology, 147:195-197, 1981.

 [15] Benson. G. and Waterman .M.S. A method for fast

database search for all k-nucleotide repeats. 2nd

International conference on Intelligent Systems for

Molecular Biology, pages 83-98, 1994.

 [16] Neville-Manning. C. G., Sethi. K .S., Wu. D.,and

Brutlag. A. D. Enumerating and ranking discrete motifs.

Proceedings of Intelligent Systems for Molecular

Biology, pages 202-209,1997.

 [17] Stormo. G. DNA binding sites: representation and

discovery. Bioinformatics, 16:16-23, 2000.

 [18] Kyle Jensen. L., Mark Styczynski. P., Isidore Rigoutsos,

and Gregory Stephanopoulos. V. A generic motif

discovery algorithm for sequential data. Bioinformatics,

22(1):21-28, 2006.

[19] Wang. L. and Jiang. T. On the complexity of multiple

sequence alignment. Journal of Computational Biology,

1:337-348, 1994.

 [20] Nan Li and Tompa. M. Analysis of computational tools

for motif discovery. Algorithms of molecular biology,

pages 1-8, 2006.

 [21] Lo. D.and Khoo. S. D. Liu. Efficient mining of iterative

patterns for software specification discovery. Int. Conf.

on Knowledge Discovery and Data Mining, pages 460-

469, 2007.

 [22] Annila. H. M., Toivonen. H., and Verkamo. A.I.

Discovery of frequent episodes in event sequences. Data

Mining and Knowledge Discovery, 1(3):259-289, 1997.

 [23] Landau. G. M., Levy. A., and Newman. I. LCS

approximation via embedding into locally nonrepetitive

strings. Information and Computation, 209:705-716,

2011.

 [24] Li. M., Ma. B., and Wang. L. On the closest string and

substring problems. J. ACM, 49(2):151-171, 2002.

 [25] Martinez. M. An efficient method to find repeats in

molecular sequences. Nucleic Acid Research, 11:4629-

4634, 1983.

 [26] Martinez. M. A flexible multiple sequence alignment

program. Nucleic Acid Research, 16:1683-1691, 1988.

[27] Suyama. M., Nishioka. T., and Junichi. O. Searching for

common sequence patterns among distantly related

proteins. Protein Engineering, 8:1075-1080, 1995.

 [28] Zhang. M., Kao. B., Cheung. B., and Yip. K. Mining

periodic patterns with gap requirement from sequences.

SIGMOD Int. Conf. on Management of Data, pages 623-

633, 2005.

 [29] Bin Ma. A polynomial time approximation scheme for

the closest substring problem. LCNS Springer, 1848:99-

107, 2000.

 [30] Smith. H. O., Annau. T. M., and Chandrasegaran. S.

Finding sequence motifs in groups of functionally related

proteins. Proceedings of National Academy (USA),

87:826-830, 1990.

 [31] Agarwal. R. and Srikant. R. Mining sequential patterns.

Int.Conf. on Data Engineering, 1995.

 [32] Agarwal. R. and Srikant. R. Mining sequential patterns:

Generalizations and performance improvements.

Extending DataBase Technology, pages 3-17, 1996.

 [33] Staden. R. Computer methods to locate signals in nucleic

acid sequences. Nucleic Acids Res, 12:505-519, 1984.

 [34] Isisdore Rigoutsos and Aris Floratos. Combinatorial

pattern discovery in biological sequences: the teiresias

algorithm. Bioinformatics, 14(1):55-67, 1998.

 [35] Waterman. M. S., Galas. D. J., and Arratia. R. Pattern

recognition in several sequences: consensus and

alignment. Bulletin of Mathematical Biology, 46:515-

527, 1984.

[36] Saurabh Sinha. On counting position weight matrix

matches in a sequence, with application to discriminative

motif finding. Bioinformatics, 22(14):454-463, 2006.

44

 [37] Yin-Te Tsai. The constrained longest common

subsequence problem. Information processing letter,

88:173-176, 2003.

[38] Qian Wan and Aijun An. Diverging patterns:

Discovering signi_cant dissimilarities in large databases.

Technical Report CSE-2008-10, Dec 2008.

 [39] Guan. X. and Uberbacher. E. C. A fast lookup algorithm

for detecting repetitive DNA sequences. Proceedings of

the pacific symposium on Biocomputing, pages 718-719,

1996.

 [40] Yan. X., Han. J., and Afhar. R. Colspan: Mining closed

sequential patterns in large datasets. SIAM Int. Conf.

Data Mining, pages 166-177, 2003.

