
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

26

User Centred Design Approach to Situation Awareness

Nuka Nwiabu

School of Computing
The Robert Gordon University

Aberdeen, United Kingdom

Ibrahim Adeyanju
Computer Science & Engineering department

Ladoke Akintola University of Technology
Ogbomoso, Nigeria

ABSTRACT

Situation awareness is a variety of cognitive processes
employed by operators in a complex and dynamic
environment to understand the current state of the
environment in order to know its future state. Information
systems designed on the principle of situation awareness
adopt the technique of user-centred design (UCD)
methodology. A UCD approach involves users in system

development process to make the system meet end-users
requirements. Such user-friendly systems result in better
decision making and optimal performance. In this paper, we
model situation awareness with agile user-centred
development method for predicting hydrate formation during
crude oil drilling. The design is implemented with Case-Based
Reasoning, an experiential machine learning paradigm, to
expand the scope of the decision-making module.

General Terms

Information Systems, Human Computer Interaction.

Keywords

Situation awareness, User-centred design, Case-based
reasoning, Agile delopment.

1. INTRODUCTION
The attempt to find a solution to human errors using decision
support systems (DSS) sometimes leads to more complexity,
greater errors and more cognitive load [1]. Some findings
have shown that automation of tasks has caused more
problems than it has solved mostly due to decision support
systems being technology-centred, i.e. a situation where
systems are design without much emphasis on end-users'
requirements. End-users' requirements include their
information processing need. Human beings naturally have an

information processing bottleneck and as such can only attend
to limited volume of information at a time [1]. Decision
support systems that place less emphasis on users’
information processing needs do not always result in good
performance [2]. An over-reliance on automation, and poor
human monitoring capabilities was said to have contributed to
circumstances of the accident involving an American airline,
Boeing 757 that struck a mountain at Colombia on the 20th of

December, 1995 while descending for landing [1].
Metzger et al [3] carried a study on training and design of
methods to solve the problem of over-reliance on automation.
Users can be made to overcome over-reliance on automation,
and have good control over information systems either by
giving them some special training or by designing systems
using alternative methods or both. The result of the study
suggests that design and training reduces users’ complacency

on automation as they provide users with the flexibility in
attention strategies needed in multi-task environments.
The problem associated with user’s over-reliance on
automation can be addressed by adopting the user-centred
design (UCD) approach in developing situation awareness
systems. UCD supports user's goals and tasks, user's way of

processing information to make decision, and the user's
control and knowledge of the system [4]. UCD is a design
philosophy that puts the intended users of a system at the

centre of its design and development by involving the users at
key stages in the project to ensure that the system meets their
requirements. Donald Norman [5] defined user-centred design
as “a philosophy based on the needs and interests of the user,
with an emphasis on making products usable and
understandable”.
One of the techniques adopted in our proposed user-centred
design is scenarios. Scenarios represents the entire activities,

describing the social settings, resources, and goals of users,
looking at the “big picture” of how a work is done and not a
narrow description of the task [6]. Scenario analysis in this
work helps in one of the fundamental tasks in object-oriented
design which is developing a problem domain model [7].
Scenarios are simplified to produce a set of propositions that
are subjected to objected-oriented analysis which in turn
generate objects. The objects are identified, and the methods

and interactions that would produce the behaviour are defined
[8]. These processes are achieved by using domain knowledge
and object-oriented system design skills to elaborate on the
explicit knowledge provided by the scenarios. This method
cannot be possible using functional specification alone.
Although, traditional functional specifications are easily
understood by system builders as the specifications are well
laid out in non redundant order as expected in the system, they

may not be user-centred. Functional specifications focus on
the technology of the system and do not express the
psychological or work context for the technology in use such
as users actions, goals, and expectations, which could make
the actions to be meaningful or problematic [8]. Scenarios are
open-ended, as they are used in design; new questions
emerge, which can be answered only by returning to the user
[9]. This makes scenarios a helpful technique for user-centred
design, but on the other hand, system’s features in scenarios

are embedded in complex narratives that are intended to
illustrate how each of the features affect a user’s specific task
experience, and how the features interact within and across
tasks. These specific system functions or features may appear
in several scenarios which require a great deal of care to
understand the different contexts for those features [8].
To integrate human computer interaction (HCI) concerns with
software engineering, UCD is integrated to agile iterative

development. Iterative development is one of the software
development approaches since the early days of software
development. Iterative approaches would have by now
replaced the single-pass waterfall model but for the fact that
waterfall method gives somebody a feeling of knowing
exactly what the end result will be, and how much the process
is going to cost, the method is in use in some quarters,
especially amongst managers [10]. But, the waterfall model

fails to adapt to discoveries made during the design and
implementation phase. There is hardly the opportunity to
make adjustments once the analysis phase is over. In normal
situations, end-result of projects changes as it runs over a

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

27

period of time. The rigidity of the waterfall model do not
allow for constantly evolving products and services. In fact,
the waterfall model does not recognise the fact that conditions
and goals change with time [11]. As the advantages of
iterative methods are becoming widely known, the

shortcomings of the waterfall method are becoming clearer. A
generic term for a number of iterative development methods is
the “agile” development.
Agile development can be defined as “an iterative and
incremental (evolutionary) approach to software development
which is performed in a highly collaborative manner by self-
organizing teams within an effective governance framework
with just enough ceremony that produces high quality

software in a cost effective and timely manner which meets
the changing needs of its stakeholders” [12]. Agile
development is an iterative method designed to solve the
problems of the waterfall method. Evaluation in agile
development is done many times during the project to give
room for a change in direction if need be. Where there is need
for a change, the constant evaluations enable the designer to
redesign at an early stage, saving time and resources [13].

This paper argues that an approach integrating agile
development concepts and user-centred design enables a
situation-aware system to meet the functional and usability
needs of the user. Each of these is iterative, action-based
learning approaches. Drawing them together enables the
building of a series of solutions based on agreed priorities,
user-related activities and constant evaluation. Out of this a
synergy of practice-based solutions and theoretical

developments are drawn.
The remainder of the paper is as follows. The following
section provides the methodology for research and design of
our system. The design process and how it can be applied in a
problem domain (hydrate formation) is then presented in
Sections 3 and 4. The system design and related methodology
are evaluated from that application in Section 5. Finally, the
paper is summarized and concluded in Section 6.

2. INTEGRATED APPROACH
In this work, action Research (AR), user-centred design
(UCD), and the agile development (AD) methodologies will
be linked together to form a comprehensive research-design
cycle. The usefulness of action research methods is that, it

links theory and practice, thinking and doing, reflects on the
process and the product, achieving practical as well as
research objectives [14]. It addresses two challenges, “action”
and “research” [15]. In other words, action research addresses
social issues in a practical fashion and also makes a
contribution to developing and testing theory. This is made
possible through cycles of action and reflection with the
outcomes of each cycle checked against set plans and goals.

The integration of these different methods results in a
research-design process comprising three segments; scenarios,
agile development, and business change (evaluation).
The starting segment of the research-design process is the
domain analysis using scenarios. Even though scenarios are
generated at the first segment, they evolve throughout the
project lifecycle. Scenarios are comprised of problem,
diagnosis, and action planning. The second segment is a user-

centred design by agile development method. It is an iterative
and evolutionary development comprising of requirement
analysis, design, prototype, and design evaluation. When the
process of design is completed, the result is taken to the
research action-taking level in the business change segment,
wherein collaboration with practitioners, an intervention

strategy is adopted to ensure that the design solves
organisational problems.
After action-taking, there is collaboration with practitioners to
evaluate the outcome of the implementation, assessing the
effect of the theoretical concept on practical problem solving.

Where the research questions are answered, the research
process ends after evaluation. But, where the research
questions are not answered, there is an adjustment in the
thinking, and specifying a new direction (learning) that again
pass through scenarios to agile development and then back to
the business change segment. The iterative research and
design cycles continues until the research questions are
answered.

3. DESIGN
Here, we discuss details of the individual components of our
integrated approach to a user-centred design process. These
components are scenarios, requirements analysis and

interaction standards development.

3.1 Scenario
Scenario-based user-centred design is used in this work
because of the evolutionary and question-asking nature of
scenarios which fills the gap of the author's lack of strong

intuitions about the domain [8]. Also, scenarios are now the
best means available for the purpose of designing today’s
systems [16]. Scenarios in this work identify issues to be
investigated, interpret the problem (diagnosis), and draw up a
theoretical framework (action planning) which indicate the
future state of the organisation and the changes that would
achieve such a state [14].
The problem domain is analysed by task description and by

initial scenarios specification. There were three structured
interviews with domain practitioners to understand the tasks
together with the knowledge of why tasks are carried out the
way they are carried out. This involved probing of the social,
historical, and cognitive rationale of users’ tasks. To diagnose
the identified problem the following scenario was explored
through requirements analysis.
A team of ten engineers working on the prediction of hydrate
in a two-phase flow system (water + gas) with the assistance

of situation-aware decision support systems investigated
hydrate formation conditions of (CH4 + C2H4) and (CH4 +
C3H6) binary gas mixture in the presence of pure water using
“pressure search” method. The temperature under
investigation ranges between 273.7-287.2k and pressure
ranges between 0.53-6.6MPa. Ethylene content in the gas
mixtures varied from 7.13 to 100%, and the propylene content
varied from 0.66 to 71.96 mol%. Each of these variations of

the percentage composition of the guest molecules constituted
a context for investigation.

3.2 Requirements analysis
The object-oriented method is used to explore and model the
requirements and the functional specifications of user-system

interactions to achieve a user-centred design. The elaborated
scenario from action planning forms the basis for the
requirements analysis using the Unified Modelling Language
(UML). In requirements analysis, the functional and non-
functional requirements are analysed. Diary studies and
personal development are used to understand the functional
requirements of the users. For a complete analysis which
includes non-functional requirements, information from the

three structured interviews, contextual inquiry and task
analysis with domain practitioners were used.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

28

Fig 1. Use case diagram modelling of user-sensor interactions

There was harmonization of the functional and non-functional
requirements in order to have the requirement specifications
that served as a roadmap for the design. We constructed
scenarios of interaction and functionalities detailed by use
cases to describe the sequences of interactions between the
user and the system to achieve a sub-goal in accordance to a

user context of use as shown in Figure 1.
There are two actors, “User” and “Sensor” and seven use
cases in the modelling of the initial requirements. A user
presents contextual data to the system to enable the system to
know the context the user intends to work from. The
stereotype <<include>> between the use case “know the
context” and the use case “present contextual data” means that
the former is the base use case dependent on the latter, the

inclusion use case. The second actor “sensor” presents the
condition of the environment to the system for the system to
know the situation in the environment. The use case “know
the situation” depend on three use cases; “present condition of
the environment”, “know the context”, and “query knowledge
base”. The “find advice” use case also depend on three use
cases; "know the context”, “know the situation”, and “query
knowledge base”. The “query knowledge base” which is an
inclusion use case to both “know the situation” and “find

advice” is a base use case to “add to existing knowledge”.
Carrying out requirement analysis on the elaborated scenario
(see scenarios) it was discovered that the above use cases
depend on other use cases for example, “know the context”
not only depend on “present contextual data” but also on
“validate context”. Also, it was discovered that “know the
situation” is a generalization of “recognise the data”,
“understand current situation”, and “predict future situation”.

3.3 Interaction standards
The design is a conceptual design supported by an object-
oriented Computer Aided Software Engineering (CASE) tool,
Unified Modelling Language (UML) to give form to the
functional requirements, and features from the users’ view.

The design produced an information architecture, and

interaction standards development. There is a class for each
object identified, and the classes have associations that
correspond to the links between objects. The class diagram in
Figure 2 also show the relationship between the classes. For
example, the class “situation awareness” is a generalization of
the classes “perception”, “understanding”, and “prediction”.

One “perception” receives condition of the environment from
one to many “sensors”. One “understanding” and one
“prediction” are compared to from one to many “goals".

4. PROTOTYPE
This prototype is developed to receive feedback from users to
enable the author have necessary information for further
design. One of the questions this work addresses is whether
this design can be implemented with machine learning
capabilities. Machine learning is a discipline concerned with
the development of algorithms that enable the behaviour of
data, such as database to be changed. The whole essence of
machine learning study is that a system should be able to

recognise complex patterns and make intelligent decisions
based on data.
This work’s prototype is implemented with Case-based
reasoning (CBR), a machine learning paradigm. Case-based
reasoning was chosen because of its “revise” and “retain”
facilities that is useful for learning by experience. The
increasing mental models of CBR will help in the building of
shared mental models for the project. We used a CBR tool
called jCOLIBRI framework for our implementation.

jCOLIBRI runs on Eclipse, a JAVA platform for building
integrated development environments (IDEs). We developed a
prototype to predict the formation of hydrate in gas pipelines.
Data was obtained for this work from Ma et al's publication
on hydrate formation of CH4 + C2H4 and CH4 + C3H6 gas
mixtures [17], and Maekawa's work on Phase equilibria for
hydrate formation from binary mixtures of ethane, propane
and noble gases [18].

Know the context

Query knowledge base

Know the situation

Sensor

Present condition of the

environment

Find advice

Present contextual data

User

Add to existing knowledge

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>
<<include>>

<<include>>

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

29

Fig 2: Class diagrams showing interaction standards

5. DESIGN EVALUATION
There are some direct interactions with end users to aid our
requirements capture and also to enable us formulate a
realistic usability evaluation plan. Performance evaluation of
the system has been carried out to determine the effect of the

theoretical concept on practical problem solving. Usability
evaluation of the system by qualitative interaction with users
was also carried out. The users form the focus group that
provided feedback on the ease of use of the system. The
response rate was 100%. Surveys were conducted on 10 users,
10 successfully completed their questionnaires and returned.

Table 1: Profile Analysis

Scale UF Ucl Medn Lcl LF

Global 79 67 63 49 49

Efficiency 86 76 69 63 47

Affect 68 61 58 54 47

Helpfulness 79 68 65 61 46

Control 76 69 65 62 55

Learnability 78 75 72 68 62

Evaluating the user interface in Figure 3 with 10 users, the
SUMI responses of each of the users involved in the study or
evaluation are represented in ASCII characters. The 50 SUMI
questions are grouped into 5 with each group of 10 questions

coded as a block. The result of the interpretation of these
responses by SUMISCO program is as shown in Table 1.
The Median is the middle score when the scores are arranged
in numerical order. It is the indicative sample statistic for
each usability scale. The Ucl and Lcl are the Upper and Lower
Confidence Limits. They represent the limits within which
the theoretical true score lies 95% of the time for this sample
of users. The UF and LF are the Upper and Lower Fences.

They represent values beyond which it may be plausibly
suspected that a user is not responding with the rest of the
group: the user may be responding with an outlier.
The result is generally of good rating. The interface is very
simple to understand with 72% median rating. The next high
rating was the “efficiency” of the system with 69% score.
This fairly high score on efficiency is due to much emphasis
placed on the accurate prediction of hydrate formation during
the design process. SUMISCO scored “Affect” the lowest.

Affect represent the degree by which users like the system.
Users were interviewed in respect of the low score. The
feedback from users was that the interface should be further
developed to contain buttons like SAVE, PRINT etc. The
number (8) user was particularly interviewed for his general
low rating of the system, and the feedback was that there was
no HELP facility on the interface. Apart from the usability
feedbacks from users, the system also has some performance

drawbacks.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

30

Fig. 3 Screenshot from our User interface prototype

The drawbacks of this first prototype are:

 It cannot understand situation from other scenarios.

 It is not flexible to accommodate context outside the

predefined contexts.

 It cannot predict the location and time of hydrate

formation.
Based on the above drawbacks, and the usability feedbacks
from users, the agile development is currently undergoing
refinement to ensure that the system satisfies the specified
requirements required at the business change segment. The

refined prototype will soon be ready for implementation at the
next stage (business change segment).

6. CONCLUSIONS
The utilisation of user centred design methods ensures that
there is collaboration between researchers and practitioners.

But in most real-life situations, domain practitioners are
always too busy for an effective collaborative work. In
situations where researchers cannot exploit all the required
methods due to non availability of the practitioners or where
information are being withheld by practitioners, the domain
analysis may provide inaccurate or incomplete information for
requirements tasks.
By focusing on user-centred design, one develops

understanding of the user, and thereby an understanding of
why you are developing the system and who will be using the
system. As the UCD process ensures an understanding of the
users, the agile development model ensures that you can work
iteratively, enable faster development of functional prototype,
which are more easily communicated and tested, thus giving
you better input for the next iteration.

7. REFERENCES
[1] Endsley, M.R. Bolte, B. Jones, D.G. 2003. Designing for

Situation Awareness: An Approach to User-Centred
Design. Taylor & Francis.

[2] Selcon, S. 1990. Decision support in the cockpit: Probably

a good thing? Human Factors society.

[3] Metzger, U., Duley, J., Rovira, E., Parasuraman, R. 1999.
Effects of training on monitoring of an automated
system. Proceedings of the Human Factors and
Ergonomics society 43rd annual meeting.

[4] Parker, C. and Sinclair, M. 2001. User-centred design
does make a difference. The case of decision support
systems in crop production. Behavour & Information
Technology. Vol. 20. pages 449-460.

[5] Norman, D.A. 1986. User-Centered System Design: New
perspective on Human-computer Interaction. Lawrence
Earlbaum Associates. Hillsdale, N.J.

[6] Nardi, B. 1995. Some reflections on scenarios. John
Wiley & Sons Inc. ISBN: 0-471-07659-7. pages 387-

399.

[7] Rosson, M. and Carroll, J. 2002. The human-computer
interaction handbook: fundamentals, evolving
technologies and emerging applications. The Human
Factors and Ergonomics. pages 1032-1050.

[8] Robertson, S. 1995. Generating object-oriented design
representations via scenario queries. John Wiley & Sons
Inc. pages 279-308.

[9] Mark, R. 1995. Discussion: Scenarios as engines of
design. John Wiley & Sons Inc. pages 361-386.

[10] Larman, C. and Basili, V.R. 2003. Iterative and
incremental development. A brief history. Vol 36. pages
47-56.

[11] Lindstrom, H. and Malmsten, M. 2008. User-centred
design and agile development: Rebuilding the Swedish
national union catalogue. The Cod4Lib Journal. Vol 6.

pages 12-15.

[12] Ambler, S.W. 2002. Agile Modeling: Effective Practices
for XP and the UP. New York: John Wiley & Sons.

[13] Schwaber, K. and Beele, M. 2002. Agile software
development with SCRUM. Printice Hall.

[14] Baskerville, R. and Wood-Harper, A. 1996. A critical
perspective on action research as a method for
information systems research. Journal of Information
Technology. Vol. 11. pages 235-246.

[15] Avison, D., Baskerville, R., Myers, M. 2001. Controlling
action research projects. Information technology &
people. Vol. 14. pages 28-45.

[16] Rosson, M. and Carroll, J. 1995. Narrowing the
specification-Implementation gap in scenario-based
design. John Wiley & Sons Inc. pages 247-278.

[17] Ma, J., Zhang, G. 2008. Team situation awareness
measurement using group aggregation and implication

operators. IEEE 3rd International conference on
intelligent system and knowledge engineering

[18] Maekawa, T. 2006. Phase equilibria for hydrate
formation from binary mixtures of ethane, propane and
noble gases. Fluid Phase Equilibria. Vol. 243. pages 115-
120

