
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

4

Design of Stochastic Simulator for Analyzing the Impact
of Scalability on CPU Scheduling Algorithms

P.K. Suri
HCTM Technical Campus,

Kaithal, Haryana, 136 027, India

Sumit Mittal
M.M. Institute of Computer Technology & Business

Management, M.M. University,
Mullana, Ambala, Haryana, 133 207 India

ABSTRACT
Process scheduling with scalable performance is an issue in
computer system. Scalability of scheduling algorithm is its
ability to don’t decrease the performance when large
processes are under run. The performance of job scheduling
policies strongly depends on the properties of the incoming
jobs. In this paper, we have analyzed the impact of scalability

on different CPU scheduling algorithms with reference to
average waiting time, average turnaround time and average
response time to determine which algorithm is most suitable
for uniprocessor environment. The burst time, arrival time and
priority is randomly generated using exponential probability
distribution and the performance of all algorithms has been
evaluated with reference to arrival time or without arrival
time. We use a simulative approach to evaluate the

performance and scalability of each algorithm with reference
to different number of processes.

Keywords
Uniprocessor environment, Scalability, CPU scheduling
algorithms, Simulation.

1. INTRODUCTION
Scheduling refers to a set of policies and mechanisms to
control the order of work to be performed by a computer
system. Scheduling is the method by which threads, processes
or data flows are given access to system resources. The need
for a scheduling algorithm arises from the requirement for
most modern systems to perform multitasking (execute more
than one process at a time) and multiplexing (transmit
multiple flows simultaneously). The basic idea is to keep the

CPU busy as much as possible by executing a user process or
job until it must wait for an event, and then switch to another
process. In multiprogramming systems, when there is more
than one runable process (i.e., ready), the operating system
must decide which one to activate. The decision is made by
the part of the operating system called the scheduler, using a
scheduling algorithm.
Scheduling, discussions and related project area are very
integral design topics, when talking about real-time

applications. The CPU scheduling algorithm that is used in the
real-time system weighs heavily on the maximization of
utilization and throughput, and on the minimization of waiting
and turnaround times.
In this paper, some basic following assumptions have been
undertaken for the development of simulator:

1. Scheduler allocates the processes to the CPU only
when they are stabilized in a steady state;

2. A pool of independent runnable processes is
contending for one CPU;

3. The scheduler distributes the resources to the
different processes;

4. Uniprocessor environment has been considered for
the implementation;

5. There are three scheduling states for each process

(ready, running and blocked);
6. Only preemptible and non-preemptible resources are

assumed.
7. Simulator is run for n number of processes.

Our stochastic simulator determined the values of waiting
time, turnaround time and response time for each job/process.
In a similar manner, the average turnaround time, average
waiting time and average response time were computed. The

processes burst time, arrival time and priority were randomly
generated according to negative exponential probability
distribution.

1.1 Scheduling Policies
In general, scheduling policies may be pre-emptive or non-

pre-emptive.

1.1.1 Non-preemptive Scheduling
In a non-pre-emptive multiprogramming system, the short-
term scheduler lets the current process run until it blocks,
waiting for an event or a resource or it terminates. The current

process releases the CPU either by terminating or by
switching to the waiting state.

1.1.2 Preemptive Scheduling
Pre-emptive policies force the currently active process to
release the CPU on certain events, such as a clock interrupt,

I/O interrupts or a system call. The current process needs to
involuntarily release the CPU when a high priority process or
job is inserted into the ready queue or once an allocated CPU
time has elapsed.

1.2 CPU Scheduling Algorithms
CPU Scheduling is the act of selecting the next process for the
CPU to service, once the current process leaves the CPU idle.

1.2.1 First-Come First-Serve (FCFS)
The processes are allocated to the CPU on the basis of their
arrival at the queue. Arriving jobs are inserted into the tail
(rear) of the ready queue and the process to be executed next

is removed from the head (front) of the queue [1], [18]. A
long CPU-bound job may dominate the CPU and may force
shorter jobs to wait prolonged periods.
1.2.2 Shortest-Job-First (SJF)
The scheduler arranges processes with the least estimated

processing time in the queue. The SJF uses the FCFS
technique where two processes have the same length next
CPU burst [19]. The SJF algorithm may be implemented as
either a preemptive or non-preemptive algorithms. Long
running jobs may starve, because the CPU has a steady supply
of short jobs.

1.2.3 Priority Scheduling (PS)
A priority number is associated with each process. The CPU
is allocated to the process with the highest priority. If there are
multiple processes with same priority, then FCFS is used to
allocate the process. A variation of this scheme allows

http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Flow_(computer_networking)
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Multiplexing

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

5

preemption of the current process whenever a higher priority
process arrives. Another variation of the policy adds an aging
scheme, where the priority of a process increases as it remains
in the ready queue.

1.2.4 Round-Robin Scheduling (RR)
This algorithm is especially designed for time-sharing
systems; each process gets a small unit of CPU time. This
algorithm will allow the first process in the queue to run until
it expires its time, and then run the next process in the queue.
In a situation where the process needs more time, the process

runs for the full length of the time quantum and then it is
preempted and then added to the tail of the queue.

1.3 Scheduling Parameters
The scheduling strategy is good enough with the following

possible metrices:

1.3.1 Throughput
It is the number of processes that are completed per unit time.
Usually, the goal is to maximize the throughput.

1.3.2 CPU Utilization
Usually, the goal is to maximize the CPU utilization. We want
to keep the CPU as busy as possible. Conceptually, CPU
utilization can range from 0-100 percent.

1.3.3 Turnaround Time
It is the sum of periods spent waiting to get into memory,
waiting in ready queue, executing on the CPU, and doing I/O.
Usually, the goal is to minimize the turnaround time.

1.3.4 Waiting Time
This is the amount of time spent in the ready queue to run.
Usually, the goal is to minimize the waiting time.

1.3.5 Response Time
It is the time from the submission of a request until first
response is produces. Usually, the goal is to minimize the

response time.

2. RELATED WORK

Stephen Curran et. al. [10] presented the results of a
simulation study comparing scheduling algorithms that
schedule independent tasks in multiprocessor versions of
UNIX. The results show the difference between the
performances of the three algorithms when scheduling a
typical UNIX workload running on a small, bus-based, shared
memory multiprocessor.

Maria Abur et. al. [13] presented a multiprogramming system
which allows more than one process to be loaded into the
executable memory at a time and for the loaded process to

share the CPU using time-multiplexing. They revealed the
simulation of the Scheduling algorithms and comparing their
average waiting time to know which has the least average
waiting time.

Jochen Krallmann et.al. [20] has done their work on design
and evaluation of job scheduling algorithms. They split a
scheduling system into three components: scheduling policy,
objective function and scheduling algorithm. The main focus
is on the selection and evaluation of several scheduling
algorithms.

E.O. Oyetunji et.al. [15] has proposed an algorithm which can
be used to solve very large classes of the multi-criteria
scheduling problems. The revealed that the proposed
algorithm performed better than the selected solution methods
when the total completion time criterion is much more
important than the other criteria.

3. SIMULATION BASED

 IMPLEMENTATION
In the present study, our objective is to design a stochastic

simulator for analyzing the impact of scalability on different
CPU scheduling algorithms under uniprocessor environment.
Java is used to create the main interface and codes. Once the
numbers of processes or jobs are entered, our simulator
randomly generated the burst time, arrival time and priority
using exponential probability distribution for every process.
Then compute the average waiting time, average turnaround
time and average response time. In this paper, first we find all

the three scheduling parameters for each algorithm without
using arrival time of each process and second we find the
same parameters with using arrival time of each process.
The figure 1 below is the main user interface for the stochastic
simulator. This interface is used to run other modules also.

Figure 1 Main user interface for the simulator.

The developed simulator determined the average waiting time,
average response time and average turnaround time of the
different CPU scheduling algorithm. The simulator has been

run between (10-500 processes) and than the results is
analysed. After considering some of the issues relating to the
service pattern of I/O jobs or processes through scheduling
goals, it can be concluded that each policy has its own
benefits and limitations.

3.1 Analysis of FCFS Algorithm
Figure 2 shows the analysis of FCFS scheduling algorithm
without arrival time and Figure 3 shows the analysis of FCFS
scheduling algorithm with arrival time. In these figures, start
time, finish time, waiting time, response time and turnaround
time with respect to processes are randomly generated using
exponential probability distribution. The average waiting
time, average response time and average turnaround time with
respect to processes are also calculated and shown.

Figure 2 FCFS without Arrival Time

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

6

Figure 3 FCFS scheduling algorithm with Arrival Time

In the similar manner, the average waiting time, average
response time and average turnaround time for all the CPU

scheduling algorithms are also calculated which helps a lot in
finding the best scheduling policy or analyzing the impact of
scalability.

4. RESULTS AND DISCUSSION
The values of average waiting time, average turnaround time
and average response time are obtained from the developed
simulator for different CPU scheduling algorithms with
reference to randomly generated arrival time and without
arrival time.
The goal is to minimize the average waiting time and average
turnaround time for best scheduling algorithm or to maximize
the response time. Table 1 shows the average waiting time of

all scheduling algorithms for all the problems sizes in which
the arrival time of each job/process is present and Table 2
shows the average waiting time of all scheduling algorithms
for all the problems sizes in which the arrival time of each
job/process is not present.

 Table 1 Average Waiting Time with Arrival Time

No. of

Process

FCFS SJF-NP SJF-P PS-NP PS-P RR

10 20 17.7 17.1 21.7 21.7 34

20 32 25.05 21.1 33.45 32.95 37.75

50 105.64 61.12 60.68 93.18 93.24 107.74

100 240.93 142.6 141.87 214.5 214.72 251.65

250 579.06 395.24 395.18 580.02 580.27 693.10

500 1190.82 797.42 795.96 1222.71 1224.01 1376.03

The Figure 4 visualizes the impact of scalability on all
algorithms with respect to different number of processes
verses average waiting time when arrival time is considered.

Figure 4 Shows Average Waiting Time (with arrival time)

 Table 2 Average Waiting Time without Arrival Time

No. of

Proces

FCFS SJF-

NP

SJF-P PS-NP PS-P RR

10 24.5 21 17.1 29 21.7 34

20 41.5 28.95 21.1 40.35 32.95 37.75

50 130.14 80.04 60.68 116.28 93.24 107.74

100 290.43 181.95 141.87 263.99 214.72 251.65

250 703.56 506.88 395.18 704.50 580.27 693.10

500 1440.32 1019.77 795.96 1470.13 1224.01 1376.03

The Figure 5 visualizes the impact of scalability on all

algorithms with respect to different number of processes
verses average waiting time when arrival time is not
considered.

Figure 5 Shows Avg. Waiting Time (without arrival time)

Table 3 shows the average turnaround time of all scheduling
algorithms for all the problems sizes in which the arrival time
of each job/process is present and Table 4 shows the average
turnaround time of all scheduling algorithms for all the
problems sizes in which the arrival time of each job/process is
not present.
 Table 3 Average Turnaround Time with Arrival Time

No.

of

Process

FCFS SJF-NP SJF-P PS-NP PS-P RR

10 30.9 27.4 23.5 35.4 28.1 40.4

20 45.9 33.35 25.5 44.75 37.35 42.15

50 135.22 85.12 65.76 121.36 98.32 112.82

100 295.83 187.35 147.27 269.39 220.12 257.05

250 709.28 512.60 400.90 710.23 586 698.82

500 1446.08 1025.53 801.72 1475.89 1229.77 1381.79

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

7

The Figure 6 visualizes the impact of scalability on all
algorithms with respect to different number of processes
verses average turnaround time when arrival time is
considered.

Figure 6 Shows Avg. Turnaround Time (with arrival time)

 Table 4 Average Turnaround Time without Arrival Time
No. of

Processes

FCFS SJF-

NP

SJF-P PS-NP PS-P RR

10 26.4 24.1 23.5 28.1 28.1 40.4

20 36.4 29.45 25.5 37.85 37.35 42.15

50 110.72 66.2 65.76 98.26 98.32 112.82

100 246.33 148 147.27 219.9 220.12 257.05

250 584.78 400.96 400.90 585.74 586 698.82

500 1196.58 803.18 801.72 1228.47 1229.77 1381.79

The Figure 7 visualizes the impact of scalability on all
algorithms with respect to different number of processes
verses average turnaround time when arrival time is not
considered.

Figure 7 Shows Avg. Turnarond Time (without arrival

 time)

Table 5 shows the average response time of all scheduling
algorithms for all the problems sizes in which the arrival time
of each job/process is present and Table 6 shows the average
response time of all scheduling algorithms for all the problems
sizes in which the arrival time of each job/process is not

present.

 Table 5 Average Response Time with Arrival Time

No. of

Process

FCFS SJF-

NP

SJF-P PS-NP PS-P RR

10 20 17.7 16.4 21.7 21.7 16.4

20 32 25.05 17.05 33.45 30.95 27.05

50 105.64 61.12 58.96 93.18 89.76 72.96

100 240.93 142.6 139.24 214.5 214.19 171.68

250 579.06 395.24 395.11 580.02 579.77 442.24

500 1190.82 797.42 792.27 1222.71 1221.03 870.38

The Figure 8 visualizes the impact of scalability on all
algorithms with respect to different number of processes

verses average response time when arrival time is considered.

Graph 4.5

Figure 5 Shows Avg. Response Time (with arrival time)

The Figure 9 visualizes the impact of scalability on all
algorithms with respect to different number of processes
verses average response time when arrival time is not

considered.

 Table 6 Average Response Time without Arrival Time

No. of

Process

FCFS SJF-

NP

SJF-P PS-NP PS-P RR

10 24.5 21 16.4 29 21.7 16.4

20 41.5 28.95 17.05 40.35 30.95 27.05

50 130.14 80.04 58.96 116.28 89.76 72.96

100 290.43 181.95 139.24 263.99 214.19 171.68

250 703.56 506.88 395.11 704.50 579.77 442.24

500 1440.32 1019.77 792.27 1470.13 1221.03 870.38

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

8

Figure 9 Shows Avg. Response Time (without arrival

time)

The above shown graph depicts the impact of scalability or
the performance of all algorithms with respect to arrival time
or without arrival time. It can be observed that as the number
of processes increased, waiting time also increased. It is
evident that the performances of SJF with respect to all the
scheduling parameters are significantly different from the
performances of all other FCFS, RR and PS algorithms for all

the problem sizes.

5. CONCLUSION
In this work, Four CPU Scheduling Algorithms (FCFS, SJF,
PS, and RR) were discussed and measure three scheduling

parameters metrics (average waiting time, average response
time, average turnaround time) with respect to randomly
generated arrival time or without arrival time. In order to
know which algorithm gives best performance, we test
different jobs sets (10-500 jobs/processes) under uniprocessor
environment and shows the impact of scalability on different
scheduling algorithms. Here, burst time, priority and arrival
time of each process is generated randomly using exponential
probability distribution for every algorithm.

Based on the impact of scalability, the shortest job first (SJF)
algorithm is recommended for the CPU scheduling problems
of minimizing either the average waiting time, average
response and average turnaround time.
In future, we design a simulator for the other three variations
of Flynn’s Classical Taxonomy of Parallel Processing
classification SIMD, MISD, MIMD and also work on the two
metrics throughput and CPU utilization of different

scheduling algorithms.
Finally, it would be a great challenge to research the
scheduling design approaches of trying to schedule soft and
hard real-time tasks in the same system

6. REFERENCES
[1] Cooling, J.E, “Software Design for Real-Time Systems,

Chapman and Hall, London, UK, 2009.

[2] Stallings, William, “Operating Systems: Internals and
Design Principles”, Upper Saddle River, NJ, Prentice
Hall, 1998.

[3] Tannenbaum Andrew S and Woodhull Albert S,
“Operating Systems: Design and Implementation”, 2nd

Edition, PHI, 2003.

[4] Silberschatz A., P.B.Galvin., “Operating System
Concepts”, 6th Edition, 2001.

[5] Godbole Achuyut S, “Operating Systems: With Case
Studies-Unix, Netware, Windows NT”, Tata McGraw
Hill, India, 2003.

[6] Banks Jerry, Nicol David M, “Discrete-event System
Simulation”, 4th Edition, PHI, 2005.

[7] Gordan, G., “System Simulation”, 2nd Edition, PHI,
Englewood Cliffs, NJ, 2004.

[8] Newell T. James, “Simulation Model to evaluate
operational system performance”, in the proceedings of
ANSS’81, Annual Symposium on Simulation, March
1981, pp. 103-127.

[9] Schildt Herbert, “The Complete Reference: JAVA” 5th
Edition, Tata McGraw-Hill, 2000.

[10] S.W. Curran, “A Simulation Study of Shared-Memory
Multiprocessor CPU Scheduling Algorithms”,
Computing Systems, University of Toronto, Vol. 3, No.
4, 1990, pp. 551-579.

[11] D.L. Black, "Scheduling support for concurrency and
 parallelism in the Mach Operating System",
IEEE Computer, 23(5), 1990, pp. 35−43.

[12] E.O. Oyetunji and A. E. Oluleye, “Performance

Assessment of Some CPU Scheduling Algorithms”,
Research Journal of Information Technology 1(1), 2009,
Maxwell Scientific Organization, ISSN: 2041-3114, pp.
22-26.

[13] Maria Abur, Aminu Mohammed, Sani Danjuma

and
Saleh Abdullahi, “Critical Simulation of CPU
Scheduling Algorithm using Exponential Distribution”
International Journal of Computer Science Issues, Vol. 8,

Issue 6, No. 2, ISSN (Online): 1694-0814, November
2011, pp. 201-206.

[14] Charles Crowley, “Operating Systems: A design-
Oriented Approach”, Tata McGraw-Hill, New Delhi,
1998.

[15] E.O.Oyetunji and A. E. Oluleye, “General algorithm for
solving multi-criteria scheduling problems”, Advanced
Materials Research, October 2011.

[16] Savitzky, Stephen, “Real-Time Microprocessor Systems”

Van Nostrand Reinhold Company, N.Y, 1985.

[17] M.Kaladevi and Dr.S.Sathiyabama, “A Comparative
Study of Scheduling Algorithms for Real Time task”,
International Journal of Advances in Science and
Technology, Vol. 1, No. 4, 2010.

[18] H.H.S. Lee; “Lecture: CPU Scheduling, School of
Electrical and Computer Engineering”, Georgia Institute
of Technology.

[19] Yavatkar, R. and K. Lakshman, “A CPU Scheduling
Algorithm for Continuous Media Applications”, In
Proceedings of the 5th International Workshop on
Network and Operating System Support for Digital
Audio and Video, 1995, pp: 210-213.

[20] Jochen Krallman and Ramin Yahyapour, “Design and
evaluation of Job Scheduling Algorithms”, October,
2011.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

9

7.EDITOR’S PROFILE

Dr. P.K.Suri received his Ph.D degree from Faculty of Engg.,
Kurukshetra University, Kurukshetra & master’s degree from
IIT, Roorkee. Presently, he is working as Dean (R&D) &
Chairman (CSE/IT/MCA), HCTM Technical Campus,
Kaithal, Haryana, 136 027, India. Prior to joining HCTM,
Kaithal, he worked as Professor, Department of Computer
Science & Applications and Dean, Sciences & Faculty of
Engg., Kurukshetra University, Kurukshetra, Haryana, India.

He has supervised thirteen Ph.D.’s in Computer Science and
six students are working under his supervision. He has more
than 150 publications in International / National Journals and
Conferences. He is recipient of 'THE GEORGE OOMAN
MEMORIAL PRIZE' for the year 1991-92 and a RESEARCH
AWARD–“The Certificate of Merit–2000” for the paper
entitled ESMD–An Expert System for Medical Diagnosis

from INSTITUTION OF ENGINEERS, INDIA. His teaching
and research activities include Simulation and Modeling,
SQA, Software Reliability, Software testing & Software
Engineering processes, Temporal Databases, Ad hoc
Networks, Grid Computing and Biomechanics.
Sumit Mittal received his MCA degree from Kurukshetra
University, Kurukshetra. He is working as Assoc. Professor,
M.M. Institute of Computer Technology & Business

Management, M.M. University, Mullana, Ambala, Haryana,
India. He is a life member of Computer Society of India. He is
also a member of various academics bodies of M.M.
University, Mullana. His research area includes Simulation
and Modeling, Operating System, and Computer Architecture
and Data Structures.

