
International Journal of Computer Applications (0975 – 8887)  

Volume 49– No.17, July 2012 
 

1 

 

Reachable Nearest Neighbor Query Processing of R-

Trees for Moving Query Object 

 Anitha Yarava, 
CSE Dept ,MITS,  

Madanapalle, A.P, India 

 
 

 S. Murali Krishna  
M.Tech,Ph.D. 

Professor & HOD, CSE Dept. 
MITS, Madanapalle, A.P, India 

 

ABSTRACT 
Efficient storage and retrieval of multidimensional data in 

large volumes has become one of the key issues in the design 

and implementation of commercial and application software. 

The kind of queries posted on such data is also multifarious. 

Nearest neighbor queries are one such category and have 

more significance in GIS type of application. R-tree and its 

sequel are data partitioned hierarchical multidimensional 

indexing structures that help in this purpose. While general 

approaches are available in literature that discussing finding 

of Nearest neighbor for moving query point, few have 

explored on visible NN queries, but retrieved NN object may 

not always be reachable from the query object, since some 

obstacle objects (i.e. Hills, Rivers, Vallies) might be in 

between query point and NN point. This paper proposes 

Reachable Nearest neighbor queries for moving query object. 

The results are compared graphically with existing models, 

the proposed model out performs the existing models in a 

significant way. 

General Terms 
This paper exposes a novel method to find out  Nearest 

Neighbor object, which is reachable from query object, i.e no 

obstacle object could exist along the path from query point to 

NN object. 

Keywords: Multidimensional, Reachable nearest 

neighbor, Directional query. 

 

1. INTRODUCTION 

Database software has been playing a major role in various 

segments of management, research and entertainment over a 

period of fifty years. But in the past decade, the fundamental 

conceptualization and representation of data itself has 

undergone a sea change. More abstractness, semantics and 

dimensionalities have been brought in by multimedia, 

mathematical and unconventional data. The demand for 

storage and retrieval of such data in huge volumes has 

resulted in the invention and discovery of powerful novel 

techniques. Moreover post operational storage and processing 

such as data warehousing and data mining require more 

powerful and reliable methods to organize data for rigorous 

treatment of them. 

The most significant all of these developments is querying 

using multiple attributes. Applications such as search engines, 

image recognition systems, scene analysis systems, games, 

etc. heavily depend on fast storage and retrieval done based 

on multiple attributes, in other words multidimensional data.     

For over a period of thirty five years may scholars have 

churned out methods to handle this issue, The outcome is 

structures like R-Trees, X-Trees, A-Trees, Polygon Trees, etc. 

Today’s research has turned towards development of powerful 

analysis tools [7][9] for these structures for various types of 

queries such as range, nearest neighbor and directional and 

joins. This paper addresses nearest neighbor. 

Nearest neighbor queries are significant in the context of GIS, 

machine design, traveling and space management. NN query 

returns a point object as a result, which is located at the 

nearest location to the query object, the existing Nearest 

Neighbor queries[4,8] focusing on retrieval of NN object but 

they are not sure the retrieved NN object is reachable from 

query point or not, since obstacle objects like Hills, Rivers, 

and Valise might be in between query point and NN object, to 

sort out this problem in this work we proposed “Reachable 

Nearest neighbor queries for moving query object” by 

collaborating NN query with Directional queries. A review of 

necessary concepts is given the following section. 

  

2. RELATED WORK 

2.1 R-tree 

The R-tree [1] are some of the most popular multidimensional 

access methods that use data partitioning. Object minimum 

bounding rectangles (MBRs) are grouped together in leaf 

nodes according to their spatial proximity, which are then 

recursively grouped in higher levels until the root contains a 

single node. R-trees (like most spatial access methods) were 

motivated by the need to efficiently process window queries, 

nearest neighbor queries, directional and join queries on 

multidimensional data.  

 A sample 2-dimensional data set and the corresponding R-

Tree is shown in Figure2. 

2.2 Nearest Neighbor Query 

Given a collection of N objects in a d-dimensional space, a 

classical nearest neighbor query[3] returns exactly one object 

as result, the object with the lowest distance to the query point 

among all objects stored in the database, query processing 

steps explained as follows. 

NearestNeighborSearch (Node, Point, Nearest) 

{ 

NODE Node // Current NODE 

POINT Point // Search POINT 

NEARESTN Nearest // Nearest Neighbor 

 

//Local Variables 

NODE                           newNode 

BRANCHARRAY       branchList 

Integer                           dist, last, i 

 

// At leaf levels 

If (Node. type = LEAF) 

Then 

       For i := 1 to Node.count 

              dist := objectDIST(Point,Node) 

       If (dist < Nearest .dist) 

               Nearest .dist := dist 



 

 

               Nearest .rect := Node. branch.rect 

// Non-leaf level  

Else 

      // Generate Active Branch List 

        genBranchList(Point,Node,branchList) 

      

      // Sort ABL based on metric values 

         sortBranchList( branchList) 

     

      // Perform Downward Pruning 

          last = pruneBranchList(Node, Point,           

          Nearest,branchList) 

 

      // Iterate through the Active Branch List 

          For i := 1 to last 

                newNode := Node. branchbranChList,

      // Recursively visit child nodes 

          nearestNeighborSearch( newNode,       

          Point,Nearest) 

 

     //  Perform Upward Pruning 

          last := pruneBranchList( Node, Point,   

          Nearest,branchList) 

} 

 

Figure 1: Nearest Neighbor Search Pseudo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A R-Tree for sample data set

2.3 Directional Queries 

Directional query [5] retrieves the set of point objects, which 

are existed at particular direction (East, West, North and 

South) from the Query point. 

Directional queries are categorized as follows

Figure 3. 

a) Strong North 

b) Weak North 

c)  Strong Bounded North 

d) Weak Bounded North 

In figure 3, ‘q’ is the query point and p is the object located in 

that particular direction. 
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last = pruneBranchList(Node, Point,            

newNode := Node. branchbranChList, 

 

last := pruneBranchList( Node, Point,    

h Pseudo-Code 

sample data set 

the set of point objects, which 

are existed at particular direction (East, West, North and 

Directional queries are categorized as follows and shown in 

In figure 3, ‘q’ is the query point and p is the object located in 

 
b) Weak North 

    
       c)  Strong Bounded North     

Figure 3: Different Directional Queries

3. PROPOSED WORK
The existing NN queries [2][6], focusing on retrieval of NN 

object but they are not sure the retrieved NN object is 

reachable from query point or not, since obstacle objects like 

Hills, Rivers, and Valise might be in between query point and 

NN object, to sort out this problem in this work we proposed 

“Reachable Nearest neighbor queries for moving query 

object” by collaborating NN query with Directional queries, 

scenario is explained in Figure 4

3.1 Reachable Nearest Neighbor Query for    

      Moving Object 
Given a data set P, an obstacle set O, and a query line segment 

q in a two-dimensional space, a RNN query returns a set of 
,p R  tuples such that p P∈

every point r along the interval R 

to r. Note that p may be NULL, meaning that all points in P 

are not reachable to all points in R due to the obstruction of 

some obstacles in O. In contrast to existing con

neighbor query, RNN retrieval considers the impact of 

obstacles on visibility between objects; scenario is explained 

in the following figure 4. 

Figure 4. RNN search

 

Fig. 4, in which P = {a, b, c, d, f, g, h},

O = { }1 2 3
, ,o o o

 (i.e shaded rectangles) and q= [s,e]. The 

RNN query returns 
[ ]{ 1 1 2 2 3 3,, , , , , , , , , ,a s s g s s c s s d s e

which indicates that point a is the reachable NN for any point 

along interval [s, s1], point g is the reachable NN for any 

point along interval [s1, s2], and so forth

is the NN for each point on interval [s2, s3] in the 

conventional NN retrieval, whereas it is not the reachable NN 

for any point on [s2, s3], because of obstacle O

 3.2 Algorithm to find out RNN for moving

       Query point 
ReachableNearestNeighborSearch(O,P,q)

//O is Obstacle set 

//P is Objects set 

//q is [s,e] , query line segment 

 

For(each r∈R) 

{ 

//compute the NN point and Obstacle using conventional  

method (explained in fig8) //
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Given a data set P, an obstacle set O, and a query line segment 

dimensional space, a RNN query returns a set of 
p P is the nearest neighbor to 

point r along the interval R ⊆ q as well as p is reachable 

to r. Note that p may be NULL, meaning that all points in P 

are not reachable to all points in R due to the obstruction of 

some obstacles in O. In contrast to existing continuous nearest 

neighbor query, RNN retrieval considers the impact of 

obstacles on visibility between objects; scenario is explained 

 
Figure 4. RNN search 

 

, in which P = {a, b, c, d, f, g, h}, 

(i.e shaded rectangles) and q= [s,e]. The 

[ ] [ ] }1 1 2 2 3 3,, , , , , , , , , ,a s s g s s c s s d s e    

which indicates that point a is the reachable NN for any point 

along interval [s, s1], point g is the reachable NN for any 

point along interval [s1, s2], and so forth. Notice that point h 

is the NN for each point on interval [s2, s3] in the 

conventional NN retrieval, whereas it is not the reachable NN 

because of obstacle O3. 

3.2 Algorithm to find out RNN for moving              

eachableNearestNeighborSearch(O,P,q) 

//compute the NN point and Obstacle using conventional  

method (explained in fig8) // 
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Consider lxP lyP uxP uyP
and lxO

, lyO
, uxO

, uyO
are 

retrieved MBR diagonal end points of object and obstacle 

respectively. 

 

//Lets compute length of NN object MBR diagonal 

length // 

lPd
=

( )( )2
2( )u x l x u y l ys q r t O O O O− + −

 

//Lets compute length of NN Obstacle MBR diagonal 

length  

lOd
=

( )( )2
2( )u x l x u y l ys q r t P P P P− + −

. 

If(  lP d < lO d ) 

{ 

//compute the midpoint of object MBR i.e  ( xP m ,

yP m
) 

//compute the midpoint of Obstacle MBR 
( , )x yO m O m

 
//compute distance between query  point to NN 

object  

l
Q P

=
( )( )2 2( )x x y ysq r t Q Pm Q Pm− + −

 

//compute distance between query point to NN 

obstacle  

 l
QO

=
( )( )2 2( )

x x y y
sqrt Q Om Q Om− + −

 

( )l lif Q P QO>
 

{ 

              //object is not reachable, call 

reachableNearestNeighbor  

Search(O,P,q); 

where q=q-{Q} 

} 

Else 

retrieved object is reachable NN exit() 

} 

Else 

retrieved object is reachable NN 

 exit()  

}   

Figure 5 : Algorithms for computing RNN 

The above algorithm given in Figure 5, finds NN object and 

Obstacle, next using directional query computations it finds 

whether the obstacle is in between query and NN object along 

the same direction, if it is  it will verifies the same procedure 

for next query point along the query segment 

4. EXPERIMENTAL RESULTS  
In the pursuit of establishing the claimed improvement due to 

the proposed method, YT model was taken as the base for 

comparisons. This is due to the fact of the superiority of YT 

model is already well established in the literature. The 

proposed model will henceforth referred as NNsk model 

In the pursuit of establishing the claimed improvement due to 

the proposed method, YT model was taken as the base for 

comparisons. This is due to the fact of the superiority of YT 

model is already well established in the literature. The 

proposed model will henceforth referred as NNsk model 

For each set, 500 query points were generated and the average 

relative Time Delay in answering a workload of 500 queries 

was measured.. 

5. CONCLUSION 

Nearest neighbor queries are one of the most often posted 

queries on multidimensional data. To answer such queries 

within short time, databases employ multidimensional 

indexing structures such as R-trees and its ramifications. Even 

though quite a few models are available in the literature to 

find out NN point, but they couldn’t give assurance on their 

reachability from query point.  This work attempts to modify 

the conventional NN query with the aid of directional query to 

find out the RNN, results obtained are graphically presented 

and show a significant improvement over the previous 

models. The approach in discussed in this paper would 

facilitate better query optimization 

 

 

 

 

 

 

 

 
Figure.6 Comparison for NN and RNN 
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