
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

1

Reachable Nearest Neighbor Query Processing of R-

Trees for Moving Query Object

 Anitha Yarava,
CSE Dept ,MITS,

Madanapalle, A.P, India

 S. Murali Krishna
M.Tech,Ph.D.

Professor & HOD, CSE Dept.
MITS, Madanapalle, A.P, India

ABSTRACT
Efficient storage and retrieval of multidimensional data in

large volumes has become one of the key issues in the design

and implementation of commercial and application software.

The kind of queries posted on such data is also multifarious.

Nearest neighbor queries are one such category and have

more significance in GIS type of application. R-tree and its

sequel are data partitioned hierarchical multidimensional

indexing structures that help in this purpose. While general

approaches are available in literature that discussing finding

of Nearest neighbor for moving query point, few have

explored on visible NN queries, but retrieved NN object may

not always be reachable from the query object, since some

obstacle objects (i.e. Hills, Rivers, Vallies) might be in

between query point and NN point. This paper proposes

Reachable Nearest neighbor queries for moving query object.

The results are compared graphically with existing models,

the proposed model out performs the existing models in a

significant way.

General Terms
This paper exposes a novel method to find out Nearest

Neighbor object, which is reachable from query object, i.e no

obstacle object could exist along the path from query point to

NN object.

Keywords: Multidimensional, Reachable nearest

neighbor, Directional query.

1. INTRODUCTION

Database software has been playing a major role in various

segments of management, research and entertainment over a

period of fifty years. But in the past decade, the fundamental

conceptualization and representation of data itself has

undergone a sea change. More abstractness, semantics and

dimensionalities have been brought in by multimedia,

mathematical and unconventional data. The demand for

storage and retrieval of such data in huge volumes has

resulted in the invention and discovery of powerful novel

techniques. Moreover post operational storage and processing

such as data warehousing and data mining require more

powerful and reliable methods to organize data for rigorous

treatment of them.

The most significant all of these developments is querying

using multiple attributes. Applications such as search engines,

image recognition systems, scene analysis systems, games,

etc. heavily depend on fast storage and retrieval done based

on multiple attributes, in other words multidimensional data.

For over a period of thirty five years may scholars have

churned out methods to handle this issue, The outcome is

structures like R-Trees, X-Trees, A-Trees, Polygon Trees, etc.

Today’s research has turned towards development of powerful

analysis tools [7][9] for these structures for various types of

queries such as range, nearest neighbor and directional and

joins. This paper addresses nearest neighbor.

Nearest neighbor queries are significant in the context of GIS,

machine design, traveling and space management. NN query

returns a point object as a result, which is located at the

nearest location to the query object, the existing Nearest

Neighbor queries[4,8] focusing on retrieval of NN object but

they are not sure the retrieved NN object is reachable from

query point or not, since obstacle objects like Hills, Rivers,

and Valise might be in between query point and NN object, to

sort out this problem in this work we proposed “Reachable

Nearest neighbor queries for moving query object” by

collaborating NN query with Directional queries. A review of

necessary concepts is given the following section.

2. RELATED WORK

2.1 R-tree

The R-tree [1] are some of the most popular multidimensional

access methods that use data partitioning. Object minimum

bounding rectangles (MBRs) are grouped together in leaf

nodes according to their spatial proximity, which are then

recursively grouped in higher levels until the root contains a

single node. R-trees (like most spatial access methods) were

motivated by the need to efficiently process window queries,

nearest neighbor queries, directional and join queries on

multidimensional data.

 A sample 2-dimensional data set and the corresponding R-

Tree is shown in Figure2.

2.2 Nearest Neighbor Query

Given a collection of N objects in a d-dimensional space, a

classical nearest neighbor query[3] returns exactly one object

as result, the object with the lowest distance to the query point

among all objects stored in the database, query processing

steps explained as follows.

NearestNeighborSearch (Node, Point, Nearest)

{

NODE Node // Current NODE

POINT Point // Search POINT

NEARESTN Nearest // Nearest Neighbor

//Local Variables

NODE newNode

BRANCHARRAY branchList

Integer dist, last, i

// At leaf levels

If (Node. type = LEAF)

Then

 For i := 1 to Node.count

 dist := objectDIST(Point,Node)

 If (dist < Nearest .dist)

 Nearest .dist := dist

 Nearest .rect := Node. branch.rect

// Non-leaf level

Else

 // Generate Active Branch List

 genBranchList(Point,Node,branchList)

 // Sort ABL based on metric values

 sortBranchList(branchList)

 // Perform Downward Pruning

 last = pruneBranchList(Node, Point,

 Nearest,branchList)

 // Iterate through the Active Branch List

 For i := 1 to last

 newNode := Node. branchbranChList,

 // Recursively visit child nodes

 nearestNeighborSearch(newNode,

 Point,Nearest)

 // Perform Upward Pruning

 last := pruneBranchList(Node, Point,

 Nearest,branchList)

}

Figure 1: Nearest Neighbor Search Pseudo

Figure 2: A R-Tree for sample data set

2.3 Directional Queries

Directional query [5] retrieves the set of point objects, which

are existed at particular direction (East, West, North and

South) from the Query point.

Directional queries are categorized as follows

Figure 3.

a) Strong North

b) Weak North

c) Strong Bounded North

d) Weak Bounded North

In figure 3, ‘q’ is the query point and p is the object located in

that particular direction.

 a) Strong North b) Weak North

R1

R2

R3

R4
R11

R12

R2 R1

R12 R11

R4 R3

International Journal of Computer Applications (0975

last = pruneBranchList(Node, Point,

newNode := Node. branchbranChList,

last := pruneBranchList(Node, Point,

h Pseudo-Code

sample data set

the set of point objects, which

are existed at particular direction (East, West, North and

Directional queries are categorized as follows and shown in

In figure 3, ‘q’ is the query point and p is the object located in

b) Weak North

 c) Strong Bounded North

Figure 3: Different Directional Queries

3. PROPOSED WORK
The existing NN queries [2][6], focusing on retrieval of NN

object but they are not sure the retrieved NN object is

reachable from query point or not, since obstacle objects like

Hills, Rivers, and Valise might be in between query point and

NN object, to sort out this problem in this work we proposed

“Reachable Nearest neighbor queries for moving query

object” by collaborating NN query with Directional queries,

scenario is explained in Figure 4

3.1 Reachable Nearest Neighbor Query for

 Moving Object
Given a data set P, an obstacle set O, and a query line segment

q in a two-dimensional space, a RNN query returns a set of
,p R tuples such that p P∈

every point r along the interval R

to r. Note that p may be NULL, meaning that all points in P

are not reachable to all points in R due to the obstruction of

some obstacles in O. In contrast to existing con

neighbor query, RNN retrieval considers the impact of

obstacles on visibility between objects; scenario is explained

in the following figure 4.

Figure 4. RNN search

Fig. 4, in which P = {a, b, c, d, f, g, h},

O = { }1 2 3
, ,o o o

 (i.e shaded rectangles) and q= [s,e]. The

RNN query returns
[]{ 1 1 2 2 3 3,, , , , , , , , , ,a s s g s s c s s d s e

which indicates that point a is the reachable NN for any point

along interval [s, s1], point g is the reachable NN for any

point along interval [s1, s2], and so forth

is the NN for each point on interval [s2, s3] in the

conventional NN retrieval, whereas it is not the reachable NN

for any point on [s2, s3], because of obstacle O

 3.2 Algorithm to find out RNN for moving

 Query point
ReachableNearestNeighborSearch(O,P,q)

//O is Obstacle set

//P is Objects set

//q is [s,e] , query line segment

For(each r∈R)

{

//compute the NN point and Obstacle using conventional

method (explained in fig8) //

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

2

 d) Strong Bounded North

Different Directional Queries

WORK
The existing NN queries [2][6], focusing on retrieval of NN

object but they are not sure the retrieved NN object is

reachable from query point or not, since obstacle objects like

might be in between query point and

NN object, to sort out this problem in this work we proposed

“Reachable Nearest neighbor queries for moving query

object” by collaborating NN query with Directional queries,

enario is explained in Figure 4.
ble Nearest Neighbor Query for

Given a data set P, an obstacle set O, and a query line segment

dimensional space, a RNN query returns a set of
p P is the nearest neighbor to

point r along the interval R ⊆ q as well as p is reachable

to r. Note that p may be NULL, meaning that all points in P

are not reachable to all points in R due to the obstruction of

some obstacles in O. In contrast to existing continuous nearest

neighbor query, RNN retrieval considers the impact of

obstacles on visibility between objects; scenario is explained

Figure 4. RNN search

, in which P = {a, b, c, d, f, g, h},

(i.e shaded rectangles) and q= [s,e]. The

[] [] }1 1 2 2 3 3,, , , , , , , , , ,a s s g s s c s s d s e  

which indicates that point a is the reachable NN for any point

along interval [s, s1], point g is the reachable NN for any

point along interval [s1, s2], and so forth. Notice that point h

is the NN for each point on interval [s2, s3] in the

conventional NN retrieval, whereas it is not the reachable NN

because of obstacle O3.

3.2 Algorithm to find out RNN for moving

eachableNearestNeighborSearch(O,P,q)

//compute the NN point and Obstacle using conventional

method (explained in fig8) //

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.17, July 2012

3

Consider lxP lyP uxP uyP
and lxO

, lyO
, uxO

, uyO
are

retrieved MBR diagonal end points of object and obstacle

respectively.

//Lets compute length of NN object MBR diagonal

length //

lPd
=

()()2
2()u x l x u y l ys q r t O O O O− + −

//Lets compute length of NN Obstacle MBR diagonal

length

lOd
=

()()2
2()u x l x u y l ys q r t P P P P− + −

.

If(lP d < lO d)

{

//compute the midpoint of object MBR i.e (xP m ,

yP m
)

//compute the midpoint of Obstacle MBR
(,)x yO m O m

//compute distance between query point to NN

object

l
Q P

=
()()2 2()x x y ysq r t Q Pm Q Pm− + −

//compute distance between query point to NN

obstacle

 l
QO

=
()()2 2()

x x y y
sqrt Q Om Q Om− + −

()l lif Q P QO>

{

 //object is not reachable, call

reachableNearestNeighbor

Search(O,P,q);

where q=q-{Q}

}

Else

retrieved object is reachable NN exit()

}

Else

retrieved object is reachable NN

 exit()

}

Figure 5 : Algorithms for computing RNN

The above algorithm given in Figure 5, finds NN object and

Obstacle, next using directional query computations it finds

whether the obstacle is in between query and NN object along

the same direction, if it is it will verifies the same procedure

for next query point along the query segment

4. EXPERIMENTAL RESULTS
In the pursuit of establishing the claimed improvement due to

the proposed method, YT model was taken as the base for

comparisons. This is due to the fact of the superiority of YT

model is already well established in the literature. The

proposed model will henceforth referred as NNsk model

In the pursuit of establishing the claimed improvement due to

the proposed method, YT model was taken as the base for

comparisons. This is due to the fact of the superiority of YT

model is already well established in the literature. The

proposed model will henceforth referred as NNsk model

For each set, 500 query points were generated and the average

relative Time Delay in answering a workload of 500 queries

was measured..

5. CONCLUSION

Nearest neighbor queries are one of the most often posted

queries on multidimensional data. To answer such queries

within short time, databases employ multidimensional

indexing structures such as R-trees and its ramifications. Even

though quite a few models are available in the literature to

find out NN point, but they couldn’t give assurance on their

reachability from query point. This work attempts to modify

the conventional NN query with the aid of directional query to

find out the RNN, results obtained are graphically presented

and show a significant improvement over the previous

models. The approach in discussed in this paper would

facilitate better query optimization

Figure.6 Comparison for NN and RNN

6. REFERENCES

1. Guttman, A,, “R-trees,: A Dynamic Index Structure for

Spatial Searching,” Proc. ACM SIGMOD, pp. 47-57,

June 1984.

2. Yannis Manolopoulos Alexandros Nanopolos Apostolos

N. Papadopolos, “R-trees Have Grown Everywhere”

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

3. Nick Roussopoulos Stephen Kelley Fr6d6ric Vincent

“Nearest Neighbor Queries” SIGMOD’95,San Jose, CA

USA Q 1995 ACM 0-89791-731 -6/95/0005..

4. Yunjun Gao · Baihua Zheng · Gencai Chen ·Qing Li ·

Xiaofa Guo” Continuous visible nearest neighbor query

processing in spatial databases” The VLDB Journal

(2011) 20:371–396 DOI 10.1007/s00778-010-0200-

5. .Dimitris Papadias, Yannis Theodoridis1, Timos Sellis1”

The Retrieval of Direction Relations using R-trees”, In

the Proceedings of the 5th International Conference on

Databases and Expert Systems Applications, DEXA,

1994, Springer

6. Wu, W., Guo, W., Tan, K.L.: Distributed processing of

moving k-nearest-neighbor query on moving objects. In:

ICDE, pp. 1116–1125 (2007).

7. Yufei Tao, Jun Zhang, Dimitris Papadias, “An Efficient

Cost Model for Optimization of Nearest Neighbor Search

in Low and Medium dimensional Spaces,” IEEE

Transactions on knowledge and data engineering,

Vol.12, No.1, Oct2004.

8. Gao,Y., Zheng, B., Lee,W.C.,Chen, G.:Continuous

visible nearest neighbor queries. In: EDBT, pp. 144–155

(2009)

9. Yannis Theodoridis, Emmanuel Stefanakis, and Timos

Sellis, “Efficient Cost Models for Spatia Queries Using

R-Trees” IEEE Transactions on Knowledge And Data

Engineering, Vol 12,NO January 2000.

0

50

100

150

200

250

300

350

400

450

1 10 100 500 1000 2000

A
v
g
T
D

NN RNN

