
International Journal of Computer Applications (0975 – 8887)
Volume 49– No.16, July 2012

19

Software Architecture Evaluation Methods – A survey

P. Shanmugapriya,
 Research Scholar,
Department of CSE,
SCSVMV University,

Enathur, Tamilnadu,INDIA

R. M. Suresh
Principal,

Jerusalem College of Engineering,
Chennai, Tamilnadu,INDIA

ABSTRACT
Software architectural evaluation becomes a familiar practice
in software engineering community for developing quality

software. Architectural evaluation reduces software
development effort and costs, and enhances the quality of the
software by verifying the addressability of quality
requirements and identifying potential risks and it provides
assurance to developers that their chosen architecture will
meet both functional and non-functional quality requirements.
This paper presents a discussion on different software
architectural evaluation methods and techniques and

concentrates on summarizing the importance of the different
early and late evaluation methods, similarities and difference
between them, their applicability, strengths and weaknesses.

Keywords

Software architectural, evaluation, early and late evaluation

methods

1. INTRODUCTION
Software architecture evaluation is a technique or method
which determines the properties, strengths and weaknesses of
software architecture or software architectural style or a
design pattern. Software architectural evaluation provides
assurance to developers that their chosen architecture will
meet both functional and non-functional quality requirements.
An architectural evaluation should provide more benefits than
the cost of conducting the evaluation itself [1]. Software

architectural evaluation ensures increased understanding and
documentation of the system, detection of problems with
existing architecture, and enhanced organizational learning.
Several methods and techniques have been proposed for
software architectural evaluation. Among those scenario-
based approaches are considered quite mature [17, 6]. There
are also attribute model-based methods [25] and quantitative
models [39] for software architecture evaluation. Other

approaches have been developed to systematically justify the
properties of architectural styles [25] and design patterns [33,
20]. The goal of this paper is to review existing software
architectural evaluation methods and to classify the methods
in the form of taxonomy. The presented taxonomy also
considers two phases of a software life cycle: early and late.

2.EVALUATION METHODS
A number of evaluation methods have been developed which
are applicable in different phases of the software development

cycle. The main two opportunities for evaluation are before
and after implementation [15]. Early software architecture
evaluation methods are applied to software architecture before
its implementation. Quality goals can primarily be achieved if
the software architecture is evaluated with respect to its
specific quality requirements at the early stage of software
development. Late software architecture evaluation methods
identify the difference between the actual and planned

architectures. These methods provide useful guidelines of how

to reconstruct the actual architecture, so that it conforms to the
planned architecture.

3.EARLY EVALUATION METHODS
Early software architectural evaluation can be conducted on

the basis of the specification and description of the software
architecture. The scenario-based approaches are flexible and
simple [5, 6]. Mathematical model-based evaluation
techniques for assessing the operational quality attributes,
such as reliability and performance are also well used,
particularly in real-time software systems.

3.1Scenario-based Software Architecture

Evaluation Methods
Scenario-based evaluation methods evaluate software
architecture's ability with respect to a set of scenarios of

interest. Scenario is brief descriptions of a single interaction
of a stakeholder with a system [8]. Different scenario based
methods have been developed so far [22, 23, 29, 31, 11, 38,
40, 44].
The scenario-based evaluation methods offer a systematic
means to investigate software, architecture using scenarios.
These methods determine whether software architecture can
execute a scenario or not. Evaluation team explores/maps the

scenario onto the software architecture to find out the desired
architectural components and their interactions, which can
accomplish the tasks expressed through the scenario. If the
software architecture fails to execute the scenario, these
methods list the changes to the software architecture required
to support the scenario and estimate the cost of performing the
changes.
Scenario-based evaluation methods require presence of

relevant stakeholders to elicit scenarios according to their
requirements. Scenario-based methods can ensure discovery
of problems in software architectures from different point of
views by incorporating multiple stakeholders during the
scenario elicitation process whereas the end user can indicate
the performance issues. The following are the set of Scenario-
based evaluation methods

Fig – 1: Common behavior in scenario-based evaluation

methods

Specify

requirements and

design constraints

Evaluate
architecture

With respect to

scenario
Describe software
Architecture

Elicit quality sensitive Scenarios

from stakeholders

Prioritize

scenarios

Interpret and

present results

International Journal of Computer Applications (0975 – 8887)
Volume 49– No.16, July 2012

20

SAAM (Scenario-based Software Architecture Analysis
Method) [22, 46, 48]
ATAM (Architecture based Tradeoff Analysis Method) [46,
47]
ALPSM (Architecture-Level Prediction of Software

Maintenance) [10] and ALMA (Architecture-Level
Modifiability Analysis) [11]
CBAM (Cost-Benefit Analysis Method)[46,49]
FAAM (Family-Architecture Assessment Method) [50]

SALUTA (Scenario-based Architecture Level UsabiliTy
Analysis) [19]
SBAR (Scenario-Based Architecture Reengineering) [9]
SAAMCS (SAAM for Complex Scenarios) [29]
ESAAMI (Extending SAAM by Integration in the Domain)

[31]
ASAAM (Aspectual Software Architecture Analysis Method)
[40]
SACAM (Software Architecture Comparison Analysis
Method)[12] and DoSAM (Domain Specific Software
Architecture Comparison Model)[13]

Table 1. Comparison of the various scenario-based evaluation methods

Evaluation

Method

Main

objective
Steps in

Evaluation

Scenario

classification
& impact analysis

Approaches used
Objects

analyzed

Addressed

QAs

SAAM

Architectural

suitability
and
risks
analysis

Six activities,
some
activities

carried out
in parallel-
includes
no preparation
activities

Direct and indirect
scenarios. Counts
the

number of
components
affected by the
scenarios

Scenario elicitation
via
brainstorming with
Stakeholders.
Mapping
scenarios onto SAs
to verify
functionality or

estimate change
cost

Architectural
documentation,
especially,
showing
the logical views

Mainly
modifiability
but can be
adapted for
others

ATAM

Sensitivity
and

tradeoff
analysis

Nine activities,
some
activities
carried out
in parallel;
includes
preparation
activities

Use-case, growth
and
Exploratory
scenarios. Counts
the sensitivity points
and
Tradeoff points

Creation of utility
tree to elicit
scenarios. Analysis
of architectural

approaches using
analytic models to
identify tradeoff
points and risks

Architectural
approaches or
styles;
architectural
documentation
mainly showing
Kurcten’s 4+1

Multiple

QAs

ALMA

Maintenance

cost
prediction,
risk
assessment,
architectures
comparison

Five, the
scenario
elicitation

activity
consists of six
activities,
executed
sequentially;
no
preparation
activities

Change Scenarios.
Estimates the
change of the size of
each

component

Scenario elicitation
based on the goals

of the evaluation.
Mapping scenarios
onto SAs
to estimate
maintenance cost
considering ripple
effects.

Architectural
documentation,

concerning the
system’s structure
comprising
components and
connectors (like
the
logical view)

Reusability

CBAM

Provide
business
measures for
particular
system
changes
Make

explicit the
uncertainty
associated
with the
estimates

Six main steps,

quantify the
Quality
benefits, cost
and schedule
implications of
the
architectural
strategies

Direct, indirect and
exploratory
scenarios. Counts
the Time and cost

utilized by
the scenarios

Analyze the
benefits of the
different
architectural
strategies ,Assess
the quality, and

calculate the
desirability with
respect to cost and
time factor

Time and Costs
factors involved
in analyzing the
quality factors

and architectural
documentation

Costs,
Benefits, and
Schedule

Implications

FAAM

Emphasis on
empowering

the teams in
applying the

Six main steps,
these steps

must be
adapted in

Focusing on
interoperable

scenarios. The
general assessment

Creation of
guidelines and

templates in
generating

It has a well-
defined process

workbench
Description .

Interoperabilit
y

and
Extensibility

International Journal of Computer Applications (0975 – 8887)
Volume 49– No.16, July 2012

21

FAAM
session

response to
general
architecture
assessment

experience of
the
organization.

process is tailored
for the domain of
information-systems
families.

change-case-
guidelines and
templates,
requirements-

ranking criteria,
family-feature
maps, migration-
maps, family-
context
diagrams.

Architectural
documentation,
especially,
showing

the logical views

SALUTA

Usability
analysis

Four, executed
sequentially-
no
preparation

activities

Usage scenarios.
Qualitative
analysis

Usage profiles to

articulate Usability
requirements.
Scenario
walkthrough to
analyze the
extracted usability
properties and
patterns.

Usability
patterns,
usability
properties
; No particular

view
is recommended.

Usability

SBAR

SA
reengineerin
g
to achieve

QAs

Three,
executed
repeatedly; no
preparation

activities

Development
and operational
Scenarios.
Qualitative
analysis

Quality assessment
using one of the
four techniques
and architecture
transformation

Initially created
architectural
documentation.
No

particular view is
considered

Multiple
QAs

SAAMCS

Developing

complex
scenarios to
achieve
domain
specific
flexibility

Three, two
executed
in parallel; no
preparation
activities

Complex

Scenarios. Same as
SAAM but
defines four
level of
impacts

Analysis of SAs to
determining the
values of the three
factors that make
scenarios complex
to implement.

Micro -
architectural
and macro
architectural
documentation

Flexibility

ESAAMI

Integrating
SAAM in a
domain
specific
reuse based
development
process

Same as
SAAM but
considers the
existence of
reusable
knowledge
base

Same as SAAM.

Formulation of an
analysis template
to collect reusable

products

Reusable
software
architecture

documentation

Modifiability

ASAAM

Architectural
aspect
analysis

Same as

SAAM but
includes the
architectural
aspects
and tangled
components
identification.

Direct, indirect
and aspectual
scenarios.
Qualitative
analysis

Architectural
aspect
identification from
direct and indirect
scenarios.
Aspectual
scenarios
interactions to

identify different
components, such
as tangled and ill-
defined
components

Same as SAAM
Modifiability

SACAM

Comparing

software
architectures
from
different
domains

Six activities,
one
executes
repeatedly;
includes

preparation
activities

Same as ATAM.
Determines
metrics

Collating
comparison criteria

presenting
candidate SAs at a
common
architectural view,
and analyzing
fitness of the SAs
w.r.t. to the criteria

Same as ATAM
Multiple
QAs

DoSAM
Comparing
software

Six activities,
executed

Not performed.
Same as

Creation of a
DACF,

Architectural
documentation.

Multiple
QAs

International Journal of Computer Applications (0975 – 8887)
Volume 49– No.16, July 2012

22

architectures
from a
specific
domain

sequentially;
no
preparation
activities

SACAM

candidate
architectures
mapping to the
DACF,

assessment of QAs
employing metrics
and comparing
architectures based
on the metrics
values of the QAs

No
particular view is
recommended.

3.2Mathematical Model based Software

Architecture Evaluation
Most scenario-based software architecture evaluation methods
(with the exception of ATAM and SBAR) use qualitative
reasoning for assessing development-time quality attributes.
However, to measure the fitness of the safety-critical software
systems, such as medical, aircraft, and space mission, it is also

important to quantitatively assess operational quality
attributes. Therefore, a number of mathematical model- based
software architecture evaluation methods have been
developed. These methods model software architectures using
well-known mathematical equations. Then, these methods use
the models to obtain architectural statistics, for instance, mean
execution time of a component. These architectural statistics
are used to estimate operational quality attributes. Reliability

and performance are two important operational quality
attributes. To assess these two quality attributes a wide range
of mathematical-models have been developed. Two different
approaches are used for assessing reliability of software
architecture. They are path based [26, 35, 45] and state based
[14, 27, 28]. SPE [36], WS [43], PASA [42], CM [16], BIM
[7], ABI [4], AABI [2] are the approaches for predicting
performance at the architectural level.

3.3Software Architecture-based Reliability

Analysis
According to ANSI [3], a software system's reliability is
defined as the probability of the software operating without
failure for a specified period of time in a specified
environment. Reliability is defined in terms of the mean time
between failures or its reciprocal, the failure rate. Software
failures may occur for several reasons: errors and ambiguities
in architectural design, carelessness or incompetence in
writing code, inadequate testing, incorrect or unexpected
usage of the software or other unforeseen problems [24,37].

To reduce the probability of software failures, different
reliability models have been developed over the past two
decades. Early reliability models are based on reliability
engineering, particularly hardware reliability. These
approaches make use of extensive experience and provide
advanced mathematical formalism for building software
reliability models. These models complement testing by
providing an estimate of a program's ability to operate without

failure.

3.4Software architecture - based

performance analysis
Software architecture plays an important role in meeting a
software system's performance. Performance depends largely
on the frequency and nature of inter-component
communication and the performance characteristics of the
components themselves.

Fig – 2: Software architecture-based performance analysis

Different software architecture-based methodologies have
been developed to predict performance attributes, such as
throughput, utilization of resources, and end-to-end latency.
Architecture-based performance analysis methodologies
transform the specification of software architecture into
desirable models. Then, timing information is added to these
models. After that, they are analyzed to estimate performance

attributes quantitatively and to provide feedback about the
software architecture. These methodologies work based on
availability of software artifacts, such as requirement and
architecture specifications and design documents. Since
performance is a runtime attribute, these methodologies
require suitable description of the dynamic behavior of a
software system. Often, automatic tools are used to perform
performance analysis once the performance models are

created. The general framework for analyzing performance at
architectural level is shown in (see Fig-2.) Some of the
advantages of architecture-based performance analysis
methodologies are as follows [21]: (i) they can help predict
the performance of a system early in the software life cycle.
(ii)They can be used to guarantee that performance goals are
met. (iii)They can also be used to compare the performance of
different architectural choices. (iv)They can help in finding

bottleneck resources and identifying potential timing
problems before the system is built.

4.LATE EVALUATION METHODS
The software systems are continuously modified, to fix
problems and adapt to new requirements. The developers who
work under intense time pressure and heavy work load cannot

always follow the best way to implement changes. As a result
the actual architecture may deviate from the planned one. Late
software architecture evaluation methods identify the

Software

Architecture

Specifications

Transforma

tion

Quantitative

results &

Feedback

Timing

Information

Performance

Model

Analy

sis

International Journal of Computer Applications (0975 – 8887)
Volume 49– No.16, July 2012

23

difference between the actual and planned architectures.
These methods provide useful guidelines of how to
reconstruct the actual architecture, so that it conforms to the
planned architecture. During the testing phase, late software
architecture evaluation methods are also applied to check the

compliance of the source code to the planned design.
According to Fiutem and Antoniol [18], the economics of the
design-code compliance verification process not only saves
time in updating designs, but also improves design artifacts as
well as software development and maintenance processes.
Late software architecture evaluation can use data measured
on the implementation of software architecture. Metrics can
be used to reconstruct the actual software architecture,

allowing it to be compared to the planned architecture.

Fig – 3: Activities of a late software architecture

evaluation

Table 2. Comparison of the various late evaluation methods

Name of

Approach

Main Objective Approach used Steps in Late

Evaluation

infringement

identified

Tvedt et al.'s
Approach[41]

 To avoid system degeneration by
actively and systematically detecting
and correcting deviations of the actual
software architecture from the planned
architecture.

Checking the
functional & non-
functional
requirements

Identify actual
architecture. Check
the deviation from
planned & actual
architecture. Change
recommendations
will be placed.

Design pattern,
misplaced classes
and minor
violations

Lindvall et al.'s

Approach [30]

To identifying the maintainability

problems in the software system and
the system has been restructured as
component-based system using a new
design pattern

Designed a

component bases
system (EMS) to
addressed
maintainability
problems in the
software system

Compare the new

actual architecture
with Previous actual
architecture and
planned actual
architecture.

Inter module

coupling violation

Fiutem and
Antoniol's
Approach (Tool-
based) [18]

To determine the inconsistency Compares the
recovered design
with the planned
design

Compare and
determines the
inconsistency.

Some Code
violation

Murphy et al.'s
Approach (Tool-
based) [32]

To check the compliance of source
code to the planned architecture.

Sequence of
reflexion models
are used to compare
the layer

architecture design.

Check whether the
high level model
agrees or disagrees
with the source code.

Checks the
declarative mapping
between the two
models

Calls between
modules violation

Sefika et al.'s
Approach (Tool-
based) [34]

To determine design-implementation
congruence at various levels of
abstraction .It is a hybrid approach that

integrates logic based static and
dynamic visualizations.

Hybrid Approach Integrates logic,
static and dynamic
visualizations

Design pattern
violation

Determine evaluation

perspectives

Collect the planned

architecture

Recover the actual

architecture

Develop guidelines

and metrics

Architectural

evaluation

Architectural

Derivation

Change

Recommendations

Verification

International Journal of Computer Applications (0975 – 8887)
Volume 49– No.16, July 2012

24

5. DISCUSSIONS
There are seven comparison criteria are used to compare

twelve scenario based evaluation methods. The following
provide a brief description of the comparison criteria. Most
scenario- based methods are similar at a coarse-grained level.
There are significant differences at a finer-grained level.
Different methods classify scenarios differently. Some
methods classify scenarios as direct and indirect, while others
employ use-case scenarios or growth scenarios. One method
might count the number of components affected by a

particular scenario, while another might use metrics for each
quality attribute. From the comparative analysis, it is
understood that

 Some scenario-based methods, particularly SAAM,

ATAM and ALMA, have been successfully applied in
different industrial settings.

 Scenario-based evaluation methods basically use change

scenarios and scenario interactions to expose potential
problem areas in the architecture.

 These methods measure the risks of a software system by

estimating the degree of changes that software
architecture requires to implement a scenario.

 In scenario-based methods, it is hard to assess scenario

coverage.

 Developing a framework or methodologies will help to

determine the scenario coverage.

 SAAMCS is a good step towards framework.

 Very few scenario-based methods are tool-supported;

e.g., only the activities of SAAM and ATAM are even
partially supported by tools.

 Performance-based evaluation approaches appear to be

more matured than those for reliability.

 Performance-based approaches are mostly tool-supported

though none of the tools can support the complete
architectural analysis process.

 Performance-based evaluation approaches also consider

concurrent and non-deterministic behavior of software
components.

 Reliability-based evaluation approaches do not have that

much tool-support and these methods are still evolving to
support concurrent and non-deterministic behaviors of
software components.

 Mathematical model- based evaluation is well suited for

component-based software system.

 It is difficult to convert software architecture into a

mathematical model and the use of mathematical model-
based architectural evaluation methods is comparatively
lower than scenario-based evaluation methods.

 In Late software architecture evaluation, its main aim is to

provide an inexpensive and quick means for detecting
violations to the software architecture with the evolution
of software systems. So, these evaluation methods are
mostly tool-supported.

 The metrics-based approaches have been only used to

evaluate the software architecture with respect to
maintainability perspective.

 The late software architecture evaluation greatly addresses
the Analysis of design-code consistency.

 The late software architecture evaluation has no formal

framework and taxonomy to analyze design-code
inconsistencies and prioritize the interventions to make

design.

Number of problems was identified from the analysis. One of
the most sensitive problem found in scenario based methods

are scenario coverage problem. A new knowledge based
software architecture evaluation model [51] is developed with
Quality Function Deployment (QFD) technique. The
difficulties and enhancement opportunities of the architecture
review process are investigated, in particular in the context of

the knowledge it produces and requires, scenarios covered and
proposed a conceptual solution for enhancing the review
process and embedding knowledge data usage within it.

6. CONCLUSION
In this paper, the software architectural evaluation methods
using taxonomy is presented. The taxonomy shows the
architectural evaluation methods and techniques. One of the
main problems identified in software architecture evaluation
is that it is hard to assess coverage of scenarios. There is no
particular number of scenarios, the execution of which
guarantees scenario coverage optimally. No method offers
systematic methodologies that help elicit such important

scenarios. So Scenario coverage needs more attention. From
the observation, it is clear that there needs a model to
determine the scenario coverage problem and to analyze
design-code inconsistencies and prioritize the interventions to
make design. A conceptual model is suggested here to
overcome the major problems raised in scenario based
evaluation methods. The design-code compliance verification
process saves time in updating designs, and also improves

design artifacts as well as software development and
maintenance processes. This process in late evaluation needs
to be strengthened more to improve early design.

7. REFERENCES
[1] G. Abowd, L. Bass, P. Clements, Rick Kazman, L.

Northrop, and A. Zaremski. Recommended Best

Industrial Practice for Software Architecture Evaluation
(CMU/SEI-96-TR-025). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1996.

[2] F. Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi.
Deriving QNM from MSCs for Performance Evaluation
of SA. In the Proceedings on 2nd International
Workshop on Software and Performance, pp. 2000

[3] ANSI/IEEE, "Standard Glossary of Software

Engineering Terminology", STD-729-1991, ANSI/IEEE,
1991

[4] F. Aquilani, S. Balsamo, P. Inverardi.Performance
Analysis at the software architecture design level.
Technial Report TRSAL- 32, Technical Report
SaladinProject.

[5] M. A. Babar, L. Zhu and R. Jeffery. A Framework for
Classifying and Comparing Software Architecture
Evaluation Methods. In the Proceedings on Australian

Software engineering, pp. 309-318, 2004.

[6] M. A. Babar and I. Gorton. Comparison of Scenario-
Based Software Architecture Evaluation Methods. In the
Proceedings on Asia-Pacific Software Engineering
Conference, pp. 584-585, 2004.

[7] S. Balsamo, P. Inverardi and C. Mangano. An approach
to performance evaluation of software architectures. In
the Proceedings on 2nd International Workshop on

Software and Performance, pp. 178-190, 1998

[8] L. Bass, P. Clements and R. K. Kazman. Software
Architecture in Practice. SEI Series in Software

International Journal of Computer Applications (0975 – 8887)
Volume 49– No.16, July 2012

25

Engineering. Addison-Wesley, 1998. ISBN 0-201-
19930-0.

[9] P. Bengtsson and J. Bosch. Scenario Based Software
Architecture Reengineering. In the Proceedings of
International Conference of Software Reuse, pp. 308-

317, 1998.

[10] P. Bengtsson, J. Bosch. Architecture Level Prediction of
Software Maintenance. In the Proceedings on 3rd
European Conference on Software Maintenance and
Reengineering, pp. 139-147, 1999.

[11] P. Bengtsson, N. Lassing, J. Bosch, and H. V. Vliet.
Architecture-Level Modifiability Analysis. Journal of
Systems and Software, vol. 69, 2004.

[12] J. K. Bergey, M. J. Fisher and L. G. Jones and R.
Kazman. Software ArchitectureEvaluation with
ATAMSM in the DoD System Acquisition Context.
CMU/SEI-99-TN-012. Pittsburg, PA: Software
Engieering Institute, Carnegie Mellon University, 1999.

[13] K. Bergner, A. Rausch, M. Sihling and T. Ternit.
DoSAM - Domain-Specific Software Architecture
Comparison Model. In the Proceedings of the

International Conference on Quality of Software
Architectures, pp. 4-20, 2005.

[14] R. C. Cheung. A user-oriented software reliability model.
IEEE Trans. on Software Engineering, vol. 6, pp. 118-
125, 1980.

[15] P. Clements and R. K. Kazman, M. Klein. Evaluating
Software Architectures: Methods and Case Studies.
Addison-Wesley Professional; 2002. ISBN 0-201-

70482X

[16] V. Cortellessa and R. Mirandola. Deriving a Queueing
Network based Performance Model from UML
Diagrams. In the Proceedings on 2nd International
Workshop on Software and Performance, pp. 58-70,
2000.

[17] L. Dobrica and E. Niemela. A Survey on Software
Architecture Analysis Methods. IEEE Transactions on
Software Engineering, vol. 28, no. 7, pp. 638-653, July

2002.

[18] R. Fiutem , and G. Antoniol. Identifying design-code
inconsistencies in object- oriented software: a case study.
In the Proceedings of the International Conference on
Software Maintenance, pp. 94-102, 1998

[19] E. Folmer, J. Gurp and J. Bosch. Software Architecture
Analysis of Usability. In the Proceedings on 9th IFIP
Working Conference on Engineering Human Computer

Interaction and Interactive Systems, pp. 321-339, 2004.

[20] E. Golden, B.E. John and L. Bass. The value of a
usability-supporting architectural pattern in software
architecture design: a controlled experiment. In the
Proceedings on 27th international conference on
Software engineering, pp. 460- 469, 2005.

[21] T. Kauppi. Performance analysis at the software
architectural level. Technical report, ISSN: 14550849,

2003.

[22] R. Kazman, G. Abowd, and M. Webb. SAAM: A Method
for Analyzing the Properties of Software Architectures.
In the Proceedings on 16th International Conference on
Software Engineering, pp. 81-90, 1994.

[23] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.
Lipson, and J. Carriere. The Architecture Tradeoff
Analysis Method. In the Proceedings on ICECCS, pp.68-
78, 1998.

[24] P. A. Keiller, and D. R. Miller. On the Use and the

Performance of Software Reliability Growth Models.
Software Reliability and Safety, Elsvier, pp. 95-117,
1991.

[25] M. H. Klein, R. Kazman, L. Bass, J. Carriere, M.
Barbacci and H. Lipson. Attribute-Based Architectural
Styles. In the Proceedings on First Working IFIP
Conference on Software Architecture, pp. 225-243, 1999.

[26] S. Krishnamurthy and A. P. Mathur. On the estimation

of reliability of a software system using reliabilities of its
components. In the Proceedings of 8th Int'l Symp.
Software Reliability Engineering, pp. 146-155, 1997.

[27] P. Kubat. Assessing reliability of modular software.
Operation Research Letters, 8:35-41, 1989.

[28] J. C. Laprie. Dependability evaluation of software
systems inoperation. IEEE Trans. on Software
Engineering, vol. 10(6), pp. 701-714, 1984.

[29] N. Lassing, D. Rijsenbrij, and H. v. Vliet. On Software
Architecture Analysis of Flexibility, Complexity of
Changes: Size isn't Everything. In the Proceedings of
2nd Nordic Software Architecture Workshop, 1999.

[30] M. Lindvall, R. T. Tvedt and P. Costa. An empirically-
based process for software architecture evaluation.
Empirical Software Engineering 8(1): 83Y108, 2003.

[31] G. Molter. Integrating SAAM in Domain-Centric and

Reuse-based Development Processes. In Proceedings of
the 2nd Nordic Workshop on Software Architecture,
1999.

[32] G. C. Murphy, D. Notkin, and K. Sullivan. Software
re°exion models: bridging the gap between source and
high-level models. In the Proceedings of the 3rd ACM
SIGSOFT symposium on Foundations of software
engineering, pp. 18 - 28, 1995.

[33] L. Prechelt, B. Unger, W. F. Tichy, P. Brssler and L. G.

Votta. A Controlled Experiment in Maintenance
Comparing Design Patterns to Simpler Solutions. IEEE
Transactions on Software Engineering, vol. 27, pp. 1134-
1144, 2001.

[34] M. Sefika, A.Sane and R. H. Campbell. Monitoring
compliance of a software system with its high level
design models. In the Proceedings of the 18th
International Conference on Software Engineering

(ICSE), pp. 387-397, 1993.

[35] M. Shooman. Structural models for software reliability
prediction. In the Proceedings of 2nd International
Conference on Software Engineering, pp. 268-280, 1976.

[36] C. U. Smith. Performance Engineering of Software
Systems. Addison- Wesley, Massachusetts, 570 p., 1990.

[37]SoftwareReliability.http://www.ece.cmu.edu/~koopman/d
es_s99/sw_reliability/#reference

[38]C.Stoermer,F.Bachmann, C. Verhoef, SACAM: The
Software Architecture Comparison Analysis Method,
Technical Report, CMU/SEI-2003-TR-006, 2003.

International Journal of Computer Applications (0975 – 8887)
Volume 49– No.16, July 2012

26

[39] M. Svahnberg, C. Wohlin, L. Lundberg, and M.
Mattsson. A Method for Understanding Quality
Attributes in Software Architecture Structures. In
Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering,

2002.

 [40] B. Tekinerdogan. ASAAM: aspectual software
architecture analysis method. In the Proceedings of the
Working IEEE/IFIP Conference on Software
Architecture (WICSA'04), June 2004, pp. 5-14.

[41] R.T. Tvedt, M. Lindvall, and P. Costa. A Process for
Software Architecture Evaluation using Metrics. In the
proceedings of 27th Annual NASA Goddard/IEEE, pp.

191-196, 2002.

[42] L.G. Williams and C.U. Smith. PASA: A method for the
Performance Assessment of Software Architectures. In
the Proceedings of the Third International Workshop on
Software and Performance (WOSP '02), pp. 179-189,
1990,.

 [43] L.G. Williams and C.U. Smith. Performance
Engineering of Software Architectures. In the

Proceeding on Workshop Software and Performance, pp.
164 - 177, 1998.

[44] S. M. Yacoub, and H. Ammar. A methodology for
architectural-level reliability risk analysis. IEEE
Transactions on Software Engineering 28: 529-547,2002.

[45] S. Yacoub, B. Cukic, and H. Ammar. Scenario-based
reliability analysis of component-based software. In the

Proceedings of 10th Int'l Symp. Software Reliability
Engineering, pp. 22-31, 1999.

[46] Paul Clements, Rick Kazman and Mark Klein,
Evaluating Software Architectures: Methods and Case
Studies, Addison Wesley, 2002.

[47] “ATAM: Method for architecture evaluation”: ATAM -
Architecture Trade-off Analysis Method report:
http://www.sei.cmu.edu/ata/ata_method.html

[48] Rick Kazman, Len Bass, Gregory Abowd, and Mike
Webb, "SAAM: A Method for Analyzing the Properties
Software Architectures," Proceedings of the 16th
International Conference on Software Engineering,
Sorrento, Italy, May 1994, pp. 81-90.

http://www.sei.cmu.edu/ata/publications.html#reports

[49]“CBAM: Cost Benefit Analysis Method
http://www.sei.cmu.edu/ata/products_services/cbam.html

[50] Thomas J. Dolan, Ph.D. Thesis, “Architecture
Assessment of Information-System Families”,
Department of Technology Management, Eindhoven
University of Technology, February 2002.

[51] P.Shanmugapriya , R.M.Suresh ,A Knowledge Based

Approach to Enhance Software Architecture Review
Process, International Journal of Information
Technology and Knowledge Management July-December
2012, Volume 5, No. 2, pp. 315-318

http://www.sei.cmu.edu/ata/ata_method.html
http://www.sei.cmu.edu/ata/publications.html#reports

