
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.15, July 2012

39

Batch Mode Scheduling- Mid_Max Algorithm

Vijay Laxmi
Research Scholar (Ph.D), Department of

Computer Science & Engg., Singhania University

Navdeep Kaur

Phd,A.P. & Head of Computer Science & Engg.
Deptt, C.E.C. Landran (Mohali)

ABSTRACT
In Desktop grid computing environment, range of
computing devices coexists starting from personal

computers to supercomputers. These devices are inter-
connected to provide a variety of computational
capabilities in order to execute applications that have
diverse requirements. An important decision for such
computing infrastructure is how to optimally allocate
computational and communication resources to these
applications and to schedule their execution in order to
maximize performance benefits.
In order to utilize the power of desktop grid completely, we

need an efficient task scheduling algorithm to assign tasks
to resources in a desktop grid. In this paper, we propose a
Batch Mode Scheduling (Mid_Max algorithm) for the
desktop grid environment. Compared to other methods, it
performs well.

Keywords
Batch Mode Scheduling, Desktop Grid Computing,
Mid_Max algorithm.

1. INTRODUCTION
When human culture advances, current problems in science
and engineering become more complicated and need more
computing power to tackle and analyze. A supercomputer
is not the only choice for complex problems any more as a
result of the speed-up of personal computers and networks.
Desktop grid technology, which connects a number of
personal computers with high speed networks, can achieve
the same computing power as a supercomputer does, also

with a lower cost. However, desktop grid is a
heterogeneous system[1,2,3]. Scheduling independent tasks
on it is more complicated. In order to utilize the power of
desktop grid completely, we need an efficient task
scheduling algorithm to assign tasks to resources in a
desktop grid. In this paper, we propose a Mid_Max
algorithm for the desktop grid environment.
The remainder of this paper is organized as follows.

Existing Batch Mode Scheduling algorithms in Desktop
Grid Computing is discussed in Section 2. In Section 3,
The Proposed Batch Mode Algorithm is discussed. Section
4 describes the performance of various Batch mode
Algorithms. A Conclusion is in Section 5.

2. EXISTING BATCH MODE

ALGORITHMS
Min_Min, Max_Min, Sufferage proposed by Maheswaran
[4,5,6] are three major heuristics. The performance matrix
is given in Table 1.

2.1 Min_Min Algorithm: The Min_Min heuristic begins
with all unmapped tasks. Then, the set of minimum
completion times, for each task t is found. Next, the task
with the overall minimum completion time is selected and

assigned to the corresponding machine (hence the name
Min_Min).
Last, the newly mapped task is removed from queue, and
the process repeats until all tasks are mapped (i.e., U is
empty) . Min_Min is based on the minimum completion
time, as is MCT. However, Min_Min considers all

unmapped tasks during each mapping decision and MCT
only considers one task at a time. Min_Min maps the tasks
in the order that changes the machine availability status by
the least amount that any assignment could. Let ti be the
first task mapped by Min_Min onto an empty system. The
machine that finishes ti the earliest, say mj ,is also the
machine that executes ti the fastest. For every task that
Min_Min maps after ti , the Min_Min heuristic changes
the availability status of mj by the least possible amount

for every assignment. Therefore, the percentage of tasks
assigned to their first choice (on the basis of execution
time) is likely to be higher for Min_Min than for Max_Min
(defined next). The expectation is that a smaller makespan
can be obtained if more tasks are assigned to the machines
that complete them the earliest and also execute them the
fastest[5,6].

Table 1. Performance Matrices

2.2 Max_Min Algorithm: The Max_Min heuristic is very
similar to Min_Min. The Max_Min heuristic also begins
with all unmapped tasks. Then, the set of minimum
completion times is found. Next, the task with the overall
maximum completion time is selected and assigned to the
corresponding machine (hence the name Max_Min). Last,
the newly mapped task is removed from queue, and the

process repeats until all tasks are mapped [6,7]. Intuitively,
Max_Min attempts to minimize the penalties incurred from
performing tasks with longer execution times. Assume, for
example, that the metatask being mapped has many tasks
with very short execution times and one task with a very
long execution time. Mapping the task with the longer

Symbol Definition

EET(t,r)

Estimated Execution Time: the amount of
time the resources r will take to execute
the task t, from the time the task starts to

execute on the resource.

EAT(t,r)
Estimated Available Time: the time at
which the resources r is available to
execute task t.

FAT(t,r)
File Available Time: the earliest time by
which all the files required by the task t
will be available at the resource r.

ECT(t,r)
Estimated Completion Time: the
estimated time by which task t will
complete execution at resource r.

MCT(t)
Minimum Estimated Completion Time:
minimum ECT for task t over all available
resources.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.15, July 2012

40

execution time to its best machine first allows this task to
be executed concurrently with the remaining tasks (with
shorter execution times). For this case, this would be a
better mapping than a Min_Min mapping, where all of the
shorter tasks would execute first, and then the longer

running task would execute while several machines sit idle.
Thus, in cases similar to this example, the Max_Min
heuristic may give a mapping with a more balanced load
across machines and a better makespan.

3. PROPOSED BATCH MODE

SCHEDULING ALGORITHM-

MID_MAX
The Mid_Max heuristic begins with all unmapped tasks.
Then the completion time for each task is found. The task
with overall midst completion time is selected and assigned
to fastest resources. The newly mapped task is removed
from the queue and the process repeats until all tasks are
mapped. Mid_Max is based on midst completion time as is
MCT.

ALGORITHM: Mid_Max

1) Identify the resources and their capabilities using GIS
(Grid Information System). Identify the cost of all
resources.(Cost expressed in terms of cost per task)
2) Create Users with their proper ID.

3) Create Gridlets or Tasks with different properties.
4) Repeat following steps for each user
a) Sort the resources by decreasing order of there
processing speed. If two or more resource have the same
speed then select according to First Come to First Serve
(FCFS) order
b) Sort the tasks by decreasing order of there required
execution time. If two or more task have the same
execution time then select according to First Come to First

Serve (FCFS) order.
c) Repeat for each unprocessed task depending on the
sorted list.

 Apply Binary search algorithms for selecting mid task.

 Assign fastest processor to mid task..

 Calculate execution time and total cost for each task.

[Total cost=∑ (Required execution time for task/Execution
speed for resource]

5.) Remove assigned task from unsigned job list.

Figure 1 : Mid_Max Algorithm

4. PERFORMANCE ANALYSIS
We evaluate the performance of our Mid_Max scheduling
mechanism through simulation. We implemented our
Mid_Max scheduling mechanism in the GridSim Toolkit.
We developed our own JAVA program in GridSim toolkit
to evaluate the performance of our Mid_Max scheduling
algorithm.
We compare the performance of FCFS, Min_Min and
Max_Min with our algorithm. Mid_Max gives optimize

result in terms of both average cost and average execution
time as compare to other algorithms.
The Table-2 shows the summary of the scheduling
algorithms performance in terms of average execution time
for our running example.

Table 2 : Average Execution time for running tasks

The performance of FCFS,Min_Min,Max_Min and
Mid_Max algorithms in terms of average execution time
are studied in Figure-2 and shows Mid_Max behave same
as Max_Min. But when we compare the performance in
terms of average cost then Mid_Max gives better
performance as compared to other algorithms shown in
Figure 3.

Figure 2: No. of Tasks Vs Average Execution time

Figure 3: No. of Tasks Vs Average total cost

The Table-3 shows the average total cost for different
tasks, for different algorithms like FCFS, Min_Min,
Max_Min and Mid_Max.

Table 3: Average total cost for running task

Tasks FCFS Min_Min Max_Min Mid_Max

7 71 62 87 60

10 98 89 100 80

15 118 101 122 88

20 137 121 130 110

25 154 134 159 122

30 172 159 180 150

No of

Tasks
FCFS MIN_MIN MAX_MIN Mid_Max

7 17 11 10 10

10 50 41 30 29

15 93 80 50 50

20 128 99 65 64

25 167 141 80 74

30 212 201 150 152

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.15, July 2012

41

5. CONCLUSION

An advantage of FCFS is that it does not require any

information about task arrival rates or machine execution
rates. FCFS only performs well in the systems with limited
task heterogeneity and under moderate system loads. As
the application tasks become more heterogeneous and load
increases, performance degrades rapidly. On the other hand
Max_Min improves the response time but it increases the
total cost. Min_Min improves the cost factor but decrease
the response time. In order to avoid the limitation done by

Max_Min & Min_Min, We propose an algorithm
Mid_Max The results show that the proposed algorithm
has a better efficiency in comparison with the results
obtained from other known algorithms.
We will expand our work by adding replica and adaptive
time out technique with our algorithm Mid_Max.

6.REFERENCES
[1] I. Foster, C. kesselman The Grid: Blueprint for a New

Computing Infrastructure. 2nd Ed, Morgan
Kaufmann, 2004.

[2] S. Ali, T.D. Braun, H.J. Siegel, A.A. Maciejewski,
N.Beck, L.Boloni, M. Maheswaran, A.I. Reuther, J.P.

Robertson, M.D. Theys, and B. Yao, "Characterizing
Resource Allocation Heuristics for Heterogeneous
Computing Systems," in Advances in Computers:
Volume 63: Parallel, Distributed, and Pervasive
Computing, vol. 63, pp. 93- 129, Elsevier, Apr. 2005.

[3] C. S. Yeo and R. Buyya, "A taxonomy of market-
based resource management systems for utility-driven

cluster computing," Software:Practice and
Experience, vol. 36, issue 13, pp. 1381-1419, Nov.
2006.

[4] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, "Dynamic Matching and Scheduling of

a Class of Independent Tasks onto Heterogeneous
Computing Systems, The 8th Heterogeneous
Computing Workshop , pp. 30-44, Apr. 2001.

[5] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M.
Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, B. Yao, D. Hensgen, and R. F. Freund, "A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous

distributed computing systems," Journal of Parallel
and Distributed Computing, vol. 61, issue 6, pp. 810-
837, Jun. 2001.

[6] K. Krauter, R. Buyya, and M. Maheswaran, "A
taxonomy and survey of grid resource management
systems for distributed computing,"Software: Practice
and Experience, vol. 32, issue 2, pp. 135-164,
Feb.2002.

[7] J. Yu and R. Buyya, "A Taxonomy of Scientific
workflow Systems for Grid Computing," Special
Issue on Scientific Workflows, SIMMOD Record,
vol. 34, no. 3, pp. 44-49, Sept. 2005.

