
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.15, July 2012

6

Automatic File Indexing Framework
An Effective Approach to Resolve Dangling File Pointers

Yasas Diniesha Jayaweera
Department of Information Technology

 Sri Lanka Institute of Information Technology

ABSTRACT

Today managing files in a server system has the same
magnitude as managing the World Wide Web due to the
dynamic nature of the file system. Even searching for files
over the file system is time consuming because finding a file

on hard disk is a long-running task. Every file on the disk has
to be read with dangling pointers to files which no longer
exist because they have been changed, moved or deleted. This
makes the user frustrated. The Automatic file indexing
framework facilitates users to resolve file names and locate
documents stored in file repositories. The main design
objective of the framework is to maintain sub-indexes at the
folder level that have the full knowledge of the revisions that
are made at the folder level automatically.

This research proposes a framework that manages the creation
and maintenance of the file index, with the use of Resources
Description Framework (RDF) and retrieval using semantic
query languages i.e. SPARQL. The sub-indexes are
maintained hierarchically starting from the leaf node to the
root node recursively. The proposed framework will monitor
the file system continuously and update individual folder
descriptors (sub-indexes) stored on each node as the file

system changes making the cached indexes resilient to any
file changes. The framework is resilient of file or folder name
changes. Further, the study explores avenues to build an
offline semantic index that can be used by the clients to
perform distribute file search without performing the search
on the server itself. This is viable since the framework uses
semantic languages to describe and build file descriptors that
can easily integrate semantic indexing and hence this makes

the index readily available for the Web.

General Terms

File Indexing, File Retrieval, Knowledge Management,
Semantic Web Technologies.

Keywords
File Indexing, Document retrieval, Semantic Web, RDF
(Resource Description Framework), SPARQL.

1. INTRODUCTION
Today, there is an enormous number of files stored on Web
servers and even on Personal Computers (PC). The PC has
now become a Web of files. The growth of the file system is
exponential. Yet, it is a herculean task to locate the stored
files manually in a timely manner. To reduce the time spent
on manual finding there are search tools which facilitate a
smart finding of files to users. In the context of an application

to locate files it uses a file index.
There are many index creation tools to avoid user frustration.
Manually retrieving a file is a tedious task unless one can
remember the location of the files stored. Due to the rapid
increase in files in the system it is the job of the file indexing

tools to provide an interface to applications which help
locating and retrieving the files the user wants.
Current tools in the market improve searching via manual or
automatic indexing which facilitates fast retrieval of the files
but dangling file pointers still exist making it difficult to
locate the file when the location or name changes. Most
windows and Web based applications index recently used file
entries as a quick reference for the users. But when a file is

moved, changed or deleted the entries in the index remain
unchanged leaving the entries dangling and pointing to null
references leading to user frustration. This is due to the
absence of a central index or because of an obsolete index.
Either type will be of no use to the user since the user has no
clue of retrieving the file if the file has been moved or the
path has been changed.
Building an index from scratch takes a lot of time depending
on the size of the file system. After the index is built the index

should be up to date by incorporating file system changes.
Unless it is updated in a timely manner the index becomes
obsolete. There are many indexing tools existing in a system
but they do not survive when the file is moved, changed or
deleted. Tools like Windows 7 search and index, facilitate
users to find what is necessary via its search interface. The
search result can be indexed for later retrieval by storing the
query used to search the files but there is no metadata

involved in maintaining the file system changes. Therefore,
the index is unaware of the changes to the file system. As
such, the problem persists when the file system changes. The
stored query retrieves the file system with new changes but
the application may refer to the old index references making
the changed entries to dangle around. This can happen due to
one of the following reasons: file has been deleted, file name
has been changed, file has been moved or file path has been

changed. If the index system does not maintain metadata
about the file changes it will not be able to identify what has
caused the system to fail while retrieving the file. For instance
if a file name has been changed then the application uses the
previously indexed, old symbolic file name which does not
exist in the current file system. At a glance one can say the
indexes help applications to locate what the user really wants
but without maintaining metadata about file changes the index

becomes obsolete where it cannot locate files once the file
system has changed.
The primary objective of the proposed framework is to trace
path and file changes in a metadata file stored locally in each
folder in the folder hierarchy. It helps applications to locate a
file if the file exists. So that the user does not have to
remember file name or file location changes making the file
retrieval system intelligent.
The proposed framework will further incorporate file system

changes automatically. That is; in the existing environment
when files are copied from one location to another the index
should be rebuilt manually to make the index up to date. But

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.15, July 2012

7

in the proposed approach since each leaf node maintains a
sub-index only the root node index has to be adjusted
accordingly. The framework proposed will maintain each sub-
index by adhering to the local changes made to the file system
leaving the index up to date.

This work is organized as follows. Section 2 introduces
related work and background of the research problem. Section
3 reviews major components of the proposed Automatic File
Indexing Framework. Section 4 explains the detail
implementation of the framework. This section also gives an
insight into the working prototype followed by Section 6
where results are analyzed. Section 6 summarizes the
framework with a detailed discussion and is followed by

future work.

2. RELATED WORK
There exist many approaches to deal with file indexing. Here I
review a few approaches available in the market.

Google Desktop Search [1] is a local search engine that
facilitates file search and background indexing. Its primary
objective is to locate the file fast. No attention is paid to
maintain symbolic name changes.
Operating systems like Windows Vista and Windows 7 [2] [3]
facilitate search as an inbuilt feature in the OS. The search
result can be saved for later reference. The stored file saves
the query which was used to search the files in XML format.

When the user runs the stored XML file the operating system
re-runs the query on the Windows search subsystem. As a
result there is no actual index; rather a directory search.
Similar to Google Desktop search the tool will not be able to
track the file system changes separately.
There are systems that remember files a user has visited and
allows a user a quick access to the files recently visited. A
related approach under this is the “Stuff I’ve Seen” system by
Dumais [4], which simply remembers all entities including

files, Web pages, emails, contacts, etc. that a user comes into
contact on a computer. By revising this history, which is like a
super-charged Web browsing history, a user is able to find
items guided mainly by his temporal recollection of the
desired item. But like in the previous methods this lacks
semantics about changes in the file system.
A less related but an effective system is Essence: [5] a
resources discovery system on file indexing that exploits file

semantics. It extracts keywords that summarize files and
generates a compact index. It automatically generates the
index discovering different types of file resources as its main
design objective but less attention is paid to maintaining the
index overtime by taking file system changes to account.
Most of the file retrieval systems have incorporated file event
logging for audit purposes [4][6][7]. But none of the systems
uses the event log to resolve file name changes in retrieving

files. In these systems the user can separately view the log for
audit purposes mainly to retrieve statistics. The Automatic
File Indexing Framework uses automatic event logging and
tracking to facilitate file retrieval irrespective of the changes
to the file system.
The proposed framework; Automatic file indexing framework
has roots to file indexing and symbolic name maintenance
framework [8]. The framework allows pluggable index

handlers and also provides a mechanism to keep track of
symbolic name association for every file in the system. It
provides session based and transient shadow table of symbolic
names previously used by the files. The proposed framework
takes a different approach in taking file symbolic names
beyond the life span of a file. It uses Resource Description
Framework (RDF) to describe and maintain metadata about
each directory at the folder level allowing changes to be

manageable. To make the file retrieval process feasible a hash
table is also maintained. Further, the framework can
dynamically adjust physical path of the files making it
resilient to folder name changes. So the proposed framework
enhances functionality with the handling of dangling pointers

and resolves directory paths.

3. AUTOMATIC FILE INDEXING

FRAMEWORK
The proposed framework functions in two ways. Firstly, the
framework maintains sub-indexes at the folder level.
Secondly, when applications request files the framework
resolves the path and file names to locate the files.
The key design goal of the proposed framework is to handle
dangling file pointers and resolve any path changes. At any

given time applications are able to access the files irrespective
of any naming changes to files or directories in the physical
path. The framework decouples the index maintenance
process from the file system and the update mechanism
provides a flexible approach to the problem of dangling
pointers with the problem of allowing applications to refer the
files if the file exists irrespective of changes to the file name
or directories. Further, the framework is implemented in the

user address space without modifying the rest of the system or
can be moved to a new system where it increases the
flexibility of the framework.
Automatic file indexing framework is designed to maintain
folder descriptors at each folder level. At the folder level each
folder is able to maintain the metadata file to track file and
folder changes. The framework uses Resource Description
Framework (RDF) [9] to maintain the folder descriptors. RDF

can be used to store metadata of any Web of data. The
proposed framework continuously watches the file system
changes. When a change occurs the framework receives a
notification from the file system notifying the change and the
physical location of the place that took the change. Based on
the notified change the RDF file (folder descriptor) is
maintained to reflect the change. In addition to the indexing,
a hash index table is also maintained as a fast lookup to make
file retrieval process a computationally viable approach. The

framework consists of six (6) main components as shown in
figure 1. The following section describes the functionality of
each component.

3.1 File System Monitor
The File System Monitor component provides the main

interface that interacts with the row file system. In the
proposed framework it is required to register a specific root of
the file system before receiving notifications of the file system
changes. This gives flexibility to enable or disable the
automatic indexing of the target file system. Once a root is
registered with the File System Monitor, it continuously
receives changes in the target file system. Changes like
creating files, deleting files, changing file name and changing

directory names generate notifications from the target file
system. The component intercepts the notifications and
queues them for further processing.

3.2 Localizer
The Localizer component plays a main role in the automatic

file indexing framework. Its process is of two stages. At the
first stage the Localizer, segments and identifies each
notification type that is: create, update or delete and the
location of the place where the change took place. This
information helps the framework to categorize each
notification and enables it to use a specific handler to deal
with each event. The following actions are taken by event
handlers based on the type of the event.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.15, July 2012

8

Figure 1: Automatic file indexing framework

 Create a new file: - Handler creates a new entity in the
sub-index.

 Delete a file: - Handler deletes the entity in the sub-
index.

 Update file name: - Handler updates the path by
modifying the entity in the sub-index.

 Update location: - Handler updates the path iteratively by
modifying the path from root to the leaf.

In the second stage the component retrieves the location
where the event was triggered. The leaf node of the path of
the event triggered has the folder descriptor which is the sub-
index file. The sub-index maintains entities in a RDF file

where each entity in the directory is mapped in to the RDF file
as a resource. The folder descriptor has the revisions done to
file names, deletions and new entries. The component assigns
the handler and the path to an available worker thread in the
thread pool to run the partial indexer that builds the sub-index.

3.3 Partial Indexer
The Partial Indexer component maintains sub-indexes at the
folder level. Each directory contains a folder descriptor; a
metadata file that describes the contents of the directory
including revisions done. The metadata file (folder descriptor)
is a RDF file which maps the directory contents to a RDF file.
The “index.rdf” is added to each folder as a hidden file to
avoid any accidental deletions. In case the “index.rdf” file is
deleted the file is reconstructed with the changes via the hash

index table.
Resource Description Framework or shortly RDF [9] is used
to describe resources. Semantic Web applications, and in
relatively popular applications of RDF like RSS and FOAF

(Friend of a Friend), resources tend to be represented by URIs
that intentionally denote, and can be used to access, actual
data on the World Wide Web. But RDF, in general, is not
limited to the description of Internet-based resources.

Each entity in the directory is mapped into a resource. Each
resource has a set of names as properties. Following is a
snapshot of “code” directory and the sub-index file. Figure 2
represents the directory contents.

Figure 2: View of the code directory

Figure 3 represents the content of the “index.rdf” the metadata
files’ structure.
File System Monitor, Localizer and Partial Indexer facilitate
automatic indexing of the file system. The next section covers
the main components used in the process of file name and
path resolution to cater to application file retrieval requests.

Hash Index Table

Root

Folder 1

Physical File System

Folder 2

Files

Files

Files

File System Monitor

File Change

Notification

Localizer

Localizes the

change

Thread Pool

Initiates Index

Update

Partial Indexer

Folder

Descriptor

Folder

Descriptor

Folder

Descriptor

Worker Threads

Updates Folder

Descriptor

Application

Path Builder

Index lookup

Automatic File Indexing Framework

Query Interface

Register a root

for

notifications

Asynchronous Communication

http://en.wikipedia.org/wiki/RSS_(file_format)
http://en.wikipedia.org/wiki/FOAF_(software)

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.15, July 2012

9

Figure 3: View of the index.rdf file

3.4 Hash Index Table
The hash index table can be an in memory object or a
database table that functions as a fast lookup. Without a fast
lookup all the file requests are resolved via navigating the
RDF graph. This consumes time and space since it is required
to construct the RDF graph before a search can be performed.

A fast lookup is used to avoid this performance bottleneck.
This lookup can be implemented using in memory object or as
a database table. The table traces all the changes to the file
system by hashing the old reference and linking it with the
new reference enabling file retrieval through the old reference.
Figure 4 represents a view of a hash index table.

Figure 4: View of the hash index table

For instance an index entry to C:\code\java folder changes to
C:\code\java2. An entry is added to the hash index table
which contains the same hash value to both entries. Further
the order field will determine the latest update. In case the

hash index table is empty or does not exist, file requests are
resolved via navigating the RDF graph and then updating the
hash index table.

3.5 Query Interface
There are two main uses of the Query Interface component.
Firstly, the interface generates a master index using the sub-

indexes stored in the individual directories for reference of
applications. The master index is in RDF and is readily
available for World Wide Web applications to use. The index
is based on file names stored in the file system and acts as the
central index.
Secondly, the component intercepts file retrieval requests
from applications and facilitates index lookup to locate the
stored file in the file system. To locate, the file Query

interface generates a query to Path Builder component to
dispatch the application request. The Path Builder uses the
query as the entry point to locate the requested file.

3.6 Path Builder
The Path Builder component receives a search query from the

Query Interface component and is used by the Path Builder
component to validate and locate the file stored in the file

system. The Path Builder locates the file. The component
validates the existence of the file in the path. If the path exists
the component tries to bind the file and returns a handler back
to the application. In case the file name cannot be found the
Path Builder initiates resolving the file name; firstly via the

hash index table and secondly using the sub-index stored in
the leaf node of the path. There are scenarios where the
directory names in the referenced path have changed. The
Path Builder resolves the directory names recursively tracking
and binding name changes from root node to leaf node.
The Path Builder plays a vital role in the framework by
resolving file and directory names to facilitate retrieval of
files in a timely manner. The time it takes to retrieve a file, if

it does not exist, is directly proportional to the depth of the
tree (O(n)).

4. IMPLEMENTATION
The Automatic File Indexing Framework is implemented as a

Windows service since the framework is required to monitor
the file system changes throughout the span of the system
operation. The service runs all the time monitoring file system
continuously. The framework is implemented using Java
language. A running prototype is completed and it requires
performance fine tuning before a final release. The service is
created and launched by using the Java Service Wrapper, an
open project.

To monitor the file changes the java.nio.file package which
provides a file change notification API, called the watch
service API is used to implement file system monitor
component. When the watch service detects file notification
events they are forwarded to the main thread which allocates a
worker thread from the thread pool. The thread pool size is
determined heuristically. The worker threads processes any
event registered in the main thread. Figure 5 represents the
code used to detect the registered events.

Figure 5: Handling registered events

Partial indexes are created and searched using Jena RDF API.
Jena is a Java API that facilitates creation, manipulation &
navigation of RDF graphs. The API is used to maintain index
files at each folder level called partial indexes as depicted in
figure 2. The main flow of the algorithm for serving a file
request is shown in figure 6.
The algorithm is implemented by using the sub-components

explained in section 3.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.15, July 2012

10

Figure 6: Main flow of a file request

5. RESULT ANALYSIS
Existing document indexing software tools focus on building

indices using data structures to locate files based on specific
parts of text found in them. The research domain is deeply
rooted to index structures ranging from most simple look-up
tables to sophisticated graph-based index structures for search
queries [10]. The process is more or less similar to the process
of using an index of a book. For more recent development, the
tendency is to find what the User wants through a file search
interface where it recommends and retrieves similar files

based on how far they are close to User’s search text.
The systems that exist in the market use a stored index or an
index is built on demand. In both scenarios a User has to be in
the loop to find what he or she wants. Most of the software
tools according to a recent review of best document
management software packages [11] reveal that most of them
support common features namely full-Text search, backup &
restore, central repository, multiple versions support and the

like. The solutions that exist are less related to the proposed
work. In brief the Automatic File Indexing Framework is an
automatic indexing framework which resolves dangling file
pointers by maintaining sub-indexes at each folder level that
track changes to the file system. The tracking is done in the
background. It makes the index intelligent by locating the
original file irrespective of all the revisions done and without
an involvement by the User. The folder level descriptors are

in RDF files that can be easily integrated to semantic
indexing. Therefore, the index is readily available for the
Web. Current software packages in the market do not support
these features.

6. SUMMARY AND FUTURE WORK
In this paper an Automatic File Indexing Framework, which

generates sub-indexes automatically at the folder level was
presented. The sub-index is a RDF file and it uses Resource
Description Framework to maintain it. The RDF file acts as a
metadata file that stores directory changes locally. Further, the
RDF file tracks and records changes done to the directory
entries automatically. This makes the sub-index intelligent
when resolving the names later. The framework receives on
demand file retrieval request from applications and is able to

return the file back to the application irrespective of the
directory changes and file name changes. This makes the
framework unique in solving dangling file pointers.

Currently, a working prototype is implemented to prove the
proposed framework solves the existing problems effectively.
It is developed using JAVA platform. The system uses Jena
RDF API [12] & file change notification API. The Jena RDF
API is used to build and locate sub-indexes stored in the file

system while file change notification API is used to monitor
the file system for changes continuously. According to the
initial test runs the results were promising with respect to
solving dangling pointer to files but the prototype requires
performance tuning to suit large file repositories.
The Automatic File Indexing Framework is an effective
solution to dangling file pointes. The indexes can be further
improved by storing summarized file contents to enable a
semantic index search. It will lift indexing and searching of

the applications. Another area for improvement is to provide a
file recommender system for the users where the system
recommends files based on their similarity to the structure and
content. So far, the prototype implemented solves the problem
of dangling file pointers and preparations are underway to
systematically evaluate user responses to the framework. The
framework gives an experience that a user has never
experienced before in locating what was wanted.

Stop

Request

File

Retrieve

File

File

exists?

N

o

Y

es

Hash index

lookup

Retrieve

Status

Is

status=vali

d?

N

o

Y

es

Path

Builder

Retrieve

File

Is

status=delet

e?

N

o

Y

es

Prompt a

message

RDF graph

look up

Map

changes

Path

Builder

Update

Hash Index

Retrieve

File

Start

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.15, July 2012

11

7. REFERENCES
[1] Google Desktop Search. Available

http://desktop.google.com/en/ (accessed 11 January
2011).

[2] Saved Search File Format. Available
http://msdn.microsoft.com/en-us/library/bb892885
(v=vs.85).aspx (accessed 20 January 2011).

[3] Windows Search. Available
http://windows.microsoft.com/en-US/windows7/
products/features/windows-search (accessed 12 January

2011).

[4] Dumais, S.T., Cutrell, E., Cadiz, J., Jancke, G., Sarin,R.,
Robbins, D.C., “Stuff I’ve Seen: A system for personal
information retrieval and re-use”, ACM SIGIR, 2003.

[5] Darren R. Hardy, Michael F. Schwartz, “Essence: A
Resource Discovery System Based on Semantic File
Indexing”, In USENIX Winter, pp. 361-374, 1993.

[6] Chang K., Perdana I.W.T., Ramadhana B., Sethuraman

K.,Le T.V. and Chachra N “Knowledge File System - A
Principled Approach to Personal Information
Management.”, ICDM Workshops IEEE Computer
Society, pp. 1037-1044, 2010.

[7] Gemmell J., Bell G. and Lueder R., “MyLifeBits: a
personal database for everything”, Communications of
the ACM, vol. 49, Issue 1, pp. 88-95, Jan 2006.

[8] Mourra, John (Toronto, CA), Klicnik, Vladimir
(Oshawa, CA), Loi, Lok Tin (Toronto, CA), Tsuji,

Hiroshi (Stouffville, CA), “File indexing framework and
symbolic name maintenance framework”, United States
Patent 7873625, 2011

[9] Resource Description Framework (RDF). Available
http://www.w3.org/RDF/ (accessed 2 February 2011).

[10] Weigel, F. 2002 A Survey of Indexing Techniques for
Semistructured Documents. Journal of Ludwig
Maximilians. Universitat Munchen.

[11] Document Management Software Review 2012.
Available http://document-management-software-
review.toptenreviews.com (accessed 21 July 2012).

[12] An Introduction to RDF and the Jena RDF API.
Available http://jena.sourceforge.net/tutorial/RDF_API/
(accessed 2 February 2011).

http://www.citeulike.org/user/xamde/author/Hardy:DR
http://www.citeulike.org/user/xamde/author/Schwartz:MF
http://www.bibsonomy.org/bibtexkey/conf/icdm/2010w
http://www.w3.org/RDF/
http://document-management-software-review.toptenreviews.com/

