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ABSTRACT 
Image segmentation is one of the substantial techniques in the 
field of image processing. It is excessively used in the field of 

medicine provides visual means for identification, inspection 
and tracking of diseases for surgical planning and simulation. 
Active contours or snakes are used extensively for image 
segmentation and processing applications, particularly to 
locate object boundaries. Active contours are regarded as 
promising and vigorously researched model-based approach 
to computer assisted medical image analysis. However, its 
utility is limited due to poor convergence of concavities and 

small capture range. Many subsequent models have been 
introduced in order to overcome these problems. This paper 
reviews the traditional model, the Gradient vector flow (GVF) 
model and the balloon model for different images and 
proposes a model which can provide the most accurate 
segmentation.  

Keywords: Active contour models, edge detection, 

gradient vector flow, balloon model, image segmentation, 
snakes. 

 

1.INTRODUCTION 
 
Segmentation is the process of splitting the image into several 
parts like objects (also called foreground or background. 
Active contours [1] or snakes provide an effective way of 

segmentation [2] of curves defined within the image domain 
that can move under the influence of external and internal 
forces. These forces are defined such that the snake will 
shrink wrap to an object boundary. This method is widely 
used in many applications, including motion tracking, edge 
detection and segmentation.  
There are two types of active contour models in literature 
today: - parametric active contours and geometric active 
contours [3][4]. Our main focus here is on parametric 

contours. Parametric active contours synthesize parametric 
curves within an image domain and allow them to move 
towards desired features, usually edges. Typically the curves 
are drawn towards the edges by potential forces, which are 
defined to be the negative gradient of a potential function. 
Additional forces like the potential forces[5] and pressure 
forces together comprise the external forces. There are also 
internal forces designed to hold the curve together (elastic 

forces) and to keep it from bending too much (bending 
forces). 
There are two main difficulties we face during the parametric 
active contour algorithm. First, the active contours have 
difficulties progressing into boundary concavities[6][7]. The 
second problem is that the initial contour must in general, be 
close to the true boundary or else it will predict an incorrect 

result. Most of the methods that are proposed to solve the 
above problems are ineffective in solving both issues and end 
up creating more difficulties.  
In this paper we represent distinct active contour models to 
help resolve the problems mentioned above. Firstly, the 
traditional model and its shortcomings. Then the balloon 

model or the expanding snake model helps resolve the 
problem of small capture range. When the approximate 
boundary of an object is unknown the traditional model fails 
to provide accurate results, in such situations using the 
balloon model shows robustness. Finally, the gradient vector 
flow (GVF) model[8] which forces active contours into 
concave regions. GVF is computed as a diffusion of the 
gradient vectors of a gray-level or binary edge map derived 

from the image. We discuss the above models by using 
different types of images i.e. regular without concavities and 
irregular images with concavities. 
The major advantage of using these models over the 
traditional model is that it can be initialized far from the 
boundary since it has a large capture range. And unlike 
pressure forces, it does not require prior knowledge about 
when to shrink or expand towards the boundary. 

 

2.MATERIAL AND METHODS 

2.1.Parametric Snake Model  

 
The contour [1] is defined in the (x, y) plane of an image as a 
parametric curve 

v(s) = (x(s), y(s)) 
Contour is said to possess energy (Esnake) which is defined as 

the sum of the three energy terms.  
 

 
 
The energy terms are defined cleverly in a way such that the 
final position of the contour will have a minimum energy 
(Emin) 
Therefore our problem of detecting objects reduces to an 
energy minimization problem. 

Internal Energy (Eint) depends on the intrinsic properties of 

the curve and is the sum of elastic energy and bending energy. 

Elastic Energy (Eelastic) of the curve is treated as an elastic 

rubber band possessing elastic potential energy. It discourages 
stretching by introducing tension. 
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Weight (s) allows us to control elastic energy along different 

parts of the contour.  

Considered to be constant  for many applications.  

 
Bending Energy (Ebending): The snake is also considered to 

behave like a thin metal strip giving rise to bending energy. It 
is defined as sum of squared curvature of the contour.  

 

 

 
(s) plays a similar role to (s). Bending energy is minimum 

for a circle.  
 
 
Total internal energy of the snake can be defined as:-  
 

 

 
External energy (Eext) of the contour is derived from the 

image so that it takes on its smaller values at the function of 

interest such as boundaries[10]. Define a function Eimage(x,y) 
so that it takes on its smaller values at the features of interest, 
such as boundaries. 

 

 

Key rests on defining Eimage(x,y). Some examples 

 

A.  

  

   
B.  

Energy and force equations: The problem currently on hand 
is to find a contour v(s) that minimize the energy functional 

 

 

 
Using variational calculus and by applying Euler-Lagrange 
differential equation we get following equation 

 

 
Equation can be interpreted as a force balance equation. 
 

Fint + Fimage = 0  

 

 

 
Each term corresponds to a force produced by the respective 

energy terms. The internal force Fint discourages stretching 

and bending while the external potential force Fimage pulls the 

snake toward the desired image edges.  

 
Solving the Euler equation:- 

 

Consider the snake to also be a function of time i.e. 

 

 

 

 

 

 
If RHS=0 we have reached the solution. 

 
On every iteration update control point only 
 if new position has a lower external energy. Snakes are very 
sensitive to a false local minimum which leads to wrong 
convergence. 

     

2.2  Weakness of Traditional Snakes 
An example of behavior of traditional snake is shown in fig. 
3(b) and fig. 4(b). In fig. 4(b) we can see that it has boundary 
concavity on the side are left vacant. This snake formulation 

is a result of Euler’s equation and we can see that it remains 
split across the concave region.  
The reason for the poor convergence of this snake as seen in 
fig. 1(b) is because the forces point horizontally in opposite 
direction. 
 
Another weakness of the traditional snake model is that it has 
a limited capture range; this can be explained in fig. 1(b). The 
magnitudes of the external forces die out quite rapidly away 

from the object boundary. The boundary localization will 
become less accurate and distinct.  
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(a)                            (b)                                       (a)                                (b) 

 
Fig. 1 (a) traditional potential forces and (b) close- up        Fig. 2 (a) traditional distance forces and (b) close-up 

 

 
2.3.Balloon Model 
The snake model originally introduced by  Kass has been further 
developed by modified in recent years. The balloon model or the  
expanding snake mode[9] is one of the examples of this. Unlike, 
the traditional snake that shrinks wraps to the image boundary, 
this snake model expands outwards.  
This model is based on an additional inflation force applied to 

give stable results. A snake which is not close to contours is not 
attracted by them. The curve behaves like a 
balloon which is inflated.  When it passes by edges, will not be 
trapped by spurious edges and only is stopped when the edge is 
strong. The initial guess of the curve not necessarily is close to 
the desired solution. Pressure force is added to the internal and 
external forces[11]. 

 

 

 

The expansive behavior is achieved by modifying the 

values of fx; fy as followed 
 

 

 

 

 
 
 
where n(s) is the unit principal normal vector to the curve at 
point v(s), and k1 is the amplitude of this force. k1 and k are 
chosen such that they are of the same order, which is  
smaller than a pixel size and k is slightly larger than k1 so an 
edge point can stop the Inflation force. The curve then expands 
and it is attracted and stopped by edges as before. The smoothing 

effect with the help of the inflation force then removes the 
discontinuity and the curve then passes through the edge. 

2.4.Gradient Vector Flow Snake 
The overall approach is to use the force balance condition as a 
starting point to design the snake. This parametric curve thus 

formed is called GVF snake[12].  
 
Gradient Vector Flow:- The GVF field is defined to be a vector 
field[13][14] 
 

 

    
Force equation of GVF snake is, 

 

 
 
V(x,y) is defined such that it minimizes the energy functional, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                           (b)                          
                             Fig.3 (a) snake boundary (b) complete convergence of boundary in case of  regular images  
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(a)                                 (b)             (c) 
Fig.4 (a) snake boundary, (b) snake not able to move into concavities in the traditional or balloon model and (c) complete 

convergence of the boundary in GVF model                   

 

 

 

 
f(x,y) is the edge map of the image. 

 
GVF field can be obtained by solving following equations 
 

 
 

 

 
2
 Is the Laplacian operator.  

 
The above equations are solved iteratively using time derivative 

of u and v. These equations provide further intuition behind the 
GVF formulation[15]. We note that in the homogenous region 
the second term in both regions is zero because the gradient of 
f(x, y) is zero.  
 

 

 

 

 

 

 

 

3. RESULTS 
When tested on an image with regular shape (rectangle), with no 
concavities (fig.3) and with no noise present in the image, all the 
three models were able to form a complete boundary, but the 
GVF snake(fig.3(b)) showed the highest rate of convergence. 
Tests on an image (scissors) with  concavities (fig.4), showed 
what we had expected from the theoretical studies. Neither 

original nor balloon snake managed to enter the concavity (fig.4 
(b)). The GVF snake (fig.4 (c)) did so in very few iteration. 
When tested on an image which was corrupted by noise, 
traditional (fig.5 (b)) and especially balloon snake (fig.5(c)) were 
distracted but still able to extract the boundary appropriately. The 
GVF snake (fig.5 (d)), on the other hand, became unstable and 
“broke” the boundary 
 

 
 
 

 
 

 

 

 

 

(a)                                                     (b)  

 

 

 

 

 

 

 

 

           (c)               (d) 
Fig.5 (a) snake boundary, (b) convergence in traditional snake model, (c) convergence in balloon model

         and (d) convergence in case of GVF model 
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4. CONCLUSION 
We have successfully reviewed the three distinct snake models 
i.e. traditional snake model, balloon snake model and the GVF 
snake model by applying them to different images and studied 
their result. Different models provide varied accuracy based on 
the type of images. As we saw in figure 4 how the GVF model 
was successful in forming boundaries by entering concavities, 
while the other two models were not able to enter these areas. 

Similarly we encounter wide-ranging types of images for 
segmentation, specially in medicine where cancer cells vary in 
structure depending upon their location. Hence we can conclude 
that a combination of these models would provide a robust and 
comprehensive method for segmentation for various types of 
images. 
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