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ABSTRACT 
Combined effects of Hall currents and rotation on MHD mixed 
convection in a rotating vertical channel have been studied. The 
governing equations are solved analytically in closed form. The 
effects of the various parameters on the velocity field, shear 
stresses, temperature field and the rate of heat transfer in terms 
of their amplitudes and tangent of phases are presented 
graphically. It is observed that the primary velocity decreases 

while the magnitude of the secondary velocity increases with an 
increase in Hall parameter parameter. It is also observed that 
both the primary velocity and the magnitude of the secondary 
velocity decrease with an increase in radiation parameter. 
Further, it is seen that the amplitudes of rate of heat transfer at 
the plates increases with an increase in either Prandtl number or 
radiation parameter or frequency parameter. 

Keywords:  Hall Currents, mixed convection, magnetic 

parameter, rotation parameter, radiation parameter, Prandtl 
number, Grashof number and oscillatory plate temperature.  

 

1. INTRODUCTION 
 

In many of the studies carried on hydromagnetic flow of a 
radiating fluid inside a vertical channel or over the vertical plate 
the effect of Hall currents in an unsteady state was often 
neglected. From practical point of view the effect of Hall 
currents cannot be ignored because of its important in many 

flow problems. The combined effects of Hall currents and 
radiation on the magnetohydrodynamic flows continue to attract 
the attention of engineering science and applied mathematics 
researchers owing to extensive applications of such flows in the 
context of ionized aerodynamics, nuclear energy systems 
control, improved designs in aerospace MHD energy systems, 
manufacture of advanced aerospace materials etc. Both 
analytical and computational solutions have been presented to a 
wide spectrum of problems. Free and forced convective flow of 

an electrically conducting fluid through the vertical channel 
under the influence of magnetic field occurs in many industrial 
and technical applications which include plasma studies, the 
boundary layer control in aerodynamics, petroleum industries, 
MHD power generators, cooling of nuclear reactors, and crystal 
growth. Helliwell and Mosa [1] reported on thermal radiation 
effects in buoyancy-driven hydromagnetic flow in a horizontal 

channel flow with an axial temperature gradient in the presence 
of Joule and viscous heating. The Hall currents and surface 
temperature oscillation effects on natural convection 

magnetohydrodynamic heat-generating flow were considered 
by Takhar and Ram [2]. Alagoa et al. [3] studied  
 
magnetohydrodynamic optically-transparent free-convection 
flow, with radiative heat transfer in porous media with time-
dependent suction using an asymptotic approximation, showing 
that thermal radiation exerts a significant effect on the flow 
dynamics. The magnetohydrodynamic free convection heat and 

mass transfer of a heat generating fluid past an impulsively 
started infinite vertical porous plate with Hall current and 
radiation absorption was studied by Kinyanjui [4]. The thermal 
radiation interaction with unsteady MHD flow past a vertical 
porous plate immersed in a porous medium was investigated by 
Samad and Rahman [5]. Chaudhary and Jain [6] studied the 
behaviours of unsteady hydromagnetic flow of a viscoelastic 
fluid from a radiative vertical porous plate. The effects of 
thermal radiation and Hall currents on magnetohydrodynamic 

free-convective flow and mass transfer over a stretching sheet 
with variable viscosity in the presence of heat 
generation/absorption were investigated Shit and Haldar [7]. 
Israel-Cookey [8] studied the MHD oscillatory Couette flow of 
a radiating viscous fluid in a porous medium with periodic wall 
temperature. An analytical model of MHD mixed convective 
radiating fluid with viscous dissipative heat has been presented 
by Ahmed and Batin [9]. The effects of thermal radiation, Hall 

currents, Soret and Dufour on MHD flow by mixed convection 
over a vertical surface in porous media where described by 
Shateyi [10]. Singh and Pathak [11] has conducted an analysis 
of an oscillatory rotating MHD Poiseuille flow with 
injection/suction and Hall Currents. Aurangzaib and Sharidan 
Shafie [12] have studied the effects of Soret and Dufour on 
unsteady MHD flow by mixed convection over a vertical 
surface in porous media with internal heat generation, chemical 

reaction and Hall currents. The exact solution of MHD mixed 
convection periodic flow in a rotating vertical channel with heat 
radiation has been presented by Singh [13]. Singh and Pathak 
[14] have discussed the effect of rotation and Hall currents on 
mixed convection MHD flow through a porous medium in a 
vertical channel in the presence of thermal radiation

. 

In the present paper, we have studied the combined effects of 
Hall currents and rotation on MHD mixed convection 
oscillating flow in a rotating vertical channel. It is seen that the 

primary velocity 
1u  decreases with an increase in either 

magnetic parameter 2M  or radiation parameter R  or Hall 

parameter m  or rotation parameter 2K  or n  and it increases 

with an increase in either Grashof number Gr  or Prandtl 

number Pr  or n . It is also seen that the magnitude of the 

secondary velocity 
1v  increases with an increase in either Hall 

parameter m  or Grashof number Gr  or Prandtl number Pr  
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and it decreases with an increase in either radiation parameter 

R  or phase angle n  or magnetic parameter 2M  or rotation 

parameter 2K  or frequency parameter n . 

 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTIONS 
Consider an unsteady MHD flow of a viscous incompressible 
electrically conducting radiative fluid in a vertical channel on 
taking Hall currents  into account. Choose a Cartesian co-
ordinates system with x -axis in the direction of the flow, the 

z -axis is normal to the plate and the y -axis is perpendicular to 

zx -plane (see Fig.1). The channel and the fluid rotate in 

unision with the uniform angular velocity   about z -axis. 

The temperature of the plate at ( = )z h  is raised or lowered to 

2 1 2( )cosT T T t   and the constant temperature 
2T  is 

maintained at the plate ( = )z h . A uniform transverse magnetic 

field 
0B  acts along the z -axis and the plates are electrically 

non-conducting. The horizontal homogeneity of the problem 
shows that the physical quantities are function of z  and t  

only, t  being the time variable. The equation of continuity 

= 0q


 gives = 0w  where ( , ,0)q u v


, u , v  and 0  being 

the velocity components along the coordinates axes. The fluid 
is considered to be gray, absorbing emitting radiation but non-
scattering medium. 

   

      
 

      Figure 1: Geometry of the problem  

 
The Boussinesq approximation is assumed to hold and for the 
evaluation of the gravitational body force, the density is 
assumed to be dependent on the temperature according to the 
equation of state  

  0 2= 1 ( ) ,T T                               (1) 

 where T  is the fluid temperature,   the fluid density,   the 

coefficient of thermal expansion and 
0  the reference fluid 

density. 
Using Boussinesq approximation, the momentum equations of 
motion along x  and y -directions are  

         
2

0
22

1
2 = ( ) ,y

u p u B
v g T T j

t x z
 

 

  
      

  
         (2) 

        
2

0

2
2 = ,x

v v B
u j

t z




 
  

 
                                            (3) 

where  ,   and p  are respectively the fluid density, the 

kinematic coefficient of viscosity and the modified fluid 
pressure. 
Neglecting ion-slip and thermoelectric effects, the generalised 
Ohm's law for partially ionized gas is (see Cowling[15])  

 
0

( ) = ( ),e ej j B E q B
B

 
   

    
            (4) 

 where B


, E


, q


, j


,  , 
e  and 

e  are respectively, the 

magnetic field vector, the electric field vector, the fluid velocity 

vector, the current density vector, the conductivity of the fluid, 
the cyclotron frequency and the electron collision time. 
We shall assume that the magnetic Reynolds number for the 
flow is small so that the induced magnetic field can be 
neglected. This assumption is justified since the magnetic 
Reynolds number is generally very small for partially ionized 

gases. The solenoidal relation . = 0B


 for the magnetic field 

gives 
0= =zB B  constant everywhere in the fluid where 

( , , )x y zB B B B


. The equation of the conservation of the charge 

= 0j


 gives =zj constant. This constant is zero since 

= 0zj  at the plate which is electrically non-conducting. Thus 

= 0zj  everywhere in the flow field. Since the induced 

magnetic field is neglected, the Maxwell's equation 

=
B

E
t


 






 becomes = 0E


 which gives = 0xE

z




 and 

= 0
yE

z




. This implies that =xE  constant and =yE  constant 

everywhere in the flow. 
      In view of the above assumption, equation (4) gives, on 

taking 0xE   and 0yE  . 

0= ,x yj mj vB                                                  (5) 

0= ,y xj mj uB                                                 (6) 

 where = e em   is the Hall parameter. 

Solving for 
xj  and yj , we get  

0

2
= ( ),

1
x

B
j mu v

m





                                            (7) 

0

2
= ( ).

1
y

B
j mv u

m





                                            (8) 

On the use of equations (7) and (8), the equations (2) and (3) 
become  

    
2

22

1
2 = ( )

u p u
v g T T

t x z
 



  
      

  
 

                0

2
( ),

(1 )

B
mv u

m




 


                                    (9) 

   
2

0

2 2
2 = ( ).

(1 )

v v B
u v mu

t z m






 
   

  
                           (10) 

 
The energy equation is  

2
3

2 22
= 16 ( ),p

T T
c k k T T T

t z
   

 
 

                    (11) 

 where    is the Stefan-Boltzman constant,  k  the spectral 

mean absorption coefficient of the medium, k  the thermal 

conductivity and pc  the specific heat at constant pressure. 

The boundary conditions for velocity and temperature 
distribution are  

2 1 20, ( )cos at = ,u v T T T T t z h       

20, at .u v T T z h                                    (12) 

Introducing non-dimensionless variables  

    2
1 1 2

1 2

1
( , ) = ( , ) , ( , ) = ( , ) , = , = ,

h t T T
z x u v u v

h h T T


   






 (13) 
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 equations (9), (10) and (11) become  

       
2 2

21 1
1 1 12 2

2 = ( ) ,
1

u P u M
K v u mv Gr

m


  

  
     

   
   (14) 

       
2 2

21 1
1 1 12 2

2 = ( ),
1

v v M
K u v mu

m 

 
  

  
                         (15) 

2

2
= ,Pr R

 


 

 


 
                                             (16) 

 where 
2

2 =
h

K



 is the rotation parameter, 

2 2
2 0=

B h
M




 the 

magnetic parameter, 
2

1 2

2

( )
=

g T T h
Gr






 the Grashof number, 

=
pc

Pr
k

 
 the Prandtl number, 

3 2

216
=

k T h
R

k

 

 the radiation 

parameter and 
2

2
=

h p
P


  the non-dimensional fluid pressure. 

The  boundary conditions (12) become  

1 1 0, cos at 1,u v n        

1 1 0, 0 at 1,u v                                     (17) 

 where 
2

=
h

n



 is the frequency parameter. 

Combining the equations (14) and (15), we have  

   
2 2

2

2 2

(1 )
= 2 ,

1

F P F M im
iK F Gr

m


  

    
     

    
         (18) 

 where  

1 1 and 1.F u iv i                                       (19) 

The corresponding  boundary conditions for F  and   are  

0, cos at 1,F n       

0, 0 at 1.F                                            (20) 

 
We assume  

1
= ( ),

2

in inp
e e 




 


 

( , ) = ( ) ( ) ,in inF f e g e       

1 2( , ) = ( ) ( ) ,in ine e                                      (21) 

 where ( )f  , ( )g  , 
1( )   and 

2( )   are unknown functions. 

 
On the use of equation (21), equations (16) and (18) yield  

2

1
12

( ) = 0,
d

R inPr
d





                                          (22) 

2

2
22

( ) = 0,
d

R inPr
d





                                        (23) 

2 2
2

12 2

1 (1 )
= 2 ,

2 1

d f M im
Gr in iK f

d m




 
    

 
   (24) 

2 2
2

22 2

1 (1 )
= 2

2 1

d g M im
Gr in iK g

d m




 
     

 
  (25) 

 with the boundary conditions  

1 2

1
= = 0, = = at = 1,

2
f g      

1 2= = 0, = = 0 at =1.f g                              (26) 

 
The solutions of the equations (22)-(25) with the boundary 
conditions (26) are  

1
1

1

sinh (1 )
( ) = ,

2sinh 2

r

r


 


                                                        (27) 

2
2

2

sinh (1 )
( ) = ,

2sinh 2

r

r


 


                                                       (28) 

3

3 3

1 1 cosh
( ) = 1

2 cosh

r
f

r r




  
   

  

 

       3 3

2 2

1 3 3 3

sinh (1 ) sinh (1 )
,

( ) sinh 2 sinh 2

Gr r r

r r r r

    
  

   
                 (29) 

4

4 4

1 1 cosh
( ) = 1

2 cosh

r
g

r r




  
   

  
 

      4 4

2 2

2 4 4 4

sinh (1 ) sinh (1 )
.

( ) sinh 2 sinh 2

Gr r r

r r r r

    
   

  
                 (30) 

 
Substituting equations (27)-(30) in equation (21), the 
temperature and velocity distributions become  

1 2

1 2

1 sinh (1 ) sinh (1 )
( , ) = ,

2 sinh 2 sinh 2

in inr r
e e

r r

  
     

 
 

             (31) 

3

3 3

1 1 cosh
( , ) = 1

2 cosh

r
F

r r


 

  
   

  

           

          3 3

2 2

1 3 3 3

sinh (1 ) sinh (1 )

( ) sinh 2 sinh 2

inGr r r
e

r r r r

     
   

   

  

          4

4 4

1 1 cosh
1

2 cosh

r

r r

  
    

  
 

          4 4

2 2

2 4 4 4

sinh (1 ) sinh (1 )
,

( ) sinh 2 sinh 2

inGr r r
e

r r r r

  
  

   
  

    (32) 

where  
    

1

1 2 2 2
22

1 2 3 4 2 2
, = ( ) , , = 2 .

1 1

M mM
r r R inPr r r i n K

m m

  
     

    
(33) 

On seperating into a real and imaginary parts, one can easily 

obtained from the equation (32) the velocity components 
1u  

and 
1v . 

 

3.  RESULTS AND DISCUSSION 
Here we  have represented graphically the non-dimensional 

velocity components 
1u  and 

1v  and temperature distribution   

against   for several values of magnetic parameter 2M , 

radiation parameter R , Hall parameter m , rotation parameter 
2K , Prandtl number Pr , Grashof number Gr , frequency 

parameter n  and phase angle n  in Figs.2-13. It is seen from 

Figs.2-4 that both the primary velocity 
1u  and the magnitude of 

the secondary velocity 
1v  decrease with an increase in either 

magnetic parameter 2M  or radiation parameter R  or rotation 

parameter 2K . The application of the transverse magnetic field 
plays the important role of a resistive type force (Lorentz force) 
similar to drag force (that acts in the opposite direction of the 
fluid motion) which tends to resist the flow thereby reducing its 
velocity. There is a fall in velocity in the presence of radiation. 

It is revealed from Fig.5 that the primary velocity 
1u  decreases 

while the magnitude of the secondary velocity 
1v  increases 

with an increase in Hall parameter m . It is observed from Fig.6 
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that both the primary velocity 
1u  and the magnitude of the 

secondary velocity 
1v  increase with an increase in Prandtl 

number Pr . An increase in Grashof number leads to rise both 

the primary velocity 
1u  and the magnitude of the secondary 

velocity 
1v  shown in Fig.7. This is because, increase in Grashof 

number means more heating and less density. Fig.8 illustrates 

that both the primary velocity 
1u  and the magnitude of the 

secondary velocity 
1v  decrease with an increase in phase angle 

n . It is seen from Fig.9 the primary velocity 
1u  increases 

while the magnitude of the secondary velocity 
1v  decreases 

with an increase in frequency parameter n . It is illustrated 

from Fig.10 that the fluid temperature   decreases with an 

increase in radiation parameter R . This result qualitatively 
agrees with expectations, since the effect of radiation is to 
decrease the rate of energy transport to the fluid, thereby 
decreasing the temperature of the fluid. Fig.11 displays that the 

fluid temperature   increases with an increase in Prandtl 

number Pr . This implies that an increase in Prandtl number 
leads to fall the thermal boundary layer flow. This is because 

fluids with large Pr  have low thermal diffusivity which causes 
low heat penetration resulting in reduced thermal boundary 

layer. Fig.12 reveals that the fluid temperature   decreases 

with an increase in phase angle n . It is illustrated from Fig.13 

that the fluid temperature   increases near the plate at 

( = 1)   and it decreases away from the plate at ( = 1)   with 

an increase in frequency parameter n . 

 

  

Figure 2: Velocity profiles for different 2M  when = 4R , 

= 0.5m , = 0.71Pr , 21, 3n K  , = 5Gr  and =
4

n


 . 

 
Figure 3: Velocity profiles for different R  when 2 = 5M , 

= 5Gr , 21, 3n K  , = 0.71Pr , = 0.5m  and =
4

n


 . 

 

  

Figure 4: Velocity profiles for different 2K  when 2 = 5M , 

= 4R , 1, 0.5n m  , = 5Gr , = 0.71Pr  and =
4

n


 . 
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Figure 5: Velocity profiles for different m  when 2 = 5M , 

21, 3n K  , = 4R , = 5Gr , = 0.71Pr  and =
4

n


 . 

 
Figure 6: Velocity profiles for different Pr  when 2 = 5M , 

21, 3n K  , = 4R , = 5Gr , = 0.5m  and =
4

n


 . 

 Figure 7: Velocity profiles for different Gr  when 2 = 5M , 

= 4R , 21, 3n K  , = 0.71Pr , = 0.5m  and =
4

n


 . 

 Figure 8: Velocity profiles for different n  when 2 = 5M , 
21, 3n K  , = 4R , = 5Gr , = 0.5m  and = 0.71Pr . 
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Figure 9: Velocity profiles for different n  when 2 = 5M , 

= 4R , 2 3K  , = 5Gr , = 0.5m , = 0.71Pr and =
4

n


 . 

   

 Figure 10: Temperature profiles for different R  when 

= 0.71Pr , 1n   and =
4

n


 . 

  

Figure 11: Temperature profiles for different Pr  when = 4R , 

1n   and =
4

n


 . 

 

 

  
Figure 12: Temperature profiles for different n  when 

= 0.71Pr , 1n   and = 4R . 
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Figure 13: Temperature profiles for different n  when 

= 0.71Pr , = 4R and =
4

n


 . 

 

The rate of heat transfer at the plates  1    are respectively 

given by  

1 1

= 1

= cos( ),R n



 




 
  

 
                              (34) 

2 2

=1

= cos( ),R n



 



 
  

 
                               (35) 

 where  

2

1 2

1
=

(cosh 4 cos 4 )
R

 



   

    2 2( sinh 4 sin 4 ) ( sinh 4 sin 4 ) ,                

2

2 2

4
=

(cosh 4 cos4 )
R

 
    

    
2( sinh 2 cos2 cosh 2 sin 2 )               

    2( sinh 2 cos2 cosh 2 sin 2 )          

1

sinh 4 sin 4
tan = ,

sinh 4 sin 4

   


   




                                          (36) 

2

sinh 2 cos2 cosh 2 sin 2
tan = ,

sinh 2 cos2 cosh 2 sin 2

     


     





 
1/2

1/2
2 2 21

, = .
2

R n Pr R    
  

 

 

     Numerical results of the amplitude 
1R  and the tangent of 

phase 
1tan  of the rate of heat transfer 

1






 
 

 
 at the plate 

( = 1)   and the amplitude 
2R  and the tangent of phase 

2tan  

of the rate of heat transfer 
1






 
 

 
 at the plate ( 1)   

against the radiation parameter R  are presented in the Tables 

1- 4 for several values of radiation parameter R , Prandtl 

number Pr  and frequency parameter n . Table 1 shows that 

the amplitude 1R  increases with an increase in either radiation 

parameter R  or Prandtl number Pr  or frequency parameter 
n . It is revealed from Table 2 that for fixed values of radiation 

parameter R , the tangent of phase 
1tan  increases with an 

increase in either Prandtl number Pr  or  frequency parameter 

n . It is seen that for fixed values of Pr  and n , the tangent of 

phase 
1tan  decreases with an increase in radiation parameter 

R . Table 3 displays that the amplitude 
2R  increases with an 

increase in either radiation parameter R  or Prandtl number Pr  
or frequency parameter n . It is illustrated from Table 4 that for 

fixed values of radiation parameter R , the tangent of phase 

2tan  increases with an increase in either Prandtl number Pr  

or frequency parameter n . Further, it is seen that for fixed 

values of Pr  and n , the tangent of phase 
2tan  decreases 

with an increase in radiation parameter R . 



International Journal of Computer Applications (0975 – 8887)  

Volume 49– No.13, July 2012 

 

8 

 

  
 
 

 
 
 
 
 

Table 1. Amplitude 
1R  of the rate of heat transfer at the plate  1    

  

 Pr  n  

R  0.25 0.5 0.71 1.5 2 3 4 5 

2 
4 
6 
8 

2.89710 
4.01863 
4.90806 
5.66252 

3.02958 
4.06514 
4.93339 
5.67900 

3.18935 
4.12584 
4.96710 
5.70110 

3.97862 
4.48793 
5.18241 
5.84651 

3.18935 
4.12584 
4.96710 
5.70110 

3.52095 
4.26647 
5.04793 
5.75485 

3.89221 
4.44403 
5.15509 
5.82767 

4.27952 
4.64707 
5.28399 
5.91750 

 
  

Table 2. Tangent of phase 
1tan  of the rate of heat transfer at the plate  1    

  

 Pr  n  

R  0.25 0.5 0.71 1.5 2 3 4 5 

2 

4 

0.11789 

0.06191 

0.22445 

0.12236 

0.30044 

0.17107 

0.47932 

0.32947 

0.30044 

0.17107 

0.39949 

0.24753 

0.46742 

0.31540 

0.51270 

0.37441 

6 
8 

0.04155 
0.03121 

0.08266 
0.06224 

0.11657 
0.08803 

0.23559 
0.18125 

0.11657 
0.08803 

0.17197 
0.13080 

0.22429 
0.17216 

0.27302 
0.21180 

 
                       

Table 3. Amplitude 
2R  of the rate of heat transfer at the plate  1   

 

 Pr  n  

R  0.25 0.5 0.71 1.5 2 3 4 5 

2 
4 
6 
8 

0.18725 
0.07751 
0.03793 
0.02034 

0.23871 
0.08942 
0.04201 
0.02202 

0.29837 
0.10423 
0.04721 
0.02420 

0.59293 
0.18789 
0.07821 
0.03754 

0.29837 
0.10423 
0.04721 
0.02420 

0.42061 
0.13705 
0.05911 
0.02927 

0.55991 
0.17777 
0.07435 
0.03586 

0.70981 
0.22502 
0.09260 
0.04386 

  
   

Table 4. Tangent of phase 
2tan  of the rate of heat transfer at the plate  1   

  

 Pr  n  

R  0.25 0.5 0.71 1.5 2 3 4 5 

2 

4 
6 
8 

0.20762 

0.17963 
0.15827 
0.14288 

0.31852 

0.31830 
0.29369 
0.27095 

0.34382 

0.39137 
0.37986 
0.35951 

0.27404 

0.42848 
0.49713 
0.52378 

0.34382 

0.39137 
0.37986 
0.35951 

0.32338 

0.44004 
0.46651 
0.46385 

0.28306 

0.43374 
0.49592 
0.51731 

0.24520 

0.40543 
0.49150 
0.53439 

 
 
  

The non-dimensional shear stresses at the plates 1    are  

1
3 3

= 1

= cos( ),
u

R n


 




 
 

 
                                (37) 

1
4 4

=1

= cos( ),
v

R n


 


 
 

 
                                 (38) 

 where  

   
2 22

3 = ( 1) ( 1) ( 1) ( 1) ,r r i iR f g f g                  

   
2 22

4 = (1) (1) (1) (1) ,r r i iR f g f g                    

 

 
3

( 1) ( 1)
tan = ,

( 1) ( 1)

i i

r r

f g

f g


    
 

     
                                          (39) 
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 

 
4

(1) (1)
tan = ,

(1) (1)

i i

r r

f g

f g


  
 

   

 

3

3 3

1 sinh
( ) =

2 cosh

r
f

r r





  


       

           3 1
3 12 2

1 3 3 1

cosh (1 ) cosh (1 )
,

( ) sinh 2 sinh 2

Gr r r
r r

r r r r

     
   

   

 

4

4 4

1 sinh
( ) =

2 cosh

r
g

r r





  


 

         4 2
4 22 2

2 4 4 2

cosh (1 ) cosh (1 )

( ) sinh 2 sinh 2

Gr r r
r r

r r r r

    
   

  
 

and 
rf  , rg  , 

if  , ig  are respectively stand for real and imaginary 

parts of f   and g  and 
1r , 

2r , 
3r  and 

4r  are given by (33). 

Numerical results of the amplitude 
3R  and the tangent of phase 

3tan  of the shear stress at plate ( = 1)   due to the primary 

flow and the amplitude 
4R  and the tangent of phase 

4tan  of the 

shear stress at plate ( =1)  due to the secondary flow are 

presented in Figs.14-21 against radiation parameter R  for several 

values of magnetic parameter 2M , rotation parameter 2K , 

Prandtl number Pr  and frequency parameter n  when =
4

n


  

and = 5Gr . Fig.14 illustrates that both the amplitudes 
3R  and 

4R  decrease with an increase in magnetic parameter 2M . It is 

seen from Fig.15 that both the magnitude of the tangent phases, 

3tan  and 
4tan  decrease with an increase in magnetic 

parameter 2M . Fig.16 reveals that the amplitudes 
3R  increases 

whereas the amplitude 
4R  decreases with an increase in Hall 

parameter m  for fixed values of radiation parameter R . Fig.17 

shows that for fixed values of radiation parameter R , the 

magnitude of the tangent phase 
3tan  increases whereas the 

tangent of phase, 
4tan  decreases with an increase in Hall 

parameter m . It is seen from Fig.18 that both the amplitudes 
3R  

and 
4R  decrease with an increase in rotation parameter 2K . 

Fig.19 shows that the magnitude of the tangent phase, 
3tan  

increases whereas the tangent of phase, 
4tan  decreases with an 

increase in rotation parameter 2K . It is seen from Fig.20 that both 

the amplitudes 
3R  and 

4R  increase with an increase in frequency 

parameter n . Fig.21 shows that the magnitude of the tangent 

phase, 
3tan  increases whereas the tangent of phase, 

4tan  

decreases with an increase in frequency parameter n . 

  
Figure 14:  Variation of 

3R  and 
4R  for different 2M  when 

= 0.5m , = 0.71Pr  and 2 = 4K  

        

  
Figure 15:  Variation of  

3tan  and 
4tan  for different 2M  

when = 0.71Pr , = 0.5m  and 2 = 4K  
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Figure 16: Variation of 

3R  and 
4R  for different m  when 

2 = 5M , = 0.71Pr  and 2 = 4K  

  
Figure 17:  Variation of  

3tan  and 
4tan  for different m  

when 2 = 5M , = 0.71Pr  and 2 = 4K  

   
Figure 18: Variation of 

3R  and 
4R  for different 2K  when 

2 = 5M , = 0.71Pr  and = 0.5m  

  
Figure 19:  Variation of 

3tan  and 
4tan  for different 2K  

when 2 = 5M , = 0.71Pr  and = 0.5m  

  
Figure 20:  Variation of 

3R  and 
4R  for different n  when 

2 = 5M , 2 = 4K , = 0.71Pr  and = 0.5m  

      
Figure 21: Variation of  

3tan  and 
4tan  for different n  

when 2 = 5M , = 0.71Pr and 2 = 4K  
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4. CONCLUSION 
 

The effects of Hall current and radiation on MHD mixed 
convection in a rotating vertical channel temperature in the 
presence of a uniform transverse magnetic field have been 

investigated. It is found that the Hall parameter m  accelerates the 

primary velocity 
1u  as well as the magnitude of the secondary 

velocity 
1v . An increase in radiation parameter R  leads to fall in 

the primary velocity 
1u  as well as the magnitude of the secondary 

velocity 
1v . Further, the amplitudes and tangent of phases of the 

shear stresses due to the primary and the secondary flows at the 
plates are significantly affected by characteristic parameters. The 
amplitudes and tangent of phases of the rate of heat transfer at the 

plates increases with an increase in radiation parameter R . 
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