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ABSTRACT 
The three dimensional structure of proteins is useful to carry 

out the biophysical and biochemical functions in a cell. 

Protein contact maps are 2D representations of contacts 

among the amino acid residues in the folded protein structure. 

Proteins are biochemical compounds consisting of one or 

more polypeptides, facilitating a biological function. Many 

researchers make note of the way secondary structures are 

clearly visible in the contact maps where helices are seen as 

thick bands and the sheets as orthogonal to the diagonal. In 

this paper, we explore several machine learning algorithms to 

data driven construction of classifiers for assigning protein off 

diagonal contact maps. A simple and computationally 

inexpensive algorithm based on triangle subdivision method is 

implemented to extract twenty features from off diagonal 

contact maps. This method successfully characterizes the off-

diagonal interactions in the contact map for predicting specific 

folds. NaiveBayes, J48 and REPTree classification results 

with Recall 76.38%, 91.66% and 80.32% are obtained 

respectively. 

General Terms 
Protein Contact Map. 

Keywords 
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1. INTRODUCTION 
Proteins are an important class of biological macromolecules 

present in all organ-isms. These are synthesized in the cell as 

linear chain of amino acids, which then fold to different 

secondary structures (alpha-helices and beta-sheets) through 

short and long-range interactions which gives rise to the final 

three-dimensional shapes useful to carry out the biophysical 

and biochemical functions. It is known that folding 

mechanisms are largely determined by a protein's topology 

rather than it's inter atomic interactions. The SCOP [1] 

(Structural Classification of Proteins) classification identifies 

four major structural classes of protein structures, viz. all-

alpha, all-beta, alpha/beta and alpha + beta. The Protein Data 

Bank (PDB) [21] is an archive of experimentally determined 

three-dimensional structures of biological macromolecules 

that serves a global community of researchers, educators, and 

students. The data contained in the archive include atomic 

coordinates, crystallographic structure factors and NMR 

experimental data. Aside from coordinates, each deposition 

also includes the names of molecules, structure information, 

appropriate ligand and biological assembly information, 

structure solution, and bibliographic citations. Three-

dimensional structures of proteins can be represented well by 

its two-dimensional distance map and its contact 

approximation. They are more easily predicted by machine 

learning methods. The advantage is that contact maps are 

invariant to rotations and translations. It provides useful 

information about protein's structure. For example, secondary 

structure can easily be recognized from it. Alpha-helices 

appear as dense patterns along the main diagonal since they 

involve contacts between one amino acid and its four 

successors, while Beta sheets are dense patterns parallel or 

anti-parallel to the main diagonal, etc [6]. Over the years, a 

variety of different approaches have been developed for 

contact map prediction, including statistical methods using 

correlated mutations [7], machine learning [6] [8] [9] [10] and 

threading template based voting scheme. Bioinformatics is an 

emerging field, undergoing rapid and exciting growth. Data 

mining techniques will play an increasingly important role in 

the analysis and discovery of sequence, structure and 

functional patterns. One of the grand challenges of 

bioinformatics still remains, namely the protein folding and 

protein fold prediction problem. 

 

2. RELATED WORK 
Contact maps have been extensively used as a simplified 

representation of protein structures. They capture most 

important features of a protein's fold, being preferred by a 

number of researchers for the description and study of protein 

structures. As per literature [17], contact maps convey strong 

information about 3D structure and are more compact than 

distance matrix. Contact maps are suited for prediction based 

on known properties learned from training data. They are used 

to predict long range inter-residue contacts and properties of     

contact maps are attractive for protein structure comparisons. 

Barah and Sinha [2] are the first to indicate that contact map 

analysis can be used for protein fold prediction. They 

demonstrated how the conserved contact patterns within 

proteins are visually similar. They also emphasized the 

hypothesis that proteins belonging to the same fold have 

similar contact maps. This indicates that a closer study of 

contact maps help in deriving features that pertain to fold 

information. The information can then be tested on 

empirically predicted contact maps to identify specific folds 

[8] [11]. Fraser and Glasgow [12] conducted a study to 

identify specific regions within contact maps. The authors 

have chosen contacts corresponding to alpha-alpha 

interactions in 171 proteins and demonstrate that these exhibit 

high similarity with the help of Jacquard and cosine metrics. 

Zaki [4] et al carried out mining of protein of protein contact 

maps. They discovered dense patterns using sliding window 

technique and used hashing for storing the results. Amer [18] 

et al contact maps are constructed by analyzing the dense 

regions of the map. They analyzed the shapes of clusters using 

geometric methods. Shi and Zhang [3] extracted secondary 
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structure features from the distance maps of Protein Contact 

Network (PCN) to carry out structural class prediction. 

Recently, SuvarnaVani.K [5] extracted rules based on the 

diagonal information and the off-diagonal interactions in the 

contact map for EF-Handlike and Cytochrome-c folds. The 

objective of this paper is to demonstrate that analyzing 

patterns in contact maps will contribute to insight positioning 

of proteins within a specific structural class/fold and folding 

information. It may sound farcical that contact maps which 

are in fact constructed from the protein structure/fold 

prediction. There exist good predictive algorithms that build 

contact maps from protein sequences using the amino acid 

features [13]. It will be a good idea to study contact maps 

closely and derive features pertaining to fold information. If 

these methods give satisfactory results, the methods can be 

tested on empirically predicted contact maps to identify dense 

regions. This would give a new route to fold discovery from 

the protein sequence via contact maps. Work in this direction 

has got initiated recently [16] [3] Shamim. In this paper, we 

carry out a systematic investigation to extract conserved 

patterns from the contact maps to identify secondary structural 

elements. We implemented triangle subdivision method 

(TSM), which captures the locations of the dense clusters. 

Here, three types of classifiers are used on the dataset. Also, 

the proteins with chain length up to 1000 can be used with this 

work. 

 

3. MATERIALS AND METHODS 

3.1 Dataset 
We consider 96 proteins from All Alpha protein family, which 

constitutes 48 DNA/RNA binding 3 helical bundle fold and 

48 Globin-like fold. The protein 3D structure PDB files are 

downloaded from Protein Data Bank [21] using the search 

criteria like no. of chains, chain length and X-Ray resolution. 

The proteins include those provided by Ding and Dubchak 

[13] and additionally more proteins are taken from the 

consensus database of Daggett group called Dynameomics 

[19]. The reason for addition of proteins to dataset is that, 

unless the data set size is large enough to effectively sample 

the distribution. The choice of the folds is made based on the 

abundance of structures available in the site after removing 

sequences with more than 90% of identity. This database is 

designed such that protein domains are classified as the 

protein fold if they agree in at least two of three classification 

systems.  

3.2 Generation of Protein Contact Map 
Contact map is defined as pair-wise, inter residue, two 

dimensional, symmetric, Boolean matrix of protein 3D 

structure. We constructed contact map by considering 

structural data available at Protein Data Bank (PDB). Fig: 1 

shows how the PDB file is converted to Off -diagonal matrix 

via 2D contact map. Only the C atom of each amino acid is 

chosen and distance is calculated between any two Cα atoms. 

Distance map is a symmetric square matrix, in which the entry 

(i, j) represents the distance between the amino acids i and j 

along the protein primary sequence chain from the N to C 

terminals. The distance between two residues, has various 

definitions in the literature. A threshold distance Rc (7Aº) is 

maintained between any Cα -Cα atoms. Thus, a protein 

structure having N residues, can be represented by a two-

dimensional matrix (contact map) of order N× N, whose 

elements are A (i, j), where i, j are the amino acid residues in 

the protein sequence. A (i, j) = 1 if the two residues i and j are 

within the threshold distance, otherwise A (i, j) = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 1:  Flow diagram 

3.3 Evaluation Measures for Performance 

Prediction 
A confusion matrix contains information about the actual and 

predicted classifications done by a classification algorithm. 

Performance of algorithm is evaluated using the data available 

in the confusion matrix. Table:1 shows the structure of 

confusion matrix.  

Table 1:   Confusion Matrix 

 Predicted Yes Predicted No 

Actual Yes TP FN 

Actual No FP TN 

 

True Positive Rate (TP) is the proportion of positive cases that 

were correctly predicted. False positive rate (FP) is the 

proportion of negatives cases that were incorrectly classified 

as positive. The true negative rate (TN) is defined as the 

proportion of negatives cases that were classified correctly. 

False negative rate (FN) is the proportion of positives cases 

that were incorrectly classified as negative. The predictions 

are evaluated by using the fivefold cross-validation and 

carried out to show the robustness of the results. Recall (True 

Positive Rate) gives the proportion of positives out of the total 

positions predicted as positive and is calculated as 

Recall = TP / ((TP + FN))             (1) 

3.4 Feature Extraction from off- Diagonal 

Contact Maps 
The challenge is to distinguish the differences in the patterns 

and automate the procedures such that these can be run on 

huge data sets. A band of optimal width W is masked along 

the diagonal in the contact map to focus the study on the Off -

diagonal region. We implemented a novel feature extraction 

scheme, namely, the TSM, which helps in identifying clusters. 

The contact network is a symmetric square matrix. Without 

loss of generality, consider the lower tri-angular matrix for 

this study. Divide the triangle into four equal triangles and 

assign a label L for left, M for middle, R for right, and T for 

top triangles. The interactions are labeled using the sub-

triangles and it can be seen that majority of the off-diagonal 

3D Structure/ PDB File 

Generation of 2D contact 

map 

Secondary Structure 

Prediction along diagonal 

Off Diagonal contact map 
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interactions for 1MGT belong to top, right and middle sub-

triangles as shown in Figure: 2. In the data set of all-alpha 

proteins, DNA/RNA-binding 3 helical bundle fold of 1MGT 

exhibits Off-diagonal clusters parallel to the diagonal and 

hence top, right and middle sub-triangles of the lower half of 

the contact map are occupied.  

Figure 2:  1MGT, All   , DNA/RNA – binding 3 helical bundle, chain length 174 

 

Figure 3:  2HBG, All    , Globin-like, chain length 147 

 

These results are tabulated in the Table: 2. In contrast, it can 

be clearly seen that for 2HBG of Globin-like fold belong to 

top, right and left sub-triangles of the contact map as shown in 

Figure 3. These results are tabulated in the Table: 3. hence, 

these triangle clusters may certainly prove to be useful 

features. The results in the tables 2 and 3 clearly proves that 

for DNA/RNA-binding 3 helical bundle fold the dense 

patterns are concentrated in T,R,M regions in the Off -

diagonal contact map and for Globin-like fold in T,R,L 

regions. These patterns are none other than helices and sheets. 

Here, we extracted the dense pattern regions. So, the sub 

patterns are Helix-Helix and Helix-Sheet. An automated 

procedure needs to be developed that extracts these patterns 

and further utilize them for fold prediction. The protein 

contact map can be represented using density of the contacts 

in the sub triangles. This method is independent of the length 

of the protein and can be used to build a feature vector. In 

order to discriminate effectively, we need to iterate this 

procedure to one more level and subdivide each triangle into 

four sub-triangles and annotate the clusters within L with 

labels LL, LM, LR, and LT. Similarly, the triangles within R, 

M, and T are labeled with RL, RM, RR, RT; ML, MM, MR, 

MT; and TL, TM, TR, TT, respectively. Each  protein  contact  

map  is  represented  as  a  feature  vector  of  length  of  20. 

 

Table 2: The density of interactions in the off -diagonal 
region (T, R and M sub triangles) in proteins of, 

DNA/RNA - binding 3 helical bundle fold 

Pid Top Middle Left Right 

1FNN 165 30 23 131 

1GV2 21 9 0 14 

1GVJ 51 19 5 45 

1GXQ 30 18 15 23 

1IN4 173 19 5 145 

1KGS 119 1 0 114 

1MGT 82 19 7 46 

10N2 44 5 1 16 

1T0F 145 32 7 76 

1P2F 128 9 0 74 
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Table 3: The density of interactions in the off -diagonal 
region (T, R and L sub triangles) in proteins of Globin-like 

fold 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. CLASSIFICATION RESULTS 
Machine learning methods, such as support vector machine 

and neural networks, are powerful classifiers which are being 

used for protein structure prediction and fold prediction 

problems with features based on amino acid sequence [15]. In  

this paper, we illustrated classifiers, namely decision tree with  

the principal objective of gaining understanding of the results 

generated for each class [19] [14]. A Bayes classifier 

NaiveBayes and decision tree with J48, REPTree learning 

algorithm that is available in the open source software system 

Waikato Environment for Knowledge Analysis (WEKA) is 

used for the classification task [20]. We consider the dataset 

containing 96 proteins in all-alpha class constituting 48 

DNA/RNA-binding 3 helical bundles like fold proteins and 48  

Globin-like fold proteins. Fivefold cross-validation is carried 

out in all the experiments to remove any bias that a portion of 

the data set may impose on the classifier. That is, the total 

data set is divided into five equal parts: four parts are 

considered for training to build the model and the remaining 

one part is taken to test the model. This experiment is repeated 

five times by considering different parts as test set. Tables 4, 

5, 6 show the results in terms of the performance of the 

classifier with parameters like TP, TN, FP and FN. The class 

label of 1 is given to Globin-like fold and 4 to DNA-binding 3 

helical bundle fold. Clearly from the tables 4, 5, 6 the J48 

Decision tree has highest number of correctly classified 

instances i.e. lowest number of false positives committed by 

the classifier. Table: 7 show the comparison of results with 

the previous methods [22, 23, 24,25]. The tabulated results 

show the accuracy of patterns of a fold extracted using J48 

classification algorithm. Results are obtained for binary 

classification with an average percentage of correctly 

classified instances value of 95.8% forJ48, 85.8% for Naive 

Bayes and 82.2% for RepTree classifier. The graph in Figure: 

4 shows performance measure, Actual True Positive rate 

(Recall). J48 has highest True Positive Rate followed by 

Reptree. 

 

Table 4: Five Fold Cross-validation results for J48 classification of Globin-like fold and DNA/RNA - binding 3 helical bundle  

S.No TP FP FN TN Correctly 

classified 

Instances 

In Correctly 

classified 

Instances 

1 
11 0 0 13 100 0 

2 
11 0 2 11 91.6667 8.3333 

3 
11 0 1 12 95.8333 4.1667 

4 
11 0 2 11 91.6667 8.3333 

5 
11 0 0 13 100 0 

Average 
11 0 1 12 95.83334 4.16666 

 

Table 5: Five Fold Cross-validation results for Naive Bayes classification of Globin-like fold and DNA/RNA- binding 3 helical 

bundle fold 

S.No TP FP FN TN Correctly 

classified 

Instances 

In Correctly 

classified 

Instances 

1 
11 0 4 9 83.3333 16.6667 

2 
11 0 2 11 91.6667 8.3333 

3 
11 0 4 9 83.3333 16.6667 

4 
11 0 4 9 83.3333 16.6667 

5 
11 0 3 10 87.5 12.5 

Average 
11 0 3.4 9.6 85.83332 14.16668 

 

 

Pid Top Middle Left Right 

 1A6M 24 4 17 18 

1DLY 27 3 8 17 

1HDS 29 3 17 24 

1I3D 31 1 11 29 

1MYT 30 2 19 23 

1S69 29 2 8 26 

1SPG 37 3 18 31 

1V4X 29 7 16 26 

2HBG 36 13 21 24 

2D5X 28 4 16 27 
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Table 6: Five Fold Cross-validation results for RepTree classification of Globin-like fold and DNA/RNA- binding 3 helical 

bundle fold 

S.No TP FP FN TN Correctly 

classified 

Instances 

In Correctly 

classified 

Instances 

1 
10 1 0 13 95.8333 4.1667 

2 
10 1 4 9 79.1667 20.8333 

3 
9 2 1 12 87.5 12.5 

4 
10 1 3 10 83.3333 16.6667 

5 
10 1 4 9 79.1667 20.8333 

Average 
9.8 1.2 2.4 106 82.2916 15 

 

Table 7: Results Comparison Table 

S.No Method Dimension of 

Feature 

Fold 

(%) 

1 Ref[ 13] 20 49.4 

2 Ref[13 ] 125 56.5 

3 Ref[22 ] 125 58.18 

4 Ref[23 ] 125 61.04 

5 Ref[24 ] 1007 65.5 

6 Ref[ 25] 1007 69.6 

7 Ref[3] 3/9 74.55 

8 Our 

method 

20 95.83 

 

 

Figure 4:  Classification results of NaiveBayes, J48 and 

Reptree 

 

5. CONCLUSION 
This paper validates the hypothesis that contact maps contain 
useful information that can be utilized to classify the dense 
regions. The comparison results show the strength of the 
algorithm used to classify the dense regions in off diagonal 
contact maps. The classification results biologically imply that 
EF-Hand and DNA/RNA-binding 3 helical bundle folds 
exhibit the similar top three dense regions i.e. (TMR and 
TRM). Also, Cytochrome-C and Globin-like folds exhibit the 
similar top three dense regions i.e. (TLR and TRL). Further 
work is carried on All-Alpha class, which includes extracting 
the frequent substructures from protein contact maps.  

 

The occurrences of helix and sheet in the contact map are 
predicted using secondary structure prediction algorithm. 
These predicted secondary structure positions are read and 
mapped into graphical representation. 
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