Contra \tilde{g}_{α}-WG Continuous Functions

G. Anitha
Research Scholar, V.O.Chidambaram College, Tuticorin,

M. Mariasingam
Department of Mathematics, V.O.Chidambaram College, Tuticorin,

Abstract

In this paper, we introduce the new class of weaker form of contra \tilde{g}_{α} weakly generalized-continuous functions. Some characterization and several properties concerning contra \tilde{g}_{α} wg-continuity are obtained.

Mathematical Subject Classification: 54C08, 54C10
Keywords: \tilde{g}_{α} wg-open, \tilde{g}_{α} wg-continuous, contra \tilde{g}_{α} wgcontinuous.

1.INTRODUCTION

Levine[9] introduced generalized closed sets in topological space. Veera kumar[21] introduced and studied \# generalized semi closed set, Naga veni.N[15] introduced weakly generalized closed sets in topological spaces. Rajesh and Lellis Thivagar[17] \tilde{g} closed set, Saied Jafari,Lellis Thivagar and Nirmala Rebecca Paul[18] introduced and studied \tilde{g}_{α}-closed set. The authors[11] introduced and studied the weaker form of \tilde{g}_{α}-WG closed set.
Dontchev [4] introduced and investigated a new notion of continuity is called contra-continuity. Jafari and Noiri [6],[7],[8] introduced new generalization of contra continuity called contra super continuity, contra- α-continuity and contra-pre continuity. The purpose of the present paper is to introduce and investigate some of the properties of contra $\tilde{g}_{\alpha} \mathrm{wg}-$ continuous functions, contra \tilde{g}_{α} wg-irresolute functions and we obtain characterization of contra \tilde{g}_{α} wg-continuous function.

2.PRELIMINARIES

Throughout this paper (X, τ), (Y, σ) and (Z, η) will always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X , $\tau), \operatorname{cl}(\mathrm{A})$ and $\operatorname{int}(\mathrm{A})$ denote the closure and interior of A respectively. We recall some known definitions needed in this paper.
Definition 2.1: Let (X, τ) be a topological space. A subset
A of the space X is said to be

1. a semi-open set [10] if $\mathrm{A} \subseteq \mathrm{cl}(\operatorname{int}(\mathrm{A}))$
2. a pre-open set [14] if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A}))$
3. an α-open set [16] if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))$
4. a regular open[19] if $\mathrm{A}=\operatorname{int}(\mathrm{cl}(\mathrm{A}))$

The complements of the above sets are called their respective open sets.

Definition 2.2: Let (X, τ) be a topological space. A subset
$\mathrm{A} \subseteq \mathrm{X}$ is said to be

1. a generalized closed set(g-closed)[11] if $\operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$
whenever $\mathrm{A} \subseteq \mathrm{U}, \mathrm{U}$ is open in (X, τ).
2. a weakly generalized closed set(wg-closed)[15] if $\mathrm{Cl}(\operatorname{Int}(\mathrm{A})) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}, \mathrm{U}$ is open in (X, τ).
3.a w-closed set $[17]$ if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is semi-open in (X, τ).
3. a * g-closed set[20]if cl(A) $\subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is w-open in (X, τ).
4. a \# g-semi closed set(\# gs-closed)[21]if $\operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $*$ g-open in (X, τ).
5. a \tilde{g}_{α}-closed[18] if $\alpha \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is \# gs-open in (X, τ).
6. a \tilde{g}_{α}-Weakly generalized closed $\operatorname{set}\left(\tilde{g}_{\alpha}\right.$ wg-closed) [11] if
$\mathrm{Cl}(\operatorname{Int}(\mathrm{A})) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}, \mathrm{U}$ is \tilde{g}_{α}-open in (X, τ). The complements of the above sets are called their respective open sets.
Definition 2.3: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is called
7. $\tilde{g}_{\alpha} \mathrm{wg}$ - continuous [12] if $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (X, τ) for every closed set V of (Y, σ).
8. \tilde{g}_{α} wg - irresolute [12] if $\mathrm{f}^{-1}(\mathrm{v})$ is \tilde{g}_{α} wg-closed in (X, $\left.\tau\right)$ for every \tilde{g}_{α} wg-closed set V in $(\mathrm{Y}, \sigma$)
9. Contra-continuous [3] if $\mathrm{f}^{-1}(\mathrm{v})$ is closed in (X, τ) for every open set V in (Y, σ).
10. RC-continuous [4] if $\mathrm{f}^{-1}(\mathrm{~V})$ is regular closed in (X, τ) for every open set V in (Y, σ).
11. Contra- α-continuous[6] if $\mathrm{f}^{-1}(\mathrm{~V})$ is α-closed in (X, τ) for every open set V in (Y, σ).
12. Contra-semi continuous[4] if $\mathrm{f}^{-1}(\mathrm{~V})$ is semi-closed in (X, τ) for every open set V in (Y, σ).
13. Contra-g-continuous[2] if $\mathrm{f}^{-1}(\mathrm{~V})$ is g -closed in (X, τ) for every open set V in (Y, σ).
Definition 2.4: A space (X, τ) is called
14. A $\mathrm{T}_{1 / 2}$ space[9] if every g -closed set is closed.
15. A $T_{g_{\alpha} w g}{ }_{\text {-space[11] if every }} \tilde{g}_{\alpha}{ }_{\text {wg-closed set is }}$ closed.
16. Urysohn space[22] if for each pair of distinct points x and y in X , there exists two open sets U and V in X such that $\mathrm{x} \in \mathrm{U}, \mathrm{y} \in \mathrm{V}$ and $\mathrm{cl}(\mathrm{U}) \cap \mathrm{cl(V)=}{ }^{\phi}$.
17. $\tilde{g}_{\alpha}{ }_{\text {wg-connected[13] }}$ if X cannot be written as the disjoint union of non empty \tilde{g}_{α} wg-open sets.

3.CONTRA \tilde{g}_{α} WG-CONTINUOUS

FUNCTIONS.

Definition 3.1: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is called contra \tilde{g}_{α} wg continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg closed in (X, τ) for each open set V in (Y, σ).
Example 3.2: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}, \mathrm{b}\}$, $\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}, \sigma=\{\phi,\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\},,\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}, \mathrm{Y}\}$. Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{d}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{e}$, $\mathrm{f}(\mathrm{d})=\mathrm{a}, \mathrm{f}(\mathrm{e})=\mathrm{b}$. Then f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous function.
Theorem 3.3: Every contra continuous is contra \tilde{g}_{α} wg continuous function but not conversely.
Proof: Let V be a open set in (Y, σ). Since f is contra continuous $\mathrm{f}^{-1}(\mathrm{~V})$ is closed in (X, τ).By theorem 3.2 [11] f ${ }^{1}(\mathrm{~V})$ is $\tilde{g}_{\alpha} \mathrm{wg}$ closed in (X, τ). Hence f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous.
Example 3.4: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}=\mathrm{Y}$, $\tau=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}, \sigma=\{\phi, \mathrm{Y},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$ $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ Defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{d}$, $\mathrm{f}(\mathrm{d})=\mathrm{a}$. f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous but not contra continuous. Since $\{\mathrm{a}, \mathrm{c}\}$ is open in (Y, σ) but $\mathrm{f}^{-1}(\{\mathrm{a}, \mathrm{c}\})=\{\mathrm{b}, \mathrm{c}\}$ not closed in (X, τ).
Theorem 3.5: Every contra α-continuous function is contra \tilde{g}_{α} wg continuous.
Proof: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ be a function and V be a open set in (Y, σ). Since f contra α-continuous then $\mathrm{f}^{-1}(\mathrm{~V})$ is α-closed in (X, τ).By theorem 3.11[11] $\mathrm{f}^{-1}(\mathrm{~V})$ is $\tilde{g}_{\alpha} \mathrm{wg}$ closed in (X, τ). Hence f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous.
But converse need not be true by Example: 3.4
Remark 3.6: The following examples show that contra \tilde{g}_{α} wg-continuous and contra semi continuous are independent concept
Example 3.7: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$, $\sigma=\{\phi, \mathrm{Y},\{\mathrm{a}\}\}$, The function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$, f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous but not Contra semi-continuous. Since $\{\mathrm{a}\}$ is open in (Y, σ) but $\mathrm{f}^{-1}(\{\mathrm{a}\})=\{\mathrm{c}\}$ is not in semi-closed in (X, τ).
Example 3.8: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}$, $\tau=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}, \quad \sigma=\{\phi, \mathrm{Y},\{\mathrm{a}\}\} . \quad \mathrm{f}:(\mathrm{X}, \tau)$ $\rightarrow(Y, \sigma)$ defined by the identity map, f is contra semicontinuous but not contra \tilde{g}_{α} wg continuous. Since $\{\mathrm{a}\}$ is open in (Y, σ) but $\mathrm{f}^{-1}(\{\mathrm{a}\})=\{\mathrm{a}\}$ is not $\quad \tilde{g}_{\alpha}$ wg closed in (X, τ).

Remark 3.9: The following examples show that contra \tilde{g}_{α} wg-continuous and contra g -continuous are independent concept.
Example 3.10: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \quad \tau=\{\phi, \mathrm{X},\{\mathrm{a}, \mathrm{c}\}\}$, $\sigma=\{\phi, \mathrm{Y},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$, The function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ defined as identity map, f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous but not Contra g -continuous. Since $\{\mathrm{a}\}$ is open in (Y, σ) but $\mathrm{f}^{-1}(\{\mathrm{a}\})=$ $\{\mathrm{c}\}$ is not g -closed in (X, τ).
Example 3.11: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \quad \tau=\{\phi, \mathrm{X},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{c}\}\}\}$, $\sigma=\{\phi, \mathrm{Y},\{\mathrm{a}, \mathrm{c}\}\} \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ defined by the identity map, f is contra g -continuous but not contra \tilde{g}_{α} wg continuous. Since $\{\mathrm{a}, \mathrm{c}\}$ is open in (Y, σ) but $\mathrm{f}^{-1}(\{\mathrm{a}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{c}\}$ is not in $\tilde{g}_{\alpha} \mathrm{wg}$ closed in (X, τ).
From the above discussion and known results we have the following diagram (i)

Diagram (i)

In this diagram,

Remark 3.12: Composition of two contra \tilde{g}_{α} wg-continuous function need not be contra \tilde{g}_{α} wg continuous.
Example 3.13: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}=\mathrm{Y}, \mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$\tau=\{\phi,\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\}\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}, \sigma=\{\phi,\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}$, $\mathrm{d}, \mathrm{e}\}, \mathrm{Y}\}, \eta=\{\phi,\{\mathrm{c}, \mathrm{d}\}, \mathrm{Z}\}$.

Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{d}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{e}, \mathrm{f}(\mathrm{d})=\mathrm{a}$, $\mathrm{f}(\mathrm{e})=\mathrm{b} \quad$ Define $\mathrm{g}: \quad(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \quad \eta)$ by $\mathrm{g}(\mathrm{a})=\mathrm{a}$, $\mathrm{g}(\mathrm{b}), \mathrm{g}(\mathrm{c})=\mathrm{c}, \mathrm{g}(\mathrm{d})=\mathrm{d}, \mathrm{g}(\mathrm{e})=\mathrm{c}$. Function f and g are contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous function. But their composition is not a contra \tilde{g}_{α} wg continuous function since the open set $\mathrm{U}=\{\mathrm{c}, \mathrm{d}\}$ in (Z, η).
$(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{U})=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ which is not in \tilde{g}_{α} wg-closed in (X, τ).
Lemma 3.14: [1] The following properties hold for the subset A, B of space X.

$$
\begin{equation*}
\mathrm{x} \in \operatorname{Ker}(\mathrm{~A}) \text { iff } \mathrm{A} \cap \mathrm{~F} \neq \phi, \mathrm{F} \in \mathrm{C}(\mathrm{X}, \mathrm{x}) \tag{ii}
\end{equation*}
$$

$\mathrm{A} \subseteq \operatorname{ker}(\mathrm{A})$ and $\mathrm{A}=\operatorname{ker}(\mathrm{A})$ if A is open in X .

If $\mathrm{A} \subseteq \mathrm{B}$, then $\operatorname{ker}(\mathrm{A}) \subseteq \operatorname{ker}(\mathrm{B})$

Theorem 3.15: For the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$, the following condition are equivalent
(i) f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous
(ii) The inverse image of a closed set V of Y is $\tilde{g}_{\alpha} \mathrm{w}(\mathrm{gi})$ open in X.
(iii) For each $\mathrm{x} \in \mathrm{X}$ and $\mathrm{V} \in \mathrm{C}(\mathrm{Y}, \mathrm{f}(\mathrm{x}))$, there exists $\mathrm{U} \in \tilde{g}_{\alpha} \mathrm{wgO}(\mathrm{X}, \mathrm{x})$ such that $\mathrm{f}(\mathrm{U}) \subseteq \mathrm{V}$
Proof:
(i) \Rightarrow (ii) obvious
(ii) \Rightarrow (iii) Let V be closed set of Y and let $f(x) \in V$ where $\mathrm{x} \in \mathrm{X}$. Then by (ii) $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg open in X . Also $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~V})$. Take $\mathrm{U}=\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg open set containing x and $\mathrm{f}(\mathrm{U}) \subseteq \mathrm{V}$. (iii) \Rightarrow (ii) Let v be any closed subset of Y . If $\mathrm{x} \in$
$\mathrm{f}^{-1}(\mathrm{~V})$ then $\mathrm{f}(\mathrm{x}) \in \mathrm{V}$. By (iii) there exists a \tilde{g}_{α} wg open set U_{x} of X containing x such that $f\left(U_{x}\right) \subseteq V$. Then
$\mathrm{f}^{-1}(\mathrm{~V})=\cup\left\{\mathrm{U}_{\mathrm{x}} / \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~V})\right\}$. Hence $\mathrm{f}^{-1}(\mathrm{~V})$ is a $\tilde{g}_{\alpha} \mathrm{wg}$ open in X .
Theorem 3.16: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bijective function. Then following are equivalent
(i) f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous.
(ii) $\mathrm{f}\left(\tilde{g}_{\alpha} \mathrm{wgCl}(\mathrm{A})\right) \subseteq \operatorname{ker}(\mathrm{f}(\mathrm{A}))$ for every subset A of X
(iii) $\tilde{g}_{\alpha} \operatorname{wgCl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}^{-1}(\operatorname{ker}(\mathrm{~B}))$ for every subset B of Y.

Proof:
(i) \Rightarrow (ii) Let A be any subset of X. Suppose that $y \notin \operatorname{ker} f(A)$, by lemma 3.14, there exist $\mathrm{F} \in \mathrm{C}(\mathrm{X}, \mathrm{x}), \mathrm{f}(\mathrm{A}) \cap \mathrm{F}=\phi . \Rightarrow \mathrm{A} \cap \mathrm{f}^{-}$ ${ }^{1}(\mathrm{~F})=\phi$. Since $\mathrm{f}^{-1}(\mathrm{~F})$ is \tilde{g}_{α} wg-open by (i), $\tilde{g}_{\alpha} \mathrm{wgCl}(\mathrm{A}) \cap \mathrm{f}^{-}$ ${ }^{1}(\mathrm{~F})=\phi \Rightarrow \mathrm{f}\left(\tilde{g}_{\alpha} \mathrm{wgCl}(\mathrm{A})\right) \cap \mathrm{F}=\phi$ and $\mathrm{y} \notin \mathrm{f}\left(\tilde{g}_{\alpha} \operatorname{wgCl}(\mathrm{A})\right)$. Hence $\mathrm{f}\left(\tilde{g}_{\alpha} \operatorname{wgCl}(\mathrm{A}) \subseteq \operatorname{ker}(\mathrm{f}(\mathrm{A}))\right.$.
(ii) \Rightarrow (iii) Let B be any subset of Y.by(ii) $\mathrm{f}\left(\tilde{g}_{\alpha} \operatorname{wgCl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right.$
$\subseteq \operatorname{ker}\left(\mathrm{f}\left(\mathrm{f}{ }^{-1}(\mathrm{~B})\right)=\operatorname{ker}(\mathrm{B}) . \mathrm{f}\left(\tilde{g}_{\alpha} \mathrm{wgCl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \operatorname{ker}(\mathrm{B})\right.\right.$
$\Rightarrow \tilde{g}_{\alpha} \operatorname{wgCl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq$
$\mathrm{f}^{-1}(\operatorname{ker}(\mathrm{~B}))$.
(iii) \Rightarrow (i) Let V be open in Y. then by(iii) $\tilde{g}_{\alpha} \mathrm{wgCl}\left(\mathrm{f}^{-1}(\mathrm{~V})\right) \subseteq \mathrm{f}$
${ }^{-1}(\operatorname{ker}(\mathrm{~V}))=\mathrm{f}^{-1}(\mathrm{~V})$ by lemma3.14. But $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \tilde{g}_{\alpha} \operatorname{wgCl}(\mathrm{f}-$ $\left.{ }^{1}(\mathrm{~V})\right)$. So $^{-1}(\mathrm{~V})=\tilde{g}_{\alpha} \mathrm{wgCl}($
$\left.\mathrm{f}^{-1}(\mathrm{~V})\right)$ which means $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg closed in X . Hence f is contra \tilde{g}_{α} wg continuous.
Theorem 3.17: If a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous and X is $T_{g_{\alpha} w g}$-space, then f is contra continuous.
Proof: Let V be a open set in Y . since f is \tilde{g}_{α} wg continuous, f ${ }^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg closed in X . since the space is $T_{g_{\alpha} w g}{ }^{- \text {-space, } \mathrm{f}^{-}}$ ${ }^{1}(\mathrm{~V})$ is closed in X. Hence f is contra continuous function.

Corollary 3.18: If X is $T_{g_{\alpha} w g}$-space. Then for the function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, the following statement are equivalent.
f is contra continuous
f is contra \tilde{g}_{α} wg continuous.
Proof: Obvious.
Theorem 3.19: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function then following are equivalent:
f is $\tilde{g}_{\alpha} \mathrm{wg}$ continuous.
For each point $\mathrm{x} \in \mathrm{X}$ and each open set of Y with $\mathrm{f}(\mathrm{x}) \in \mathrm{V}$, there exists a \tilde{g}_{α} wg-open set U of X such that $\mathrm{x} \in \mathrm{U}, \mathrm{f}(\mathrm{U}) \subseteq \mathrm{V}$ (i) \Rightarrow (ii) Let $\mathrm{f}(\mathrm{x}) \in \mathrm{V}$ then $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~V}) \in \tilde{g}_{\alpha} \mathrm{wgO}(\mathrm{X})$ since f is $\tilde{g}_{\alpha} \mathrm{wg}$ continuous. Let $\mathrm{U}=\mathrm{f}^{-1}(\mathrm{~V})$, then $\mathrm{x} \in \mathrm{U}$ and $\mathrm{f}(\mathrm{U}) \subseteq \mathrm{V}$
(ii) \Rightarrow (i) Let V be any open set of Y and $x \in$
$\mathrm{f}^{-1}(\mathrm{~V})$ then $\mathrm{f}(\mathrm{x}) \in \mathrm{V}$. By hypothesis, there exists a \tilde{g}_{α} wg-open set U_{x} of X such that $x \in U_{x} \subseteq f^{-1}(V)$ and
$\mathrm{f}^{-1}(\mathrm{~V})=\cup\left\{\mathrm{U}_{\mathrm{x}}\right\}$. Then $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-open in X .
Theorem 3.20: If a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous and Y is regular, then f is \tilde{g}_{α} wg continuous.
Proof: Let x be a arbitrary point of X and V be an open set of Y containing $f(x)$. since Y is regular, there exists an open set W in Y such that $\mathrm{f}(\mathrm{x}) \in \mathrm{W}$ and $\mathrm{cl}(\mathrm{W}) \subseteq \mathrm{V}$. since f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous by theorem 3.15 , there exist a \tilde{g}_{α} wg open set U of X with $\mathrm{x} \in \mathrm{U}$ such that $\mathrm{f}(\mathrm{U}) \subseteq \mathrm{cl}(\mathrm{W})$. Then $\mathrm{f}(\mathrm{U}) \subseteq \mathrm{cl}(\mathrm{W}) \subseteq \mathrm{V}$. $\mathrm{f}(\mathrm{U}) \subseteq \mathrm{V}$. Hence f is \tilde{g}_{α} wg continuous.
Definition 3.21: A space X is said to be $\tilde{g}_{\alpha} \mathrm{wg}^{2}-\mathrm{T}_{2}$-space if for each pair of distinct points x and y in X , there exists \tilde{g}_{α} wgopen sets U and V containing x and y respectively such that $\mathrm{U} \cap \mathrm{V}=\phi$.
Definition 3.22: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is \tilde{g}_{α} wg-open if the image of each open set in X is \tilde{g}_{α} wg-open set in Y .
Definition 3.23: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\left(\tilde{g}_{\alpha} \mathrm{wg}\right)^{*}$-open if the image of each \tilde{g}_{α} wg-open set in X is a \tilde{g}_{α} wg-open in Y .
Definition 3.24: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is Strongly \tilde{g}_{α} wgcontinuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is closed in X for every \tilde{g}_{α} wg-closed set V in Y .
Definition 3.25: A function f: $\mathrm{X} \rightarrow \mathrm{Y}$ is Perfectly \tilde{g}_{α} wgcontinuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is clopen in X for every \tilde{g}_{α} wg-closed set V in Y .
Definition 3.26: \tilde{g}_{α} wg-Hausdorff
A topological space (X, τ) is said to be \tilde{g}_{α} wg-Hausdorff if for each pair of distinct points x and y in X , there exist \tilde{g}_{α} wg-open subsets U and V of X containing x and y respectively such that $\mathrm{U} \cap \mathrm{V}=\phi$.

Definition 3.27: A topological space (X, τ) is said to be \tilde{g}_{α} wg-ultra-Hausdorff if for each pair of distinct points x and y in X , there exist \tilde{g}_{α} wg-clopen subsets U and V of X containing x and y respective such that $\mathrm{U} \cap \mathrm{V}=\phi$.
Definition 3.28:[5] A space (X, τ) is locally indiscrete space every open subset of X is closed
Theorem 3.29: If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is injective, contra \tilde{g}_{α} wg continuous and Y is Uryshon space then X is $\tilde{g}_{\alpha}{ }^{\mathrm{wg}-\mathrm{T}_{2}}$
Proof: Let $x, y \in X$ with $x \neq y$ then $f(x) \neq f(y)$. Since Y is Uryshon space, there exist open sets U and V in Y such that $\mathrm{f}(\mathrm{x}) \in \mathrm{U}, \mathrm{f}(\mathrm{y}) \in \mathrm{V}$ and $\mathrm{cl}(\mathrm{U}) \cap \mathrm{cl}(\mathrm{V})=\phi$. Since f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous, by theorem 3.15, there exists \tilde{g}_{α} wg-open sets A and B in X such that $x \in A$ and $y \in B$ and $f(A) \subseteq c l(U)$, $f(B) \subseteq c l(V)$. Then $f(A) \cap f(B)=\phi$.so $f(A \cap B)=\phi$ which implies $\mathrm{A} \cap \mathrm{B}=\phi$ and hence X is $\tilde{g}_{\alpha} \mathrm{wg}-\mathrm{T}_{2}$.
Theorem 3.30: If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is a surjective $\left(\tilde{g}_{\alpha} \mathrm{wg}\right)^{*}$-open function $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ is a function such that $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is a contra \tilde{g}_{α} wg-continuous, then g is contra \tilde{g}_{α} wg-continuous.
Proof: Let V be any closed subset of (Z, η). Since $\mathrm{g} \circ \mathrm{f}$ is a contra \tilde{g}_{α} wg-continuous, then $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})=$
$\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is \tilde{g}_{α} wg-open in (X, τ), since f is surjective and $\left(\tilde{g}_{\alpha} \mathrm{wg}\right)^{*}$-open then $\mathrm{f}\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)\right)=$
$\mathrm{g}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-open in (Y, σ). Hence g is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous.
Theorem 3.31: If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is a surjective $\left(\tilde{g}_{\alpha} \mathrm{wg}\right)^{*}$-open and \tilde{g}_{α} wg -irresolute, $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ be any function then $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is a contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous, iff g is contra \tilde{g}_{α} wg-continuous.

Proof: Suppose $\mathrm{g} \circ \mathrm{f}$ is a contra $\tilde{g}_{\alpha} \mathrm{wg}$-continuous, Let V be any closed subset of $(\mathrm{Z}, \boldsymbol{\eta})$. Then $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)$ is \tilde{g}_{α} wg-open in (X, τ), since f is surjective and ($\left.\tilde{g}_{\alpha} \mathrm{wg}\right)^{*}$ irresolute, then
$\left.\mathrm{f}(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})\right)=\mathrm{f}\left(\mathrm{f}{ }^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)\right)=\mathrm{g}^{-1}(\mathrm{~V}) \quad$ is $\quad \tilde{g}_{\alpha}$ wg-open in (Y, σ).Hence g is contra $\tilde{g}_{\alpha} \mathrm{wg}$-continuous function.
Conversely, suppose g is contra \tilde{g}_{α} wg-continuous function. Let V be any closed subset of $(\mathrm{Z}, \boldsymbol{\eta})$. then
$\mathrm{g}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-open in (Y, σ). since f is surjective and $\left(\tilde{g}_{\alpha} \mathrm{wg}\right)^{*}$-irresolute, then $\mathrm{f}^{-1}\left(\mathrm{~g}{ }^{-1}(\mathrm{~V})\right)$ is \tilde{g}_{α} wg-open in (X, τ). $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{v})$ is $\tilde{g}_{\alpha} \mathrm{wg}$-open in (X, τ). Hence $\mathrm{g} \circ \mathrm{f}$ is contra \tilde{g}_{α} wg-continuous.

Theorem 3.32: If f: $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is strongly \tilde{g}_{α} wg continuous function $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \boldsymbol{\eta})$ is a contra $\tilde{g}_{\alpha} \mathrm{wg}-$ continuous function then $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \eta)$ is a contra continuous.
Proof: Let V be any closed subset of $(\mathrm{Z}, \eta$). Since g is contra \tilde{g}_{α} wg-continuous function then $\mathrm{g}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (Y, σ). Since f is strongly \tilde{g}_{α} wg continuous function, then f^{-} ${ }^{1}(\mathrm{~g} ~(\mathrm{~V}))=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is closed in (X, τ). Hence $\mathrm{g} \circ \mathrm{f}$ is contra continuous.
Theorem 3.33: If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is a g continuous function and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous function and the (Y, σ) be $\mathrm{T}_{1 / 2}$ space, then $\mathrm{g} \circ \mathrm{f}$: $(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \boldsymbol{\eta})$ of contra \tilde{g}_{α} wg continuous function.
Proof: Let V be any closed subset of $(\mathrm{Z}, \boldsymbol{\eta})$. Since g is g continuous function then $\mathrm{g}^{-1}(\mathrm{~V})$ is g -closed in (Y, σ). Since (Y, σ) be $\mathrm{T}_{1 / 2}$ space, then $\mathrm{g}^{-1}(\mathrm{~V})$ is closed in (Y, σ). Since f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous function, then $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is $\tilde{g}_{\alpha} \mathrm{wg}$-open in (X, τ). Hence $\mathrm{g} \circ \mathrm{f}$ is contra $\tilde{g}_{\alpha} \mathrm{wg}-$ continuous.
Theorem 3.34: Every Rc-continuous function is a contra \tilde{g}_{α} wg-continuous.
Proof: Let V be a open set in Y. since f is RC- continuous, f^{-} ${ }^{1}(\mathrm{~V})$ regular closed in X , by proposition $1.4[12] \mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed.. Hence f is contra \tilde{g}_{α} wg -continuous.
Theorem 3.35: Let $\mathrm{f}: ~ \mathrm{X} \rightarrow \mathrm{Y}$ be a function and g : $\mathrm{X} \rightarrow \mathrm{X} \times \mathrm{Y}$ be the graph function given by
$\mathrm{g}(\mathrm{x})=(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ for every $\mathrm{x} \in \mathrm{X}$. If g is contra \tilde{g}_{α} wg-continuous then f is contra \tilde{g}_{α} wg-continuous.
Proof: Let V be a closed subset of Y . Then $\mathrm{X} \times \mathrm{V}$ is a closed subset of $\mathrm{X} \times \mathrm{Y}$. Since g is contra \tilde{g}_{α} wg-continuous, $\mathrm{g}^{-1}(\mathrm{X} \times \mathrm{V})$ is \tilde{g}_{α} wg-open subset of X . Also $\mathrm{g}^{-1}(\mathrm{X} \times \mathrm{V})=\mathrm{f}^{-1}(\mathrm{~V})$. Hence f is contra \tilde{g}_{α} wg-continuous.

Theorem 3.36: A function f: $\mathrm{X} \rightarrow \mathrm{Y}$ is contra $\tilde{g}_{\alpha} \mathrm{wg}-$ continuous, injection and Y is urysohn. Then the space X is \tilde{g}_{α} wg-Hausdorff.
Let x_{1} and x_{2} be two distinct points of X. Suppose $y_{1}=f\left(x_{1}\right)$ and $\mathrm{y}_{2}=\mathrm{f}\left(\mathrm{x}_{2}\right)$. Since f is injective $\mathrm{x}_{1} \neq \mathrm{x}_{2}$ then $\mathrm{y}_{1} \neq \mathrm{y}_{2}$. since Y is urysohn, there exist open sets $O_{y_{1}}$ and $O_{y_{2}}$ containing y_{1} and y_{2} respectively in Y , such that $\operatorname{cl}\left(O_{y_{1}}\right) \cap \operatorname{cl}\left(O_{y_{2}}\right)=\phi$. Since f contra \tilde{g}_{α} wg-continuous by theorem 3.15, there exists \tilde{g}_{α} wgopen sets $U_{x_{1}} \in \tilde{g}_{\alpha} \operatorname{wgO}\left(\mathrm{X}, \mathrm{x}_{1}\right)$ and $U_{x_{2}} \in \tilde{g}_{\alpha} \mathrm{wgO}\left(\mathrm{X}, \mathrm{x}_{2}\right)$ such that $\mathrm{f}\left(U_{x_{1}}\right) \subseteq \operatorname{cl}\left(O_{y_{1}}\right)$ and $\mathrm{f}\left(U_{x_{2}}\right) \subseteq \operatorname{cl}\left(O_{y_{2}}\right)$ since $\operatorname{cl}\left(O_{y_{1}}\right) \cap \operatorname{cl}\left(O_{y_{2}}\right)=\phi$, then $U_{x_{1}} \cap U_{x_{2}}=\phi$. Hence X is \tilde{g}_{α} wg-Hausdorff

Theorem 3.37: If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is a contra \tilde{g}_{α} wgcontinuous, injective and Y is \tilde{g}_{α} wg-ultra-Hausdorff, then the topological space (X, τ) is \tilde{g}_{α} wg-Hausdorff.
Proof: Let x_{1} and x_{2} be two distinct points of X . Since f is injective $\mathrm{f}\left(\mathrm{x}_{1}\right) \neq \mathrm{f}\left(\mathrm{x}_{2}\right)$ and since f is \tilde{g}_{α} wg-ultra-Hausdorff, there exist clopen sets U and V in Y such that $f\left(x_{1}\right) \in U$ and $f\left(x_{2}\right) \in V$ where $\mathrm{U} \cap \mathrm{V}=\phi . \mathrm{X}_{1} \in \mathrm{f}^{-1}(\mathrm{U})$ and $\mathrm{X}_{2} \in \mathrm{f}^{-1}(\mathrm{~V})$ where $\mathrm{f}^{-1}(\mathrm{U}) \cap \mathrm{f}^{-1}(\mathrm{~V})=\phi$.Hence X is \tilde{g}_{α} wg-Hausdorff.
Theorem 3.38: If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is continuous and (X, τ) is locally indiscrete space, then f is contra \tilde{g}_{α} wg-continuous.
Proof: Let U be any open set in (Y, σ). Since f is continuous then $\mathrm{f}^{-1}(\mathrm{U})$ is open in (X, τ). Since (X, τ) is locally indiscrete space then $\mathrm{f}^{-1}(\mathrm{U})$ is closed in (X, τ) by theorem $3.2[11] \mathrm{f}^{-1}(\mathrm{U})$ \tilde{g}_{α} wg-closed in X. Hence f is contra \tilde{g}_{α} wg-continuous.
Theorem 3.39: If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is surjective, contra \tilde{g}_{α} wg-continuous and X is \tilde{g}_{α} wg-connected then Y is connected.
Proof: Assume that Y is not connected. Then $Y=A \cup B$ where A and B are non empty open sets in Y such that $A \cap B=\phi$. Set $\mathrm{U}=\mathrm{Y} \backslash \mathrm{A}$ and $\mathrm{V}=\mathrm{Y} \backslash \mathrm{B}$. Then U and V are non empty closed set in Y . Since f is surjective and contra \tilde{g}_{α} wg-continuous, then non empty $\mathrm{f}^{-1}(\mathrm{U})$ and $\mathrm{f}^{-1}(\mathrm{~V})$ are \tilde{g}_{α} wg open set in (X, τ).Now f ${ }^{1}(\mathrm{U}) \cap \mathrm{f}^{1}(\mathrm{~V})=\mathrm{X}$ which is contradiction to the fact X is \tilde{g}_{α} wgconnected and so Y is connected.
Theorem 3.40: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}$ is contra \tilde{g}_{α} wgcontinuous and Y is Urysohn then $\mathrm{K}=\{\mathrm{x} \in \mathrm{X}, \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\}$ is \tilde{g}_{α} wg closed in X.
Proof: Let $x \in X-K$. then $f(x) \neq g(x)$. Since Y is Urysohn, there exist open sets U and V such that $f(x) \in U, g(x) \in V$ $\operatorname{cl}(\mathrm{U}) \cap \operatorname{cl}(\mathrm{V})=\phi$. Since f and g are contra $\tilde{g}_{\alpha} \mathrm{wg}$-continuous f^{-} ${ }^{1}(\mathrm{Cl}(\mathrm{U})) \in \tilde{g}_{\alpha} \mathrm{wgO}(\mathrm{X})$ and $\mathrm{g}^{-1}(\mathrm{Cl}(\mathrm{U})) \in \tilde{g}_{\alpha} \mathrm{wgO}(\mathrm{X})$. Let $\mathrm{A}=\mathrm{f}$ ${ }^{-1}(\mathrm{Cl}(\mathrm{U})), \mathrm{B}=$
$\mathrm{g}^{-1}(\mathrm{Cl}(\mathrm{U}))$ then A nd B contains $\mathrm{x} . \mathrm{C}=\mathrm{A} \cap \mathrm{B}$, then C is $\quad \tilde{g}_{\alpha} \operatorname{wgO}(\mathrm{X})$. Hence $\quad \mathrm{f}(\mathrm{C}) \cap \mathrm{g}(\mathrm{C})=\phi \quad$ and $\mathrm{x} \notin \tilde{g}_{\alpha} \mathrm{wgCL}(\mathrm{K})$. thus K is $\tilde{g}_{\alpha} \mathrm{wg}$ closed in X .
Theorem 3.41: Let (X, τ) be a \tilde{g}_{α} wg-connected space and (Y, σ) be any topological space. f: $\mathrm{X} \rightarrow \mathrm{Y}$ is surjective and contra $\tilde{g}_{\alpha} \mathrm{wg}$-continuous then Y is not a discrete space.
Proof: If possible, let Y be a discrete space. Let A be any proper non empty subset of Y. Then A is both open and closed in (Y, σ). Since f is contra \tilde{g}_{α} wg-continuous, $\mathrm{f}^{-1}(\mathrm{~A})$ is $\tilde{g}_{\alpha} \mathrm{wg}-$ closed and \tilde{g}_{α} wg-open in (X, τ). Since X is \tilde{g}_{α} wg-connected by theorem 4.2[13], the only subset of X which are both \tilde{g}_{α} wgopen and \tilde{g}_{α} wg-closed are the sets X and ϕ. Then
$\mathrm{f}^{-1}(\mathrm{~A})$ is either X or ϕ.If $\mathrm{f}^{-1}(\mathrm{~A})=\phi$, it contradicts to the fact $A \neq \phi$ and f is surjective if $\mathrm{f}^{-1}(\mathrm{~A})=\mathrm{X}$ then f fails to be a map. Hence Y is not a discrete space.
Theorem 3.42: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a surjective, closed and contra \tilde{g}_{α} wg-continuous. If X is \tilde{g}_{α} wg-space, then Y is locally indiscrete.
Proof: Let V be any open set in Y. Since f is contra \tilde{g}_{α} wgcontinuous then $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in X . Since X is \tilde{g}_{α} wgspace, $f^{-1}(V)$ is closed in X.f is closed and surjective $f\left(f^{-1}(V)\right)=V$ is closed in Y. Hence Y is locally indiscrete

4. CONTRA \tilde{g}_{α} WG-IRRESOLUTE FUNCTIONS

Definition 4.1: A function f: $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is called contra \tilde{g}_{α} wg-irresolute, if $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (X, τ) for each \tilde{g}_{α} wg-open in (Y, σ).
Example 4.2:Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\} \mathrm{X}\}$,
$\sigma=\{\phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}, \mathrm{Y}\} . \mathrm{A} \quad$ function $\quad \mathrm{f}: \quad(\mathrm{X}, \tau)$ $\rightarrow(Y, \sigma)$ is defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. The function f is contra \tilde{g}_{α} wg-irresolute function.
Remark 4.3: Contra \tilde{g}_{α} wg-irresolute and \tilde{g}_{α} wg-irresolute are independent as seen from the following examples.
Example 4.4: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$,
$\sigma=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\} . \mathrm{A}$ function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is defined as identity map is \tilde{g}_{α} wg-irresolute but not a contra \tilde{g}_{α} wg-irresolute.
Example 4.5: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}$, $\mathrm{X}\}, \sigma=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\} . \mathrm{A} \quad$ function $\quad \mathrm{f}: \quad(\mathrm{X}, \tau)$ $\rightarrow(Y, \sigma)$ is defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. f is a contra \tilde{g}_{α} wg-irresolute but not a \tilde{g}_{α} wg-irresolute.
Remark 4.6: \tilde{g}_{α} wg continuous and contra \tilde{g}_{α} wg continuous are independent concept.
Example 4.7: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$, $\sigma=\{\phi, \mathrm{Y},\{\mathrm{a}\}\}$, The function
$\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma) \quad$ defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}, \mathrm{f}$ is \tilde{g}_{α} wg continuous but not Contra \tilde{g}_{α} wg continuous.
Example 4.8: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \quad \tau=\{\phi, \mathrm{X},\{\mathrm{a}, \mathrm{b}\}\}$, $\sigma=\{\phi, \mathrm{Y},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{c}\}\}, \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ defined by the identity map, f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous but not $\tilde{g}_{\alpha} \mathrm{wg}$ continuous.
Theorem 4.9: Every contra \tilde{g}_{α} wg-irresolute function is contra \tilde{g}_{α} wg-continuous but not conversely.
Proof: Let V be any open set in (Y, σ), by theorem V is \tilde{g}_{α} wg-open in (Y, σ). Since f in contra \tilde{g}_{α} wg irresolute, then
$\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (X, $\left.\tau\right)$. Hence f is contra $\tilde{g}_{\alpha} \mathrm{wg}$ continuous.
Example 4.10: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$,
$\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\} . \mathrm{A}$ function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is defined as identity map is contra \tilde{g}_{α} wg-continuous but not contra \tilde{g}_{α} wg-irresolute function.
Theorem 4.11: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is a contra \tilde{g}_{α} wg-irresolute and g: $(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ is a $\tilde{g}_{\alpha} \mathrm{wg}-$ irresolute functions then $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \boldsymbol{\eta})$ of contra \tilde{g}_{α} wg irresolute.
Proof: Let V be \tilde{g}_{α} wg-open in (Z, $\boldsymbol{\eta}$). Since g is \tilde{g}_{α} wgirresolute then $\mathrm{g}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-open in (Y, σ). since f is contra \tilde{g}_{α} wg-irresolute then $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (X, τ). Hence $\mathrm{g} \circ \mathrm{f}$ is contra $\tilde{g}_{\alpha} \mathrm{wg}$-irresolute.
Theorem 4.12: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is a contra \tilde{g}_{α} wg-irresolute and g: $(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ is a $\tilde{g}_{\alpha} \mathrm{wg}-$ continuous functions then $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Z}, \boldsymbol{\eta})$ of contra $\tilde{g}_{\alpha} \mathrm{wg}$-continuous.
Proof: Let V be open set in ($\mathrm{Z}, \boldsymbol{\eta}$). Since g is $\tilde{g}_{\alpha} \mathrm{wg}$ continuous then $\mathrm{g}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-open in (Y, σ).since f is contra \tilde{g}_{α} wg-irresolute then
$\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~V})\right)=(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-closed in (X, τ). Hence $\mathrm{g} \circ \mathrm{f}$ is contra \tilde{g}_{α} wg-continuous.

Definition 4.13: A function f: $(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is called perfectly contra \tilde{g}_{α} wg-irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is \tilde{g}_{α} wg-clopen in X for each \tilde{g}_{α} wg-open set V in Y .
Example 4.14: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \quad=$ $\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\} \mathrm{X}\}, \sigma=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}, \mathrm{Y}\} . \mathrm{A}$ function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is defined by identity map. The function f is perfectly contra \tilde{g}_{α} wg-irresolute function.
Remark 4.15: Every perfectly contra \tilde{g}_{α} wg irresolute map is contra \tilde{g}_{α} wg-irresolute.
Follwing example shows contra \tilde{g}_{α} wg-irresolute map need not be a perfectly contra \tilde{g}_{α} wg-irresolute.
Example 4.16: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\boldsymbol{\phi},\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}$, $\mathrm{X}\}, \sigma=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\} . \mathrm{A} \quad$ function $\quad \mathrm{f}: \quad(\mathrm{X}, \tau)$ $\rightarrow(Y, \sigma)$ is defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. f is a contra \tilde{g}_{α} wg-irresolute but not a \tilde{g}_{α} wg-irresolute. Let $\mathrm{V}=\{\mathrm{a}\}$ is \tilde{g}_{α} wg -closed in (Y, σ) the set $\mathrm{f}^{-1}(\mathrm{~V})=\{\mathrm{c}\}$ not a $\tilde{g}_{\alpha} \mathrm{wg}$ closed in (X, τ).

Remark: 4.17: Every perfectly contra \tilde{g}_{α} wg irresolute map is \tilde{g}_{α} wg-irresolute
Follwing example shows contra \tilde{g}_{α} wg-irresolute map need not be a perfectly contra \tilde{g}_{α} wg-irresolute.
Example 4.18: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{Y}, \tau=\{\phi,\{\mathrm{a}, \mathrm{c}\} \mathrm{X}\}$,
$\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\} . \mathrm{A}$ function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is defined by the identity map. The function f is \tilde{g}_{α} wg-irresolute but not a perfectly contra \tilde{g}_{α} wg-irresolute. since f ${ }^{1}(\{\mathrm{a}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{c}\}$ is a $\tilde{g}_{\alpha} \mathrm{wg}$ open in (Y, σ) but not a $\tilde{g}_{\alpha} \mathrm{wg}$ clopen set in(X, $\tau)$.
Theorem 4.19: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(Y, \sigma)$ is perfectly contra $\quad \tilde{g}_{\alpha}$ wg-irresolute iff f is contra \tilde{g}_{α} wg-irresolute and $\tilde{g}_{\alpha} \mathrm{wg}$-irresolute.
Proof: It directly follows from the definitions.
From the above discussion and known results we have the following diagram (ii)

Diagram(ii)

In this diagram,
"A $\longrightarrow \mathrm{B}$ " means A implies B but not conversely.
$\xrightarrow[\text { "A }]{\text { each other. }} \xrightarrow{\longrightarrow} \mathrm{B}$ " means A and B are independent

5. CONCLUSION

In this paper, we have introduced contra \tilde{g}_{α} wg-continuous and contra \tilde{g}_{α} wg-irresolute functions and established their relationships with some other functions. Some of their properties are established.

6. REFERENCES

[1] Ahmad Al-Omari and Mohd Salmi Md Noorani,Contra-ω-continuous and Almost contra- ω-continuous, International Journal of Mathematics and Mathematical Sciences, 2007, Article ID 40469.
[2] M.Caldas, S.Jafari, T.Noiri, M.Simeos, A new generalization of contra-continuity via Levines g-closed sets, Chaos solitons Fractals 2(2007),1595-1603.
[3] J.Dontchev, Contra-continuous functions and strongly-S-closed spaced, Internat. J.Math .Sci., 19,(1996),303310
[4] J.Dontchev, T.Noiri,.Contra-semi continuous functions, Math. Pannon. 10(2), (1999), 159-168.
[5] W.Dunham, Weakly Hausdorff spaces, Kyungpook Math.J. 15 (1975), 41-50.
[6] S.Jafari, T.Noiri, Contra super continuous functions Ann.Univ.Sci.Budapest 42(1999), 27-34.
[7] S.Jafari, T.Noiri,Contra- α-continuous functions between topological spaces, Iran. Int. J.Sci. 2 (2001),153-167.
[8] S.Jafari, T.Noiri, On Contra pre continuous functions,Bull.Malays.Math.Sci.Soc.(25)2(2002),115128.
[9] Levine. N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, (2),19, (1970), 89-96.
[10] Levine. N. , Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963)36-41.
[11] Mariasingam.M., Anitha.G., \tilde{g}_{α}-Weakly generalized closed sets in topological spaces, Antarctica J.Math;9(20(2012),133-142.
[12] Mariasingam.M., Anitha, G., \tilde{g}_{α}-Weakly generalized continuous functions, International Journal of Mathematical Archive-2(11), 2011, 2135-2141.
[13] Mariasingam, M., Anitha, G., \tilde{g}_{α}-WG compact space, $\tilde{g}_{\alpha}{ }_{\text {_WG connected space Proceedings of NCGAA- }}$ Mar-2012, Article no-3.
[14] Mukherjee, M. N, Roy. B. , On p-cluster sets and their application to p- closedness, Carpathian J. Math. , 22(1-2)(2006), 99-106.
[15] Nagaveni. N. , Studies on generalizations of homeomorphisms in topological spaces, Ph. D. Thesis N. G. M college (1999)
[16] Njastad. O, On some classes of nearly open sets, Pacific J. Math. , 15(1965), 961-970.
[17] Rajesh. N. , Lellis Thivagar. M. , Sundaram. P. , Zbigniew Duszynski. , $\tilde{g}_{\text {-semi- closed sets in }}$ topological spaces, Mathematica Pannonica, 18(1)(2007), 51-61.
[18] Saeid Jafari, M. Lellis Thivagar and Nirmala Rebecca Paul, Remarks on $\tilde{g}_{\alpha}{ }$ closed sets in topological spaces, International Mathematical Forum, 5(24)(2010), 1167-1178.
[19] Stone, M. , Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. , 41(3)(1937), 375-481.
[20] Veera Kumar M. K. R. S., Between ${ }^{*}$ g closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. App. Math. , 21(2000), 1-19
[21] Veera kumar M. K. R. S., ${ }^{\#} g$-semi closed sets in topological spaces, Antarctica J. Math., 2(2)(2005), 201-222.
[22] S.Willard, General Topology, AddisonWesley, 1970.

