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1.INTRODUCTION 
Levine[9] introduced generalized closed sets in topological space. 

Veera kumar[21] introduced and studied # generalized semi 

closed set, Naga veni.N[15] introduced weakly generalized closed 

sets in topological spaces. Rajesh and Lellis Thivagar[17] g -

closed set, Saied Jafari,Lellis Thivagar and Nirmala Rebecca 

Paul[18] introduced and studied g -closed set. The authors[11] 

introduced and studied the weaker form of g -WG closed set. 

 Dontchev [4] introduced and investigated a new notion of 
continuity is called contra-continuity. Jafari and Noiri [6],[7],[8] 
introduced new generalization of contra continuity called contra 
super continuity, contra-α-continuity and contra-pre continuity. 
The purpose of the present paper is to introduce and investigate 

some of the properties of contra g~ wg – continuous functions, 

contra g~ wg-irresolute functions and we obtain characterization 

of contra g~ wg-continuous function. 

 

2.PRELIMINARIES 
 Throughout this paper (X, ), (Y, ) and (Z,  ) will always 

denote topological spaces on which no separation axioms are 
assumed, unless otherwise mentioned. When A is a subset of (X, 
 ), cl(A) and int(A) denote the closure and interior of A 

respectively. We recall some known definitions needed in this 

paper. 

Definition 2.1: Let (X, ) be a topological space. A subset 

A of the space X is said to be 
1. a semi-open set [10] if A cl(int(A)) 

2. a pre-open set [14] if A int(cl(A)) 

3. an  -open set [16] if A int(cl(int(A))) 

4. a regular open[19] if A = int(cl(A)) 

The complements of the above sets are called their 
respective open sets. 

 

Definition 2.2: Let (X, ) be a topological space. A subset 

A X is said to be 

1. a generalized closed set(g-closed)[11] if cl(A)U 

whenever AU, U is open in   (X,  ).  

2. a weakly generalized closed set(wg-closed)[15] if 
Cl(Int(A))U whenever AU,   U  is open in (X,  ).  

3.a w-closed set [17]if cl(A)U, whenever AU and U 

is semi-open in (X,  ).  

4. a  g-closed set[20]if cl(A)   U, whenever AU and 

U is w-open in (X,  ).  

5. a # g-semi closed set( # gs-closed)[21]if scl(A)U, 

whenever AU and U is  g-open in (X,  ).  

6. a g -closed[18] if  cl(A) U, whenever AU and 

U is # gs-open in (X,  ).  

7. a g -Weakly generalized closed set( g wg-closed) [11] if 

Cl(Int(A))   U, whenever AU,U is g -open in (X, ). 

The complements of the above sets are called their 
respective open sets. 

Definition 2.3: A function f: (X, ) ),( Y  is called 

 1. g~ wg - continuous [12] if f -1(V) is g~ wg-closed in (X, ) 

for every closed set V of (Y, ). 

 2. g wg - irresolute [12] if f -1(v) is g wg-closed in (X, ) for 

every g wg-closed set V in (Y, ) 

3. Contra-continuous [3] if f -1(v) is closed in (X, ) for every 

open set V in (Y, ). 

4. RC-continuous [4] if f -1(V) is regular closed in (X, ) for 

every open set V in (Y, ). 

5. Contra-α-continuous[6] if f -1(V) is α-closed in (X, ) for 

every open set V in (Y, ). 

6. Contra-semi continuous[4] if f -1(V) is semi-closed in (X, ) 

for every open set V in (Y, ). 

7. Contra-g-continuous[2] if f -1(V) is g-closed in (X, ) for every 

open set V in (Y, ). 

Definition 2.4: A space(X, ) is called  

1. A T1/2 space[9] if every g-closed set is closed. 

2. A 
g wg

T
 -space[11] if every 

g wg-closed set is 

closed. 

3. Urysohn space[22] if for each pair of distinct points x 

and y in X, there exists two open sets U and V in X 

such that xU, yV and cl(U) cl(V)= 


. 
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4. 
g wg-connected[13] if X cannot be written as the 

disjoint union of non empty 
g wg-open sets. 

3.CONTRA g WG-CONTINUOUS 

FUNCTIONS. 

Definition 3.1: A function f:(X, ) ),( Y  is 

called contra g wg continuous if f –1(V) is g wg closed 

in (X, ) for each open set V in (Y, ). 

Example 3.2: Let X={a,b,c,d,e}=Y,   =  { ,{a,b}, 

{c,d},{a,b,c,d},X}, ={ ,{b,c,d},{a,b,c,d,},{b,c,d,e},Y}. 

Define f: (X, ) ),( Y  by f(a)=d, f(b)=c, f(c)=e, 

f(d)=a, f(e)=b. Then f is contra g wg continuous function. 

Theorem 3.3: Every contra continuous is contra g wg 

continuous function but not conversely. 
Proof: Let V be a open set in (Y, ). Since f is contra 

continuous f  -1(V) is closed in  (X, ).By theorem 3.2 [11] f-

1(V) is g wg closed  in  (X, ). Hence f is contra g wg 

continuous. 

Example 3.4: Let X={a,b,c,d}=Y, 

 ={ ,X,{a},{b,c},{a,b,c}}, ={ ,Y,{a},{a,c},{a,b,d}} 

f: (X, ) ),( Y Defined by f(a)=b, f(b)=c, f(c)=d, 

f(d)=a. f is contra g wg continuous but not contra 

continuous. Since {a,c} is open in (Y, ) but  

f -1({a,c})={b,c} not closed in (X, ). 

Theorem 3.5: Every contra α-continuous function is 

contra g wg continuous. 

Proof: Let   f: (X, ) ),( Y  be a function and V be a 

open set in (Y, ). Since f contra α-continuous then f -1(V) 

is α-closed in (X, ).By theorem 3.11[11] f -1(V) is g wg 

closed in (X, ).Hence f is contra g wg continuous. 

But converse need not be true by Example: 3.4 

Remark 3.6: The following examples show that contra 

g wg-continuous and contra semi continuous are 

independent concept 

Example 3.7: Let X={a,b,c}=Y,  ={ ,X,{a},{b,c}}, 

 ={ ,Y,{a}}, The function f: (X, ) ),( Y   

defined by f(a)=c, f(b)=a, f(c)=b, f is contra g wg 

continuous but not Contra semi-continuous. Since {a} is 
open in (Y, ) but f -1({a}) = {c} is not in semi-closed in 

(X, ). 

Example 3.8: Let X={a,b,c}=Y, 

 ={ ,X,{a},{c},{a,c}},  ={ ,Y,{a}}. f:(X, ) 

),( Y  defined by the identity map, f is contra semi-

continuous but not contra g wg continuous. Since {a} is 

open in (Y, ) but f -1({a}) = {a} is not  g wg closed in 

(X, ). 

 

Remark 3.9: The following examples show that contra 

g wg-continuous and contra g-continuous are independent 

concept. 

Example 3.10: Let X={a,b,c}=Y,  ={ ,X,{a,c}}, 

 ={ ,Y,{a},{b,c}}, The function f: (X, ) ),( Y   

defined as identity map, f is contra g wg continuous but not 

Contra g-continuous. Since {a} is open in (Y, ) but f -1({a}) = 

{c} is not g-closed in (X, ). 

Example 3.11: Let X={a,b,c}=Y,  ={ ,X,{b,c},{c}}}, 

 ={ ,Y,{a,c}} f: (X, ) ),( Y  defined by the identity 

map, f is contra g-continuous but not contra g wg continuous. 

Since {a,c} is open in (Y, ) but f -1({a,c})  = {a,c} is not  in 

g wg closed in (X, ). 

From the above discussion and known results we have the 
following diagram (i) 
 

                                     
Contra continuous 

 

 

 

Contra-g                   contra g wg-                  contra - 

 Continuous            continuous                   Continuous                    
 

                                                                                                                                       

                                    

 

                          Contra  semi continuous 

 

Diagram (i) 
 

 
In this diagram, 
 
“A                    B” means A implies B but not conversely. 

“A                    B” means A and B are independent each 
other. 

Remark 3.12: Composition of two contra g wg-continuous 

function need not be contra g wg continuous. 

 Example 3.13: Let X={a,b,c,d,e}=Y, Z={a,b,c,d} 

 ={ ,{a,b},{c,d}{a,b,c,d},X}, ={ ,{b,c,d},{a,b,c,d},{b,c,

d,e},Y}, ={ ,{c,d},Z}. 

Define f: (X, ) ),( Y  by f(a)=d, f(b)=c,f(c)=e, f(d)=a, 

f(e)=b Define g: (Y, )  (Z,  ) by g(a)=a, 

g(b),g(c)=c,g(d)=d, g(e)=c. Function f and g are contra g wg 

continuous function. But their composition is not a contra g wg 

continuous function since the open set U={c,d} in (Z,  ). 

(g f)-1(U)={a,b,c} which is not in g wg-closed in (X, ). 

Lemma 3.14: [1]  The following properties hold for the 

subset A,B of space X. 

(i) xKer(A) iff A F   , FC(X,x) 

(ii) A ker(A) and A=ker(A) if A is open in X. 

(iii) If AB, then ker(A)  ker(B) 
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Theorem 3.15: For the function f: (X, ) ),( Y , the 

following condition are equivalent 

(i) f is contra g wg continuous 

(ii) The inverse image of a closed set V of Y is g wg 

open in X. 
(iii) For each xX and VC(Y,f(x)), there exists 

U g wgO(X,x) such that f(U) V 

Proof:  
(i)(ii) obvious 

(ii) (iii) Let  V be closed set of Y and let f(x) V where 

xX. Then by (ii) f  -1(V) is g wg open in X. Also x   f  -1(V). 

Take U= f  -1(V) is g wg open set containing x and f(U) V. 

(iii) (ii) Let v be any closed subset of Y. If x  

f  -1(V) then f(x)V. By (iii) there exists a g wg open set Ux of 

X containing x such that f(Ux) V. Then  

f -1(V) =  {Ux / x   f  -1(V)}.Hence  f  -1(V) is a g wg open in 

X. 

Theorem 3.16: Let f: X Y  be a bijective function. Then 

following are equivalent 

(i) f is contra g wg continuous. 

(ii) f( g wgCl(A))   ker(f(A)) for every subset A of X 

(iii) g wgCl(f -1(B))  f -1(ker(B)) for every subset B of 

Y. 

Proof:  

(i)(ii) Let A be any subset of X. Suppose that y ker f(A), 

by lemma 3.14, there exist FC(X,x), f(A)  F= .A f -

1(F) = .Since f -1(F) is g wg-open by (i), g wgCl(A)   f -

1(F) =   f( g wgCl(A))  F =  and y f( g wgCl(A)). 

Hence f( g wgCl(A)   ker(f(A)). 

(ii) (iii) Let B be any subset of Y.by(ii) f( g wgCl(f -1(B)) 

  ker(f(f -1(B)) = ker(B). f( g wgCl(f -1(B))  ker(B) 

 g wgCl(f -1(B))   

f  -1 (ker(B)). 

(iii) (i) Let V be open in Y. then by(iii) g wgCl(f -1(V))  f 

-1(ker(V))= f -1(V) by lemma3.14. But f -1(V)  g wgCl(f -

1(V)). So f -1(V) = g wgCl( 

f -1(V)) which means f -1(V) is g wg closed in X. Hence f is 

contra g wg continuous. 

Theorem 3.17: If a function f: X Y is contra g wg 

continuous and X is g wg
T


-space, then f is contra continuous. 

Proof: Let V be a open set in Y. since f is g wg continuous, f 

-1(V) is g wg closed in X. since the space is g wg
T


-space, f -

1(V) is closed in X. Hence f is contra continuous function. 

 

Corollary 3.18: If X is g wg
T


-space. Then for the 

function f: X Y, the following statement are equivalent. 

(i) f is contra continuous 

(ii) f is contra g wg continuous. 

Proof: Obvious. 

Theorem 3.19: Let f: X Y be a function then following 

are equivalent: 

(i) f is g wg continuous. 

(ii) For each point x X and each open set of Y with f(x) V, 

there exists a g wg-open set U of X such that xU, f(U)V 

(i)(ii) Let f(x)V then x f -1(V)  g wgO(X) since f is 

g wg continuous . Let U=f -1(V), then xU and f(U)V 

(ii) (i) Let V be any open set of Y and x  

f -1(V) then f(x)V. By hypothesis, there exists a g wg-open 

set Ux of X such that xUx  f -1(V) and  

f -1(V) =  {Ux}. Then f -1(V) is g wg-open in X. 

Theorem 3.20: If a function f: X Y is a contra g wg 

continuous and Y is regular, then f is g wg continuous. 

Proof: Let x be a arbitrary point of X and V be an open set of Y 
containing f(x). since Y is regular, there exists an open set W in Y 

such that f(x) W and cl(W) V. since f is contra g wg 

continuous by theorem 3.15, there exist a g wg open set U of X 

with xU such that f(U)  cl(W). Then f(U)  cl(W) V. 

f(U) V. Hence f is g wg continuous. 

Definition 3.21: A space X is said to be g wg-T2-space if 

for each pair of distinct points x and y in X, there exists g wg-

open sets U and V containing x and y respectively such that 

U V= . 

Definition 3.22: A function f: X Y is g wg-open if the 

image of each open set in X is g wg-open set in Y. 

Definition 3.23: A function f: X Y is ( g wg)*-open if 

the image of each g wg-open set in X is a g wg-open in Y. 

Definition 3.24: A function f: X Y is Strongly g wg-

continuous if f -1(V) is closed in X for every g wg-closed set V 

in Y. 

Definition 3.25: A function f: X Y is Perfectly g wg-

continuous if f -1(V) is clopen in X for every g wg-closed set V 

in Y. 

Definition 3.26: g wg-Hausdorff 

A topological space (X, ) is said to be g wg-Hausdorff if for 

each pair of distinct points x and y in X, there exist g wg-open 

subsets U and V of X containing x and y respectively such that 

U V= . 
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Definition 3.27: A topological space (X, ) is said to be 

g wg-ultra-Hausdorff if for each pair of distinct points x and y 

in X, there exist g wg-clopen subsets U and V of X containing 

x and y respective such that U V= . 

Definition 3.28:[5] A space (X, ) is locally indiscrete space 

every open subset of X is closed 
Theorem 3.29: If a function f: (X, ) ),( Y is 

injective, contra g wg continuous and Y is Uryshon space then 

X is g wg-T2.
    

 

Proof: Let x, yX with x y then f(x) f(y). Since Y is 

Uryshon space, there exist open sets U and V in Y such that 

f(x)U, f(y) V and cl(U) cl(V)= . Since f is contra 

g wg continuous, by theorem 3.15, there exists g wg-open 

sets A and B in X such that xA and yB and f(A) cl(U), 

f(B) cl(V). Then f(A) f(B)= .so f(A B)=  which 

implies A B=  and hence X is g wg-T2.
    

 

Theorem 3.30: If f: (X, ) ),( Y is a surjective 

( g wg)*-open function g: (Y, )  (Z,  ) is a function such 

that g f : (X, )  (Z,  ) is a contra g wg-continuous, then 

g is contra g wg-continuous. 

Proof: Let V be any closed subset of (Z,  ). Since g f is a 

contra g wg-continuous, then (g f)-1
(V) = 

 f
 -1(g -1(V)) is g wg-open in (X, ) ,since f is surjective and 

( g wg)*-open then f(f -1(g -1(V)))= 

g -1(V) is g wg-open in (Y, ). Hence g is contra g wg-

continuous. 

Theorem 3.31: If f: (X, ) ),( Y is a surjective 

( g wg)*-open and  g wg –irresolute, g: (Y, )  (Z,  ) be 

any function then g f : (X, )  (Z,  ) is a contra g wg-

continuous, iff g is contra g wg-continuous. 

Proof: Suppose g  f is a contra g wg-continuous, Let V be 

any closed subset of (Z,  ). Then (g f)-1
(V) = f -1(g -1(V)) is 

g wg-open in (X, ), since f is surjective and ( g wg)*-

irresolute, then  

f((g f)-1(V))= f(f -1(g -1(V)))=g -1(V) is g wg-open in 

(Y, ).Hence g is contra g wg-continuous function. 

Conversely, suppose g is contra g wg-continuous function. Let 

V be any closed subset of (Z, ). then  

g -1(V) is g wg-open in (Y, ). since f is surjective and 

( g wg)*-irresolute, then f -1(g -1(V)) is g wg-open in (X, ). 

(g f)-1
(V) is g wg -open in (X, ). Hence g f is contra 

g wg-continuous.     

 

Theorem 3.32: If f: (X, ) ),( Y is strongly g wg 

continuous function g: (Y, )  (Z, ) is a contra g wg –

continuous function then g f : (X, )  (Z,  ) is a contra 

continuous. 

Proof: Let V be any closed subset of (Z,  ). Since g is contra 

g wg-continuous function then g -1(V) is g wg-closed in 

(Y, ). Since f is strongly g wg continuous function, then f -

1(g -1(V))=(g f)-1
(V) is closed in (X, ). Hence g f  is contra 

continuous.     

Theorem 3.33: If a function f: (X, ) ),( Y  is a g-

continuous function and g: (Y, )  (Z,  ) is  contra g wg 

continuous function and the (Y, ) be T1/2 space, then g f: 

(X, )  (Z, ) of  contra g wg continuous function. 

Proof: Let V be any closed subset of (Z, ). Since g is g-

continuous function then g -1(V) is g-closed in (Y, ). Since 

(Y, ) be T1/2 space, then g -1(V) is closed in (Y, ). Since f is 

contra g wg continuous function, then f -1(g -1(V))=(g f)-1
(V) is 

g wg -open in (X, ). Hence g f is contra g wg-

continuous. 
Theorem 3.34: Every Rc-continuous function is a contra 

g wg-continuous. 

Proof: Let V be a open set in Y. since f is RC- continuous, f -

1(V)  regular closed in X, by proposition 1.4[12] f -1(V) is 

g wg-closed.. Hence f is contra g wg -continuous. 

Theorem 3.35: Let f: X Y be a function and g: 

X XY be the graph function given by  

g(x) = (x,f(x)) for every xX. If g is contra g wg-continuous 

then f is contra g wg-continuous. 

Proof: Let V be a closed subset of Y. Then XV is a closed 

subset of XY. Since g is contra g wg-continuous, g -1(XV) 

is g wg-open subset of X. Also g -1(XV) = f -1(V). Hence f is 

contra g wg-continuous. 

Theorem 3.36: A function f: X Y is contra g wg-

continuous, injection and Y is urysohn. Then the space X is 

g wg-Hausdorff. 

 Let x1 and x2 be two distinct points of X. Suppose y1 = f(x1) and 

y2 = f(x2). Since f is injective x1 x2  then y1 y2. since Y is 

urysohn, there exist open sets 
1y

O and 
2yO  containing y1 and 

y2 respectively in Y, such that cl(
1y

O ) cl(
2yO )=  . Since f 

contra g wg-continuous by theorem 3.15, there exists g wg-

open sets 
1x

U  g wgO(X,x1) and 
2xU  g wgO(X,x2) 

such that f(
1x

U ) cl(
1y

O ) and f(
2xU ) cl(

2yO ) since 

cl(
1y

O ) cl(
2yO )=  , then 

1x
U 

2xU = .Hence X is 

g wg-Hausdorff 
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Theorem 3.37: If f: (X, ) ),( Y  is a contra g wg-

continuous, injective and Y is g wg-ultra-Hausdorff, then the 

topological space (X, ) is g wg-Hausdorff. 

Proof: Let x1 and x2 be two distinct points of X. Since f is 

injective f(x1) f(x2) and since f is g wg-ultra-Hausdorff, there 

exist clopen sets U and V in Y such that f(x1)U and f(x2) V 

where U V= . X1 f 
 -1(U) and X2 f 

 -1(V) where  

f -1(U) f  -1(V)= .Hence X is g wg-Hausdorff. 

Theorem 3.38: If a function f: (X, ) ),( Y  is 

continuous and (X, ) is locally indiscrete space, then f is contra 

g wg-continuous. 

Proof: Let U be any open set in (Y, ). Since f is continuous 

then f -1(U) is open in (X, ). Since (X, ) is locally indiscrete 

space then f -1(U) is closed in (X, ) by theorem 3.2 [11] f -1(U) 

g wg-closed in X. Hence f is contra g wg-continuous. 

Theorem 3.39: If f: (X, ) ),( Y is surjective, contra 

g wg-continuous and X is g wg-connected then Y is 

connected. 

Proof: Assume that Y is not connected. Then Y=A  B where 

A and B are non empty open sets in Y such that A B= . Set 

U=Y\A and V=Y\B. Then U and V are non empty closed set in Y. 

Since f is surjective and contra g wg-continuous, then non 

empty f -1(U) and f -1(V) are g wg open set in (X, ).Now f-

1(U) f-1(V)=X which is contradiction to the fact  X is g wg-

connected and so Y is connected. 

Theorem 3.40: If f: X Y and g: X Y is contra g wg-

continuous and Y is Urysohn then K={xX,f(x)=g(x)} is 

g wg closed in X. 

Proof: Let xX-K. then f(x)  g(x) . Since Y is Urysohn, there 

exist open sets U and V such that f(x) U, g(x) V 

cl(U) cl(V)= . Since f and g are contra g wg-continuous f -

1(Cl(U))  g wgO(X) and g -1(Cl(U))  g wgO(X).Let A= f 

-1(Cl(U)), B=  

g
 -1

(Cl(U)) then A nd B contains x. C=A B, then C 

is g wgO(X). Hence f(C) g(C)=  and 

x g wgCL(K). thus K is g wg closed in X. 

Theorem 3.41: Let (X, ) be a g wg-connected space and 

(Y, ) be any topological space. f: X Y is surjective and 

contra g wg-continuous then Y is not a discrete space. 

Proof: If possible, let Y be a discrete space. Let A be any proper 
non empty subset of Y. Then A is both open and closed in 

(Y, ). Since f is contra g wg-continuous, f -1(A) is g wg-

closed and g wg-open in (X, ). Since X is g wg-connected 

by theorem 4.2[13], the only subset of X which are both g wg-

open and g wg-closed are the sets X and  . Then  

f -1(A) is either X or  .If f -1(A) =  , it contradicts to the fact 

A   and f is surjective if  f -1(A) = X then f fails to be a map. 

Hence Y is not a discrete space. 
Theorem 3.42: Let f: X Y be a surjective, closed and 

contra g wg-continuous. If X is g wg-space, then Y is locally 

indiscrete. 

Proof: Let V be any open set in Y. Since f is contra g wg-

continuous then f -1(V) is g wg-closed in X. Since X is g wg-

space, f -1(V) is closed in X.f is closed and surjective f(f -1(V))=V 
is closed in Y. Hence Y is locally indiscrete 
. 

 4. CONTRA g WG-IRRESOLUTE 

FUNCTIONS 
Definition 4.1: A function f: (X, ) ),( Y is called 

contra g wg-irresolute, if f -1(V) is g wg-closed in (X, ) for 

each g wg-open in (Y, ). 

Example 4.2:Let  X={a,b,c} = Y, ={ ,{a},{b,c}X}, 

 = { ,{b},{c},{a,b},{b,c}},Y}.A function f: (X, ) 

),( Y is defined by f(a)=b, f(b)=c, f(c)=a. The function f is 

contra g wg-irresolute function. 

Remark 4.3: Contra g wg-irresolute and g wg-irresolute 

are independent as seen from the following examples. 

Example 4.4: Let X = {a,b,c} = Y, ={ ,{a,c},X}, 

 = { ,{c},{a,c},{b,c},Y}.A function f: (X, ) ),( Y  is 

defined as identity map is g wg-irresolute but not a contra 

g wg-irresolute. 

Example 4.5: Let X = {a,b,c} =Y,  ={ ,{a},{c}, {a,c}, 

X}, = { ,{c},{a,c},{b,c},Y}.A function f: (X, ) 

),( Y  is defined by f(a) = b, f(b) = c, f(c) = a. f is a contra 

g wg-irresolute but not a g wg-irresolute.  

Remark 4.6: g wg continuous and contra g wg 

continuous are independent concept. 

Example 4.7: Let X={a,b,c}=Y,  ={ ,X,{a},{c}, {a,c}}, 

 ={ ,Y,{a}}, The function  

f: (X, ) ),( Y   defined by f(a)=b, f(b)=c, f(c)=a, f is 

g wg continuous but not Contra g wg continuous.  

Example 4.8: Let X={a,b,c}=Y,  ={ ,X,{a,b}}, 

 ={ ,Y,{b,c},{c}}, f: (X, ) ),( Y  defined by the 

identity map, f is contra g wg continuous but not g wg 

continuous.  

Theorem 4.9: Every contra g wg-irresolute function is 

contra g wg-continuous but not conversely. 

Proof: Let V be any open set in (Y, ), by theorem V is 

g wg-open in (Y, ). Since f in contra g wg irresolute, then 
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f -1(V) is g wg-closed in (X, ). Hence f is contra g wg-

continuous. 

Example 4.10: Let X = {a,b,c} = Y, ={ ,{a,c},X}, 

 = { ,{a},{b,c},Y}.A function f: (X, ) ),( Y  is 

defined as identity map is contra g wg-continuous but not 

contra g wg-irresolute function. 

Theorem 4.11: Let f: (X, ) ),( Y  is a contra 

g wg-irresolute and g: (Y, )  (Z, ) is a g wg –

irresolute functions then g f: (X, )  (Z, ) of contra 

g wg irresolute. 

Proof: Let V be g wg-open in (Z, ). Since g is g wg-

irresolute then g -1(V) is g wg-open in (Y, ). since f is contra 

g wg-irresolute then f -1(g -1(V)) = (g  f)-1(V) is g wg-closed 

in (X, ). Hence g f is contra g wg-irresolute. 

Theorem 4.12: Let f: (X, ) ),( Y  is a contra 

g wg-irresolute and g: (Y, )  (Z, ) is a g wg –

continuous functions then g f: (X, )  (Z, ) of contra 

g wg -continuous. 

Proof: Let V be open set in (Z, ). Since g is g wg-

continuous then g -1(V) is g wg-open in (Y, ).since f is contra 

g wg-irresolute then  

f -1(g -1(V)) = (g f)-1(V) is g wg-closed in (X, ). Hence g f 

is contra g wg-continuous. 

Definition 4.13: A function f: (X, ) ),( Y is called 

perfectly contra g wg-irresolute if f -1(V) is g wg-clopen in X 

for each g wg-open set V in Y. 

Example 4.14: Let  X={a,b,c} = 

Y, ={ ,{a},{b,c}X}, ={ ,{c},{a,c},{b,c}},Y}.A function 

f: (X, ) ),( Y is defined by identity map. The function f 

is perfectly contra g wg-irresolute function. 

Remark 4.15: Every perfectly contra g wg irresolute map 

is contra g wg-irresolute. 

Follwing example shows contra g wg-irresolute map need not 

be a perfectly contra g wg-irresolute. 

Example 4.16: Let X = {a,b,c} =Y,  ={ ,{a},{c}, {a,c}, 

X}, = { ,{c},{a,c},{b,c},Y}.A function f: (X, ) 

),( Y  is defined by f(a) = b, f(b) = c, f(c) = a. f is a contra 

g wg-irresolute but not a g wg-irresolute. Let V={a} is 

g wg –closed in (Y,  ) the set f -1(V)={c} not a g wg-

closed in (X, ). 

 

Remark: 4.17: Every perfectly contra g wg irresolute map 

is g wg-irresolute 

Follwing example shows contra g wg-irresolute map need not 

be a perfectly contra g wg-irresolute. 

Example 4.18:Let  X={a,b,c} = Y, ={ ,{a,c}X}, 

 = { ,{a},{c},{a,c},Y}.A function f: (X, ) ),( Y is 

defined by the identity map. The function f is g wg-irresolute 

but not a perfectly contra g wg-irresolute. since f -

1({a,c})={a,c} is a g wg open in (Y,  ) but  not a g wg 

clopen set in(X, ). 

Theorem 4.19: A function f: (X, ) ),( Y is perfectly 

contra g wg-irresolute iff f is contra g wg-irresolute and 

g wg-irresolute. 

Proof: It directly follows from the definitions. 
 
From the above discussion and known results we have the 
following diagram (ii) 
 

       Perfectly contra- g WG-irresolute 
 

 

 
g WG-irresolute                 contra g WG-irresolute 

 

 

 

g WG-continuous               contra g WG-continuous 

 

Diagram(ii) 

 
In this diagram, 

 

“A                    B” means A implies B but not 

conversely. 

“A                    B” means A and B are independent 
each other. 
 

5. CONCLUSION 
In this paper, we have introduced contra g wg-continuous 

and contra g wg-irresolute functions and established their 

relationships with some other functions. Some of their 
properties are established. 
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