### Contra $\tilde{g}_{\alpha}$ -WG Continuous Functions

G. Anitha Research Scholar, V.O.Chidambaram College, Tuticorin, M. Mariasingam Department of Mathematics, V.O.Chidambaram College, Tuticorin,

#### ABSTRACT

In this paper, we introduce the new class of weaker form of contra  $\tilde{g}_{\alpha}$  weakly generalized –continuous functions. Some characterization and several properties concerning contra  $\tilde{g}_{\alpha}$  wg-continuity are obtained.

Mathematical Subject Classification: 54C08, 54C10

**Keywords**:  $\tilde{g}_{\alpha}$  wg-open,  $\tilde{g}_{\alpha}$  wg-continuous, contra  $\tilde{g}_{\alpha}$  wg-continuous.

#### **1.INTRODUCTION**

Levine[9] introduced generalized closed sets in topological space. Veera kumar[21] introduced and studied # generalized semi closed set, Naga veni.N[15] introduced weakly generalized closed sets in topological spaces. Rajesh and Lellis Thivagar[17]  $\tilde{g}$  - closed set, Saied Jafari,Lellis Thivagar and Nirmala Rebecca Paul[18] introduced and studied  $\tilde{g}_{\alpha}$  -closed set. The authors[11]

introduced and studied the weaker form of  $~{\widetilde g}_{lpha}$  -WG closed set.

Dontchev [4] introduced and investigated a new notion of continuity is called contra-continuity. Jafari and Noiri [6],[7],[8] introduced new generalization of contra continuity called contra super continuity, contra- $\alpha$ -continuity and contra-pre continuity. The purpose of the present paper is to introduce and investigate

some of the properties of contra  $\widetilde{g}_{\alpha}$  wg – continuous functions,

contra  $\widetilde{g}_{\alpha}$  wg-irresolute functions and we obtain characterization

of contra  $\tilde{g}_{\alpha}$  wg-continuous function.

#### **2.PRELIMINARIES**

Throughout this paper (X,  $\tau$ ), (Y,  $\sigma$ ) and (Z,  $\eta$ ) will always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X,  $\tau$ ), cl(A) and int(A) denote the closure and interior of A respectively. We recall some known definitions needed in this paper.

**Definition 2.1:** Let  $(X, \tau)$  be a topological space. A subset A of the space X is said to be

1. a semi-open set [10] if  $A \subseteq cl(int(A))$ 

2. a pre-open set [14] if  $A \subseteq int(cl(A))$ 

3. an  $\alpha$  -open set [16] if A  $\subset$  int(cl(int(A)))

4. a regular open[19] if A = int(cl(A))

The complements of the above sets are called their respective open sets.

**Definition 2.2:** Let  $(X, \tau)$  be a topological space. A subset A  $\subseteq X$  is said to be 1. a generalized closed set(g-closed)[11] if cl(A)  $\subseteq U$  whenever A  $\subseteq U$ , U is open in  $(X, \tau)$ . 2. a weakly generalized closed set(wg-closed)[15] if Cl(Int(A))  $\subseteq U$  whenever A  $\subseteq U$ , U is open in  $(X, \tau)$ . 3. a w-closed set [17]if cl(A)  $\subseteq U$ , whenever A  $\subseteq U$  and U is semi-open in  $(X, \tau)$ .

4. a \* g-closed set[20]if cl(A)  $\subseteq$  U, whenever A  $\subseteq$  U and U is w-open in (X,  $\tau$ ).

5. a # g-semi closed set( # gs-closed)[21]if scl(A) U,

whenever  $A \subseteq U$  and U is \* g-open in (X,  $\tau$  ).

6. a  $\tilde{g}_{\alpha}$  -closed[18] if  $\alpha$  cl(A)  $\subseteq$  U, whenever A  $\subseteq$  U and

U is # gs-open in (X,  $\tau$  ).

7. a  $\tilde{g}_{\alpha}$  -Weakly generalized closed set(  $\tilde{g}_{\alpha}$  wg-closed) [11] if

 $Cl(Int(A)) \subseteq U$ , whenever  $A \subseteq U, U$  is  $\tilde{g}_{\alpha}$ -open in  $(X, \tau)$ . The complements of the above sets are called their respective open sets.

**Definition 2.3:** A function f:  $(X, \tau) \rightarrow (Y, \sigma)$  is called

1.  $\tilde{g}_{\alpha}$  wg - continuous [12] if f<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-closed in (X,  $\tau$ ) for every closed set V of (Y,  $\sigma$ ).

2.  $\tilde{g}_{\alpha}$  wg - irresolute [12] if f  $^{-1}(v)$  is  $\tilde{g}_{\alpha}$  wg-closed in (X,  $\tau$  ) for

every  $\tilde{g}_{\alpha}$  wg-closed set V in (Y,  $\sigma$  )

3. Contra-continuous [3] if f  $^{\text{-l}}(v)$  is closed in (X,  $\tau$  ) for every open set V in (Y,  $\sigma$  ).

4. RC-continuous [4] if f <sup>-1</sup>(V) is regular closed in (X,  $\tau$ ) for every open set V in (Y,  $\sigma$ ).

5. Contra- $\alpha$ -continuous[6] if f<sup>-1</sup>(V) is  $\alpha$ -closed in (X,  $\tau$ ) for every open set V in (Y,  $\sigma$ ).

6. Contra-semi continuous[4] if f  $^{-1}(V)$  is semi-closed in (X,  $\tau$ ) for every open set V in (Y,  $\sigma$ ).

7. Contra-g-continuous[2] if  $f^{\text{-1}}(V)$  is g-closed in (X,  $\tau$  ) for every open set V in (Y,  $\sigma$  ).

**Definition 2.4:** A space(X,  $\tau$  ) is called

- 1. A  $T_{1/2}$  space[9] if every g-closed set is closed.
- 2. A  $\tilde{g}_{\alpha} wg$  -space[11] if every  $\tilde{g}_{\alpha}$  wg-closed set is closed.
- 3. Urysohn space[22] if for each pair of distinct points x and y in X, there exists two open sets U and V in X

such that  $x \in U$ ,  $y \in V$  and  $cl(U) \cap cl(V) = \emptyset$ .

4.  $\tilde{g}_{\alpha}$  wg-connected[13] if X cannot be written as the disjoint union of non empty  $\tilde{g}_{\alpha}$  wg-open sets.

# **3.CONTRA** $\tilde{g}_{\alpha}$ WG-CONTINUOUS FUNCTIONS.

**Definition 3.1:** A function  $f:(X, \tau) \rightarrow (Y, \sigma)$  is

called contra  $\tilde{g}_{\alpha}$  wg continuous if f<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg closed in (X,  $\tau$ ) for each open set V in (Y,  $\sigma$ ).

**Example 3.2:** Let X={a,b,c,d,e}=Y,  $\tau = \{\phi, \{a,b\}, \{c,d\}, \{a,b,c,d\}, X\}, \sigma = \{\phi, \{b,c,d\}, \{a,b,c,d\}, \{b,c,d,e\}, Y\}.$ 

Define f:  $(X, \tau) \rightarrow (Y, \sigma)$  by f(a)=d, f(b)=c, f(c)=e,

f(d)=a, f(e)=b. Then f is contra  $\tilde{g}_{\alpha}$  wg continuous function.

**Theorem 3.3:** Every contra continuous is contra  $\tilde{g}_{\alpha}$  wg continuous function but not conversely.

Proof: Let V be a open set in  $(Y, \sigma)$ . Since f is contra continuous f  $^{-1}(V)$  is closed in  $(X, \tau)$ .By theorem 3.2 [11] f

<sup>1</sup>(V) is  $\tilde{g}_{\alpha}$  wg closed in (X,  $\tau$ ). Hence f is contra  $\tilde{g}_{\alpha}$  wg continuous.

Example 3.4: Let  $X=\{a,b,c,d\}=Y$ ,  $\tau = \{\phi, X, \{a\}, \{b,c\}, \{a,b,c\}\}, \sigma = \{\phi, Y, \{a\}, \{a,c\}, \{a,b,d\}\}$ f:  $(X, \tau) \rightarrow (Y, \sigma)$  Defined by f(a)=b, f(b)=c, f(c)=d,

f(d)=a. f is contra  $\tilde{g}_{\alpha}$  wg continuous but not contra continuous. Since {a,c} is open in (Y,  $\sigma$ ) but f<sup>-1</sup>({a,c})={b,c} not closed in (X,  $\tau$ ).

**Theorem 3.5:** Every contra  $\alpha$ -continuous function is contra  $\tilde{g}_{\alpha}$  wg continuous.

Proof: Let  $f: (X, \tau) \to (Y, \sigma)$  be a function and V be a open set in  $(Y, \sigma)$ . Since f contra  $\alpha$ -continuous then  $f^{-1}(V)$  is  $\alpha$ -closed in  $(X, \tau)$ .By theorem 3.11[11]  $f^{-1}(V)$  is  $\tilde{g}_{\alpha}$  wg

closed in (X,  $\tau$  ).Hence f is contra  $\tilde{g}_{\alpha}$  wg continuous. But converse need not be true by Example: 3.4

**Remark 3.6:** The following examples show that contra  $\tilde{g}_{\alpha}$  wg-continuous and contra semi continuous are independent concept

**Example 3.7:** Let X={a,b,c}=Y,  $\tau = \{\phi, X, \{a\}, \{b,c\}\}, \sigma = \{\phi, Y, \{a\}\},$  The function f:  $(X, \tau) \rightarrow (Y, \sigma)$  defined by f(a)=c, f(b)=a, f(c)=b, f is contra  $\tilde{g}_{\alpha}$  wg continuous but not Contra semi-continuous. Since {a} is open in  $(Y, \sigma)$  but f<sup>-1</sup>({a}) = {c} is not in semi-closed in  $(X, \tau)$ .

**Example 3.8:** Let X={a,b,c}=Y,  $\tau = \{\phi, X, \{a\}, \{c\}, \{a,c\}\}, \quad \sigma = \{\phi, Y, \{a\}\}, \quad f:(X, \tau)$   $\rightarrow (Y, \sigma)$  defined by the identity map, f is contra semicontinuous but not contra  $\tilde{g}_{\alpha}$  wg continuous. Since {a} is open in  $(Y, \sigma)$  but f<sup>-1</sup>({a}) = {a} is not  $\tilde{g}_{\alpha}$  wg closed in  $(X, \tau)$ . **Remark 3.9:** The following examples show that contra  $\tilde{g}_{\alpha}$  wg-continuous and contra g-continuous are independent concept.

**Example 3.10:** Let  $X=\{a,b,c\}=Y$ ,  $\tau =\{\phi, X, \{a,c\}\}$ ,  $\sigma =\{\phi, Y, \{a\}, \{b,c\}\}$ , The function f:  $(X, \tau) \rightarrow (Y, \sigma)$ defined as identity map, f is contra  $\tilde{g}_{\alpha}$  wg continuous but not Contra g-continuous. Since  $\{a\}$  is open in  $(Y, \sigma)$  but  $f^{-1}(\{a\}) = \{c\}$  is not g-closed in  $(X, \tau)$ .

**Example 3.11:** Let X={a,b,c}=Y,  $\tau = \{\phi, X, \{b,c\}, \{c\}\}\}, \sigma = \{\phi, Y, \{a,c\}\}$  f:  $(X, \tau) \rightarrow (Y, \sigma)$  defined by the identity map, f is contra g-continuous but not contra  $\tilde{g}_{\alpha}$  wg continuous. Since {a,c} is open in  $(Y, \sigma)$  but f<sup>-1</sup>({a,c}) = {a,c} is not in  $\tilde{g}_{\alpha}$  wg closed in  $(X, \tau)$ .

From the above discussion and known results we have the following diagram  $\left(i\right)$ 



Contra semi continuous

#### Diagram (i)

In this diagram,



**Remark 3.12:** Composition of two contra  $\tilde{g}_{\alpha}$  wg-continuous

function need not be contra  $\tilde{g}_{\alpha}$  wg continuous.

**Example 3.13:** Let X={a,b,c,d,e}=Y, Z={a,b,c,d}  $\tau = \{\phi, \{a,b\}, \{c,d\}, \{a,b,c,d\}, X\}, \sigma = \{\phi, \{b,c,d\}, \{a,b,c,d\}, \{b,c,d\}, \{b,c,d\}, Y\}, \eta = \{\phi, \{c,d\}, Z\}.$ 

Define f: (X,  $\tau$ )  $\rightarrow$  (Y,  $\sigma$ ) by f(a)=d, f(b)=c,f(c)=e, f(d)=a, f(e)=b Define g: (Y,  $\sigma$ )  $\rightarrow$  (Z,  $\eta$ ) by g(a)=a, g(b),g(c)=c,g(d)=d, g(e)=c. Function f and g are contra  $\tilde{g}_{\alpha}$  wg continuous function. But their composition is not a contra  $\tilde{g}_{\alpha}$  wg continuous function since the open set U={c,d} in (Z,  $\eta$ ).

 $(g \circ f)^{-1}(U) = \{a,b,c\}$  which is not in  $\tilde{g}_{\alpha}$  wg-closed in  $(X, \mathcal{T})$ .

**Lemma 3.14:** [1] The following properties hold for the subset A,B of space X.

- $x \in Ker(A)$  iff  $A \cap F \neq \phi$ ,  $F \in C(X,x)$
- $A \subset ker(A)$  and A = ker(A) if A is open in X.
- If  $A \subset B$ , then ker(A)  $\subset$  ker(B)

(i)

(ii) (iii) **Theorem 3.15:** For the function f:  $(X, \tau) \rightarrow (Y, \sigma)$ , the following condition are equivalent

- (i) f is contra  $\tilde{g}_{\alpha}$  wg continuous
- (ii) The inverse image of a closed set V of Y is  $\tilde{g}_{\alpha}$  wgii) open in X.
- (iii) For each  $x \in X$  and  $V \in C(Y, f(x))$ , there exists  $U \in \tilde{g}_{\alpha} \text{ wgO}(X, x)$  such that  $f(U) \subseteq V$

Proof:

(i)  $\Longrightarrow$ (ii) obvious

(ii)  $\Longrightarrow$ (iii) Let V be closed set of Y and let  $f(x) \in V$  where

 $x \in X$ . Then by (ii) f<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  we open in X. Also  $x \in f^{-1}(V)$ .

Take U= f<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg open set containing x and f(U)  $\subseteq$  V. (iii)  $\Rightarrow$ (ii) Let v be any closed subset of Y. If x  $\in$ 

f<sup>-1</sup>(V) then  $f(x) \in V$ . By (iii) there exists a  $\tilde{g}_{\alpha}$  wg open set  $U_x$  of X containing x such that  $f(U_x) \subseteq V$ . Then

 $f^{-1}(V) = \bigcup \{ U_x / x \in f^{-1}(V) \}$ . Hence  $f^{-1}(V)$  is a  $\tilde{g}_{\alpha}$  wg open in X.

**Theorem 3.16:** Let  $f: X \rightarrow Y$  be a bijective function. Then following are equivalent

- (i) f is contra  $\tilde{g}_{\alpha}$  wg continuous.
- (ii) f(  $\tilde{g}_{\alpha}$  wgCl(A))  $\subseteq$  ker(f(A)) for every subset A of X
- (iii)  $\tilde{g}_{\alpha}$  wgCl(f<sup>-1</sup>(B))  $\subseteq$  f<sup>-1</sup>(ker(B)) for every subset B of Y.

Proof:

(i)  $\Longrightarrow$ (ii) Let A be any subset of X. Suppose that  $y \notin \ker f(A)$ , by lemma 3.14, there exist  $F \in C(X,x)$ ,  $f(A) \cap F = \phi : \Longrightarrow A \cap f^{-1}(F) = \phi$ . Since  $f^{-1}(F)$  is  $\tilde{g}_{\alpha}$  wg-open by (i),  $\tilde{g}_{\alpha}$  wgCl(A)  $\cap f^{-1}(F) = \phi \Longrightarrow f(\tilde{g}_{\alpha} \text{ wgCl}(A)) \cap F = \phi$  and  $y \notin f(\tilde{g}_{\alpha} \text{ wgCl}(A))$ . Hence  $f(\tilde{g}_{\alpha} \text{ wgCl}(A)) \subseteq \ker(f(A))$ .

(ii)  $\Longrightarrow$ (iii) Let B be any subset of Y.by(ii) f( $\tilde{g}_{\alpha}$  wgCl(f<sup>-1</sup>(B))  $\subseteq$  ker(f(f<sup>-1</sup>(B)) = ker(B). f( $\tilde{g}_{\alpha}$  wgCl(f<sup>-1</sup>(B))  $\subseteq$  ker(B)  $\Rightarrow \tilde{g}_{\alpha}$  wgCl(f<sup>-1</sup>(B))  $\subseteq$ 

 $f^{-1}(ker(B)).$ 

(iii)  $\Longrightarrow$ (i) Let V be open in Y. then by(iii)  $\tilde{g}_{\alpha}$  wgCl(f<sup>-1</sup>(V))  $\subseteq$  f <sup>-1</sup>(ker(V))= f<sup>-1</sup>(V) by lemma3.14. But f<sup>-1</sup>(V)  $\subseteq \tilde{g}_{\alpha}$  wgCl(f<sup>-1</sup>(V)). So f<sup>-1</sup>(V) =  $\tilde{g}_{\alpha}$  wgCl(

f<sup>-1</sup>(V)) which means f<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg closed in X. Hence f is contra  $\tilde{g}_{\alpha}$  wg continuous.

**Theorem 3.17:** If a function f:  $X \to Y$  is contra  $\tilde{g}_{\alpha}$  wg continuous and X is  $T_{\mathcal{G}_{\alpha} Wg}^{-}$ -space, then f is contra continuous.

**Proof:** Let V be a open set in Y. since f is  $\tilde{g}_{\alpha}$  wg continuous, f <sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg closed in X. since the space is  $T_{g_{\alpha}wg}$ -space, f<sup>-1</sup>(V) is closed in X. Hence f is contra continuous function. **Corollary 3.18:** If X is  $T_{\mathcal{B}_{\alpha}Wg}$ -space. Then for the

function f:  $X \rightarrow Y$ , the following statement are equivalent. f is contra continuous

f is contra  $\tilde{g}_{\alpha}$  wg continuous.

Proof: Obvious.

(i)

(i)

(ii)

**Theorem 3.19:** Let  $f: X \rightarrow Y$  be a function then following are equivalent:

f is  $\tilde{g}_{\alpha}$  wg continuous.

For each point  $x \in X$  and each open set of Y with  $f(x) \in V$ , there exists a  $\tilde{g}_{\alpha}$  wg-open set U of X such that  $x \in U$ ,  $f(U) \subseteq V$ 

(i)  $\Longrightarrow$  (ii) Let  $f(x) \in V$  then  $x \in f^{-1}(V) \in \tilde{g}_{\alpha}$  wgO(X) since f is

 $\tilde{g}_{\alpha}$  wg continuous. Let U=f<sup>-1</sup>(V), then x  $\in$  U and f(U)  $\subseteq$  V

(ii)  $\Longrightarrow$ (i) Let V be any open set of Y and x  $\in$ 

f<sup>-1</sup>(V) then  $f(x) \in V$ . By hypothesis, there exists a  $\tilde{g}_{\alpha}$  wg-open set  $U_x$  of X such that  $x \in U_x \subseteq f^{-1}(V)$  and

 $f^{-1}(V) = \bigcup \{U_x\}$ . Then  $f^{-1}(V)$  is  $\tilde{g}_{\alpha}$  wg-open in X.

**Theorem 3.20:** If a function f:  $X \rightarrow Y$  is a contra  $\tilde{g}_{\alpha}$  wg continuous and Y is regular, then f is  $\tilde{g}_{\alpha}$  wg continuous.

Proof: Let x be a arbitrary point of X and V be an open set of Y containing f(x). since Y is regular, there exists an open set W in Y such that  $f(x) \in W$  and  $cl(W) \subseteq V$ . since f is contra  $\tilde{g}_{\alpha}$  wg continuous by theorem 3.15, there exist a  $\tilde{g}_{\alpha}$  wg open set U of X with  $x \in U$  such that  $f(U) \subseteq cl(W)$ . Then  $f(U) \subseteq cl(W) \subseteq V$ .  $f(U) \subseteq V$ . Hence f is  $\tilde{g}_{\alpha}$  wg continuous.

**Definition 3.21:** A space X is said to be  $\tilde{g}_{\alpha}$  wg-T<sub>2</sub>-space if for each pair of distinct points x and y in X, there exists  $\tilde{g}_{\alpha}$  wgopen sets U and V containing x and y respectively such that  $U \cap V = \phi$ .

**Definition 3.22:** A function f:  $X \rightarrow Y$  is  $\tilde{g}_{\alpha}$  wg-open if the image of each open set in X is  $\tilde{g}_{\alpha}$  wg-open set in Y.

**Definition 3.23:** A function f:  $X \to Y$  is  $(\tilde{g}_{\alpha} \text{ wg})^*$ -open if the image of each  $\tilde{g}_{\alpha}$  wg-open set in X is a  $\tilde{g}_{\alpha}$  wg-open in Y.

**Definition 3.24:** A function f:  $X \rightarrow Y$  is Strongly  $\tilde{g}_{\alpha}$  wgcontinuous if f<sup>-1</sup>(V) is closed in X for every  $\tilde{g}_{\alpha}$  wg-closed set V in Y.

**Definition 3.25:** A function f:  $X \rightarrow Y$  is Perfectly  $\tilde{g}_{\alpha}$  wgcontinuous if f<sup>-1</sup>(V) is clopen in X for every  $\tilde{g}_{\alpha}$  wg-closed set V in Y.

**Definition 3.26:**  $\hat{g}_{\alpha}$  wg-Hausdorff

A topological space (X,  $\tau$ ) is said to be  $\tilde{g}_{\alpha}$  wg-Hausdorff if for each pair of distinct points x and y in X, there exist  $\tilde{g}_{\alpha}$  wg-open subsets U and V of X containing x and y respectively such that  $U \cap V = \phi$ . **Definition 3.27:** A topological space  $(X, \tau)$  is said to be  $\tilde{g}_{\alpha}$  wg-ultra-Hausdorff if for each pair of distinct points x and y in X, there exist  $\tilde{g}_{\alpha}$  wg-clopen subsets U and V of X containing

x and y respective such that  $U \cap V = \phi$ .

**Definition 3.28:**[5] A space (X,  $\tau$  ) is locally indiscrete space every open subset of X is closed

**Theorem 3.29:** If a function f:  $(X, \tau) \rightarrow (Y, \sigma)$  is

injective, contra  $\tilde{g}_{\alpha}$  wg continuous and Y is Uryshon space then X is  $\tilde{g}_{\alpha}$  wg-T<sub>2</sub>.

**Proof:** Let x,  $y \in X$  with  $x \neq y$  then  $f(x) \neq f(y)$ . Since Y is Uryshon space, there exist open sets U and V in Y such that  $f(x) \in U$ ,  $f(y) \in V$  and  $cl(U) \cap cl(V) = \phi$ . Since f is contra  $\tilde{g}_{\alpha}$  wg continuous, by theorem 3.15, there exists  $\tilde{g}_{\alpha}$  wg-open sets A and B in X such that  $x \in A$  and  $y \in B$  and  $f(A) \subseteq cl(U)$ ,  $f(B) \subseteq cl(V)$ . Then  $f(A) \cap f(B) = \phi$  so  $f(A \cap B) = \phi$  which implies  $A \cap B = \phi$  and hence X is  $\tilde{g}_{\alpha}$  wg-T<sub>2</sub>.

**Theorem 3.30:** If f:  $(X, \tau) \rightarrow (Y, \sigma)$  is a surjective  $(\tilde{g}_{\alpha} \text{ wg})^*$ -open function g:  $(Y, \sigma) \rightarrow (Z, \eta)$  is a function such that  $g \circ f: (X, \tau) \rightarrow (Z, \eta)$  is a contra  $\tilde{g}_{\alpha}$  wg-continuous, then g is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Proof:** Let V be any closed subset of (Z,  $\eta$ ). Since  $g \circ f$  is a contra  $\tilde{g}_{\alpha}$  wg-continuous, then  $(g \circ f)^{-1}_{(V)=}$ 

f<sup>-1</sup>(g<sup>-1</sup>(V)) is  $\tilde{g}_{\alpha}$  wg-open in (X,  $\tau$ ), since f is surjective and ( $\tilde{g}_{\alpha}$  wg)<sup>\*</sup>-open then f(f<sup>-1</sup>(g<sup>-1</sup>(V)))=

g  $^{\text{-1}}(\mathbf{V})$  is  $\tilde{g}_{\alpha}$  wg-open in (Y,  $\sigma$  ). Hence g is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Theorem 3.31:** If f:  $(X, \tau) \to (Y, \sigma)$  is a surjective  $(\tilde{g}_{\alpha} \text{ wg})^*$ -open and  $\tilde{g}_{\alpha} \text{ wg}$ -irresolute, g:  $(Y, \sigma) \to (Z, \eta)$  be any function then  $g \circ f : (X, \tau) \to (Z, \eta)$  is a contra  $\tilde{g}_{\alpha}$  wg-continuous, iff g is contra  $\tilde{g}_{\alpha}$  wg-continuous.

Proof: Suppose  $g \circ f$  is a contra  $\tilde{g}_{\alpha}$  wg-continuous, Let V be any closed subset of (Z,  $\eta$ ). Then  $(g \circ f)^{-1}_{(V)} = f^{-1}(g^{-1}(V))$  is  $\tilde{g}_{\alpha}$  wg-open in (X,  $\tau$ ), since f is surjective and  $(\tilde{g}_{\alpha} \text{ wg})^{*}$ irresolute, then

 $f((g \circ f)^{-1}(V)) = f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$  is  $\tilde{g}_{\alpha}$  wg-open in  $(Y, \sigma)$ . Hence g is contra  $\tilde{g}_{\alpha}$  wg-continuous function.

Conversely, suppose g is contra  $\tilde{g}_{\alpha}$  wg-continuous function. Let V be any closed subset of (Z,  $\eta$ ). then

g<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-open in (Y, $\sigma$ ). since f is surjective and  $(\tilde{g}_{\alpha}$  wg)<sup>\*</sup>-irresolute, then f<sup>-1</sup>(g<sup>-1</sup>(V)) is  $\tilde{g}_{\alpha}$  wg-open in (X, $\tau$ ). (g ° f)<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg -open in (X, $\tau$ ). Hence g ° f is contra  $\tilde{g}_{\alpha}$  wg-continuous. **Theorem 3.32:** If f:  $(X, \tau) \rightarrow (Y, \sigma)$  is strongly  $\tilde{g}_{\alpha}$  wg continuous function g:  $(Y, \sigma) \rightarrow (Z, \eta)$  is a contra  $\tilde{g}_{\alpha}$  wg – continuous function then  $g \circ f : (X, \tau) \rightarrow (Z, \eta)$  is a contra continuous.

**Proof:** Let V be any closed subset of (Z,  $\eta$ ). Since g is contra  $\tilde{g}_{\alpha}$  wg-continuous function then g<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-closed in (Y, $\sigma$ ). Since f is strongly  $\tilde{g}_{\alpha}$  wg continuous function, then f<sup>-1</sup>(g<sup>-1</sup>(V))=(g \circ f)<sup>-1</sup>(V) is closed in (X, $\tau$ ). Hence g  $\circ$  f is contra continuous.

**Theorem 3.33:** If a function f:  $(X, \tau) \to (Y, \sigma)$  is a gcontinuous function and g:  $(Y, \sigma) \to (Z, \eta)$  is contra  $\tilde{g}_{\alpha}$  wg continuous function and the  $(Y, \sigma)$  be  $T_{1/2}$  space, then  $g \circ f$ :  $(X, \tau) \to (Z, \eta)$  of contra  $\tilde{g}_{\alpha}$  wg continuous function.

**Proof:** Let V be any closed subset of  $(Z, \eta)$ . Since g is gcontinuous function then g<sup>-1</sup>(V) is g-closed in  $(Y, \sigma)$ . Since  $(Y, \sigma)$  be  $T_{1/2}$  space, then g<sup>-1</sup>(V) is closed in  $(Y, \sigma)$ . Since f is contra  $\tilde{g}_{\alpha}$  wg continuous function, then f<sup>-1</sup>(g<sup>-1</sup>(V))=(g \circ f)<sup>-1</sup>(V) is

 $\tilde{g}_{\alpha}$  wg -open in (X,  $\tau$ ). Hence g  $\circ$  f is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Theorem 3.34:** Every Rc-continuous function is a contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Proof:** Let V be a open set in Y. since f is RC- continuous, f<sup>-1</sup>(V) regular closed in X, by proposition 1.4[12] f<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-closed. Hence f is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Theorem 3.35:** Let f:  $X \rightarrow Y$  be a function and g:  $X \rightarrow X \times Y$  be the graph function given by

g(x) = (x,f(x)) for every  $x \in X$ . If g is contra  $\tilde{g}_{\alpha}$  wg-continuous then f is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Proof:** Let V be a closed subset of Y. Then  $X \times V$  is a closed subset of  $X \times Y$ . Since g is contra  $\tilde{g}_{\alpha}$  wg-continuous,  $g^{-1}(X \times V)$  is  $\tilde{g}_{\alpha}$  wg-open subset of X. Also  $g^{-1}(X \times V) = f^{-1}(V)$ . Hence f is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Theorem 3.36:** A function f:  $X \rightarrow Y$  is contra  $\tilde{g}_{\alpha}$  wg-continuous, injection and Y is urysohn. Then the space X is  $\tilde{g}_{\alpha}$  wg-Hausdorff.

Let  $x_1$  and  $x_2$  be two distinct points of X. Suppose  $y_1 = f(x_1)$  and  $y_2 = f(x_2)$ . Since f is injective  $x_1 \neq x_2$  then  $y_1 \neq y_2$ . since Y is urysohn, there exist open sets  $O_{y_1}$  and  $O_{y_2}$  containing  $y_1$  and  $y_2$  respectively in Y, such that  $cl(O_{y_1}) \cap cl(O_{y_2}) = \phi$ . Since f contra  $\tilde{g}_{\alpha}$  wg-continuous by theorem 3.15, there exists  $\tilde{g}_{\alpha}$  wg-open sets  $U_{x_1} \in \tilde{g}_{\alpha}$  wgO(X, $x_1$ ) and  $U_{x_2} \in \tilde{g}_{\alpha}$  wgO(X, $x_2$ ) such that  $f(U_{x_1}) \subseteq cl(O_{y_1})$  and  $f(U_{x_2}) \subseteq cl(O_{y_2})$  since  $cl(O_{y_1}) \cap cl(O_{y_2}) = \phi$ , then  $U_{x_1} \cap U_{x_2} = \phi$ . Hence X is  $\tilde{g}_{\alpha}$  wg-Hausdorff

**Theorem 3.37:** If f:  $(X, \tau) \to (Y, \sigma)$  is a contra  $\tilde{g}_{\alpha}$  wgcontinuous, injective and Y is  $\tilde{g}_{\alpha}$  wg-ultra-Hausdorff, then the

topological space (X,  $\tau$  ) is  $~{\tilde g}_{\alpha}$  wg-Hausdorff.

Proof: Let  $x_1$  and  $x_2$  be two distinct points of X. Since f is injective  $f(x_1) \neq f(x_2)$  and since f is  $\tilde{g}_{\alpha}$  wg-ultra-Hausdorff, there exist clopen sets U and V in Y such that  $f(x_1) \in U$  and  $f(x_2) \in V$  where  $U \cap V = \oint X_1 \in f^{-1}(U)$  and  $X_2 = f^{-1}(V)$  where

 $f^{-1}(U) \cap f^{-1}(V) = \phi$ . Hence X is  $\tilde{g}_{\alpha}$  wg-Hausdorff.

**Theorem 3.38:** If a function f:  $(X, \tau) \rightarrow (Y, \sigma)$  is continuous and  $(X, \tau)$  is locally indiscrete space, then f is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Proof:** Let U be any open set in  $(Y, \sigma)$ . Since f is continuous then  $f^{-1}(U)$  is open in  $(X, \tau)$ . Since  $(X, \tau)$  is locally indiscrete space then  $f^{-1}(U)$  is closed in  $(X, \tau)$  by theorem 3.2 [11]  $f^{-1}(U)$ 

 $\tilde{g}_{\alpha}$  wg-closed in X. Hence f is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Theorem 3.39:** If f:  $(X, \tau) \rightarrow (Y, \sigma)$  is surjective, contra  $\tilde{g}_{\alpha}$  wg-continuous and X is  $\tilde{g}_{\alpha}$  wg-connected then Y is connected.

**Proof:** Assume that Y is not connected. Then  $Y=A \cup B$  where A and B are non empty open sets in Y such that  $A \cap B = \phi$ . Set U=Y\A and V=Y\B. Then U and V are non empty closed set in Y. Since f is surjective and contra  $\tilde{g}_{\alpha}$  wg-continuous, then non empty f<sup>-1</sup>(U) and f<sup>-1</sup>(V) are  $\tilde{g}_{\alpha}$  wg open set in (X,  $\tau$ ).Now f

<sup>1</sup>(U)  $\cap$  f<sup>1</sup>(V)=X which is contradiction to the fact X is  $\tilde{g}_{\alpha}$  wg-connected and so Y is connected.

**Theorem 3.40:** If f: X  $\rightarrow$  Y and g: X  $\rightarrow$  Y is contra  $\tilde{g}_{\alpha}$  wgcontinuous and Y is Urysohn then K={x  $\in$  X,f(x)=g(x)} is  $\tilde{g}_{\alpha}$  wg closed in X.

**Proof:** Let  $x \in X$ -K. then  $f(x) \neq g(x)$ . Since Y is Urysohn, there exist open sets U and V such that  $f(x) \in U$ ,  $g(x) \in V$   $cl(U) \cap cl(V) = \phi$ . Since f and g are contra  $\tilde{g}_{\alpha}$  wg-continuous f

<sup>1</sup>(Cl(U))  $\in \tilde{g}_{\alpha}$  wgO(X) and g<sup>-1</sup>(Cl(U))  $\in \tilde{g}_{\alpha}$  wgO(X).Let A= f <sup>-1</sup>(Cl(U)), B=

g<sup>-1</sup>(Cl(U)) then A nd B contains x. C=A  $\cap$  B, then C is  $\tilde{g}_{\alpha}$  wgO(X). Hence  $f(C) \cap g(C) = \phi$  and  $x \notin \tilde{g}_{\alpha}$  wgCL(K). thus K is  $\tilde{g}_{\alpha}$  wg closed in X.

**Theorem 3.41:** Let  $(X, \tau)$  be a  $\tilde{g}_{\alpha}$  wg-connected space and  $(Y, \sigma)$  be any topological space. f:  $X \rightarrow Y$  is surjective and

contra  $\tilde{g}_{\alpha}$  wg-continuous then Y is not a discrete space.

Proof: If possible, let Y be a discrete space. Let A be any proper non empty subset of Y. Then A is both open and closed in (Y,  $\sigma$ ). Since f is contra  $\tilde{g}_{\alpha}$  wg-continuous, f<sup>-1</sup>(A) is  $\tilde{g}_{\alpha}$  wgclosed and  $\tilde{g}_{\alpha}$  wg-open in (X,  $\tau$ ). Since X is  $\tilde{g}_{\alpha}$  wg-connected by theorem 4.2[13], the only subset of X which are both  $\tilde{g}_{\alpha}$  wgopen and  $\tilde{g}_{\alpha}$  wg-closed are the sets X and  $\phi$ . Then f<sup>-1</sup>(A) is either X or  $\phi$ . If f<sup>-1</sup>(A) =  $\phi$ , it contradicts to the fact  $A \neq \phi$  and f is surjective if f<sup>-1</sup>(A) = X then f fails to be a map. Hence Y is not a discrete space.

**Theorem 3.42:** Let f:  $X \rightarrow Y$  be a surjective, closed and contra  $\tilde{g}_{\alpha}$  wg-continuous. If X is  $\tilde{g}_{\alpha}$  wg-space, then Y is locally indiscrete.

Proof: Let V be any open set in Y. Since f is contra  $\tilde{g}_{\alpha}$  wg-

continuous then f<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-closed in X. Since X is  $\tilde{g}_{\alpha}$  wg-space, f<sup>-1</sup>(V) is closed in X.f is closed and surjective f(f<sup>-1</sup>(V))=V is closed in Y. Hence Y is locally indiscrete

## **4.** CONTRA $\tilde{g}_{\alpha}$ WG-IRRESOLUTE FUNCTIONS

**Definition 4.1:** A function f:  $(X, \tau) \rightarrow (Y, \sigma)$  is called contra  $\tilde{g}_{\alpha}$  wg-irresolute, if f<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-closed in  $(X, \tau)$  for each  $\tilde{g}_{\alpha}$  wg-open in  $(Y, \sigma)$ .

**Example 4.2:**Let  $X = \{a, b, c\} = Y, \tau = \{\phi, \{a\}, \{b, c\}X\},$ 

$$\begin{split} \sigma &= \{ \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}, Y \}. \text{A function } f: \quad (X, \tau) \\ &\rightarrow (Y, \sigma) \text{ is defined by } f(a) = b, f(b) = c, f(c) = a. \text{ The function } f \text{ is contra } \tilde{g}_{\alpha} \text{ wg-irresolute function.} \end{split}$$

**Remark 4.3:** Contra  $\tilde{g}_{\alpha}$  wg-irresolute and  $\tilde{g}_{\alpha}$  wg-irresolute are independent as seen from the following examples.

**Example 4.4:** Let  $X = \{a,b,c\} = Y, \tau = \{\phi, \{a,c\},X\},\$ 

 $\sigma = \{ \phi, \{c\}, \{a, c\}, \{b, c\}, Y\}. A \text{ function f: } (X, \tau) \to (Y, \sigma) \text{ is}$ defined as identity map is  $\tilde{g}_{\alpha}$  wg-irresolute but not a contra  $\tilde{g}_{\alpha}$  wg-irresolute.

**Example 4.5:** Let X = {a,b,c} =Y,  $\tau = \{\phi, \{a\}, \{c\}, \{a,c\}, X\}, \sigma = \{\phi, \{c\}, \{a,c\}, \{b,c\}, Y\}.$  function f: (X,  $\tau$ )  $\rightarrow$  (Y,  $\sigma$ ) is defined by f(a) = b, f(b) = c, f(c) = a. f is a contra  $\tilde{g}_{\alpha}$  wg-irresolute but not a  $\tilde{g}_{\alpha}$  wg-irresolute.

**Remark 4.6:**  $\tilde{g}_{\alpha}$  wg continuous and contra  $\tilde{g}_{\alpha}$  wg continuous are independent concept.

**Example 4.7:** Let X={a,b,c}=Y,  $\tau = \{\phi, X, \{a\}, \{c\}, \{a,c\}\}, \sigma = \{\phi, Y, \{a\}\}$ , The function

f:  $(X, \tau) \to (Y, \sigma)$  defined by f(a)=b, f(b)=c, f(c)=a, f is  $\tilde{g}_{\alpha}$  wg continuous but not Contra  $\tilde{g}_{\alpha}$  wg continuous.

**Example 4.8:** Let  $X=\{a,b,c\}=Y$ ,  $\tau =\{\phi, X, \{a,b\}\}$ ,  $\sigma =\{\phi, Y, \{b,c\}, \{c\}\}$ , f:  $(X, \tau) \rightarrow (Y, \sigma)$  defined by the identity map, f is contra  $\tilde{g}_{\alpha}$  wg continuous but not  $\tilde{g}_{\alpha}$  wg continuous.

**Theorem 4.9:** Every contra  $\tilde{g}_{\alpha}$  wg-irresolute function is contra  $\tilde{g}_{\alpha}$  wg-continuous but not conversely.

**Proof:** Let V be any open set in  $(Y, \sigma)$ , by theorem V is  $\tilde{g}_{\alpha}$  wg-open in  $(Y, \sigma)$ . Since f in contra  $\tilde{g}_{\alpha}$  wg irresolute, then

f<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-closed in (X,  $\tau$ ). Hence f is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Example 4.10:** Let  $X = \{a,b,c\} = Y, \tau = \{\phi, \{a,c\},X\},\$ 

 $\sigma = \{ \phi, \{a\}, \{b,c\}, Y\}$ . A function f:  $(X, \tau) \rightarrow (Y, \sigma)$  is defined as identity map is contra  $\tilde{g}_{\alpha}$  wg-continuous but not contra  $\tilde{g}_{\alpha}$  wg-irresolute function.

**Theorem 4.11:** Let f:  $(X, \tau) \to (Y, \sigma)$  is a contra  $\tilde{g}_{\alpha}$  wg-irresolute and g:  $(Y, \sigma) \to (Z, \eta)$  is a  $\tilde{g}_{\alpha}$  wg – irresolute functions then g°f:  $(X, \tau) \to (Z, \eta)$  of contra  $\tilde{g}_{\alpha}$  wg irresolute.

**Proof:** Let V be  $\tilde{g}_{\alpha}$  wg-open in  $(Z, \eta)$ . Since g is  $\tilde{g}_{\alpha}$  wgirresolute then g<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-open in  $(Y, \sigma)$ . since f is contra  $\tilde{g}_{\alpha}$  wg-irresolute then f<sup>-1</sup>(g<sup>-1</sup>(V)) = (g \circ f)<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-closed in  $(X, \tau)$ . Hence g  $\circ$  f is contra  $\tilde{g}_{\alpha}$  wg-irresolute.

**Theorem 4.12:** Let f:  $(X, \tau) \to (Y, \sigma)$  is a contra  $\tilde{g}_{\alpha}$  wg-irresolute and g:  $(Y, \sigma) \to (Z, \eta)$  is a  $\tilde{g}_{\alpha}$  wg – continuous functions then  $g \circ f: (X, \tau) \to (Z, \eta)$  of contra  $\tilde{g}_{\alpha}$  wg -continuous.

**Proof:** Let V be open set in  $(Z, \eta)$ . Since g is  $\tilde{g}_{\alpha}$  wgcontinuous then g<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-open in  $(Y, \sigma)$ .since f is contra  $\tilde{g}_{\alpha}$  wg-irresolute then

f<sup>-1</sup>(g<sup>-1</sup>(V)) = (g \circ f)<sup>-1</sup>(V) is  $\tilde{g}_{\alpha}$  wg-closed in (X,  $\tau$ ). Hence g  $\circ$  f is contra  $\tilde{g}_{\alpha}$  wg-continuous.

**Definition 4.13:** A function f:  $(X, \tau) \to (Y, \sigma)$  is called perfectly contra  $\tilde{g}_{\alpha}$  wg-irresolute if  $f^{-1}(V)$  is  $\tilde{g}_{\alpha}$  wg-clopen in X for each  $\tilde{g}_{\alpha}$  wg-open set V in Y.

**Example** 4.14: Let  $X=\{a,b,c\} = Y, \tau = \{\phi, \{a\}, \{b,c\}X\}, \sigma = \{\phi, \{c\}, \{a,c\}, \{b,c\}\}, Y\}$ . A function f:  $(X, \tau) \rightarrow (Y, \sigma)$  is defined by identity map. The function f is perfectly contra  $\tilde{g}_{\alpha}$  wg-irresolute function.

**Remark 4.15:** Every perfectly contra  $\tilde{g}_{\alpha}$  wg irresolute map is contra  $\tilde{g}_{\alpha}$  wg-irresolute.

Follwing example shows contra  $\tilde{g}_{\alpha}$  wg-irresolute map need not be a perfectly contra  $\tilde{g}_{\alpha}$  wg-irresolute.

**Example 4.16:** Let X = {a,b,c} =Y,  $\tau = \{\phi, \{a\}, \{c\}, \{a,c\}, X\}, \sigma = \{\phi, \{c\}, \{a,c\}, \{b,c\}, Y\}.$  function f: (X,  $\tau$ )  $\rightarrow (Y, \sigma)$  is defined by f(a) = b, f(b) = c, f(c) = a. f is a contra  $\tilde{g}_{\alpha}$  wg-irresolute but not a  $\tilde{g}_{\alpha}$  wg-irresolute. Let V={a} is  $\tilde{g}_{\alpha}$  wg -closed in (Y,  $\sigma$ ) the set f<sup>-1</sup>(V)={c} not a  $\tilde{g}_{\alpha}$  wg-closed in (X,  $\tau$ ). **Remark: 4.17:** Every perfectly contra  $\tilde{g}_{\alpha}$  wg irresolute map is  $\tilde{g}_{\alpha}$  wg-irresolute

Follwing example shows contra  $\tilde{g}_{\alpha}$  wg-irresolute map need not be a perfectly contra  $\tilde{g}_{\alpha}$  wg-irresolute.

**Example 4.18:**Let  $X = \{a,b,c\} = Y, \tau = \{\phi, \{a,c\}X\},\$ 

 $\sigma = \{ \phi, \{a\}, \{c\}, \{a,c\}, Y\}. A \text{ function f: } (X, \tau) \rightarrow (Y, \sigma) \text{ is}$ defined by the identity map. The function f is  $\tilde{g}_{\alpha}$  wg-irresolute but not a perfectly contra  $\tilde{g}_{\alpha}$  wg-irresolute. since f  $(\{a,c\})=\{a,c\}$  is a  $\tilde{g}_{\alpha}$  wg open in  $(Y, \sigma)$  but not a  $\tilde{g}_{\alpha}$  wg clopen set in $(X, \tau)$ .

**Theorem 4.19:** A function f:  $(X, \tau) \rightarrow (Y, \sigma)$  is perfectly contra  $\tilde{g}_{\alpha}$  wg-irresolute iff f is contra  $\tilde{g}_{\alpha}$  wg-irresolute and  $\tilde{g}_{\alpha}$  wg-irresolute.

Proof: It directly follows from the definitions.

From the above discussion and known results we have the following diagram (ii)



#### **Diagram(ii)**

In this diagram,

"A → B" means A implies B but not conversely. "A → B" means A and B are independent each other.

#### **5.** CONCLUSION

In this paper, we have introduced contra  $\tilde{g}_{\alpha}$  wg-continuous and contra  $\tilde{g}_{\alpha}$  wg-irresolute functions and established their relationships with some other functions. Some of their properties are established.

#### 6. REFERENCES

- Ahmad Al-Omari and Mohd Salmi Md Noorani,Contraω-continuous and Almost contra-ω-continuous, International Journal of Mathematics and Mathematical Sciences, 2007, Article ID 40469.
- [2] M.Caldas, S.Jafari, T.Noiri, M.Simeos, A new generalization of contra-continuity via Levines g-closed sets, Chaos solitons Fractals 2(2007),1595-1603.

International Journal of Computer Applications (0975 – 8887) Volume 49– No.11, July 2012

- J.Dontchev, Contra-continuous functions and strongly-S-closed spaced, Internat. J.Math .Sci., 19,(1996),303-310
- [4] J.Dontchev, T.Noiri, Contra-semi continuous functions, Math. Pannon. 10(2), (1999), 159-168.
- [5] W.Dunham, Weakly Hausdorff spaces, Kyungpook Math.J.15 (1975),41-50.
- [6] S.Jafari, T.Noiri, Contra super continuous functions Ann.Univ.Sci.Budapest 42(1999),27-34.
- [7] S.Jafari, T.Noiri,Contra- α-continuous functions between topological spaces, Iran. Int. J.Sci.2 (2001),153-167.
- [8] S.Jafari, T.Noiri, On Contra pre continuous functions, Bull. Malays. Math. Sci. Soc. (25)2(2002), 115-128.
- [9] Levine. N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, (2),19, (1970), 89-96.
- [10] Levine. N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963)36-41.
- [11] Mariasingam.M., Anitha.G.,  $g_{\alpha}$  -Weakly generalized closed sets in topological spaces, Antarctica J.Math;9(20(2012),133-142.
- [12] Mariasingam.M., Anitha, G.,  $\tilde{g}_{\alpha}$  -Weakly generalized continuous functions, International Journal of Mathematical Archive-2(11), 2011, 2135-2141.
- [13] Mariasingam, M., Anitha, G.,  $g_{\alpha}$  -WG compact space,  $\tilde{\sigma}$

 $\tilde{g}_{\alpha}$  -WG connected space Proceedings of NCGAA-Mar-2012,Article no-3.

- [14] Mukherjee, M. N, Roy. B., On p-cluster sets and their application to pclosedness, Carpathian J. Math., 22(1-2)(2006), 99-106.
- [15] Nagaveni. N. , Studies on generalizations of homeomorphisms in topological spaces, Ph. D. Thesis N. G. M college(1999)
- [16] Njastad. O, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [17] Rajesh. N. , Lellis Thivagar. M. , Sundaram. P. , Zbigniew Duszynski. ,  $\tilde{g}$ -semi- closed sets in topological spaces, Mathematica Pannonica, 18(1)(2007), 51-61.
- [18] Saeid Jafari, M. Lellis Thivagar and Nirmala Rebecca

Paul, Remarks on  $g_{\alpha}$  - closed sets in topological spaces, International Mathematical Forum, 5(24)(2010), 1167-1178.

- [19] Stone, M. , Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. , 41(3)(1937), 375-481.
- [20] Veera Kumar M. K. R. S., Between \* g closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. App. Math., 21(2000), 1-19
- [21] Veera kumar M. K. R. S., <sup>#</sup>g -semi closed sets in topological spaces, Antarctica J. Math., 2(2)(2005), 201-222.
- [22] S.Willard, General Topology, Addison-Wesley, 1970.