
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 1

Automated Software Performance Improvement: Best
Practices for Evaluation

Velmourougan Suburayan

Scientist, Centre for Reliability,
Dr.VSI Estate, Thiruvanmiyur,

Chennai -600041

Dhavachelvan
Ponnurangam

Phd, Professor, School of
Computer Science and

Engineering, University of
Pondicherry- Puducherry India

Pin- 605008

Baskaran Ramachandran

Assistant professor, School of
Computer Science and

Engineering, Anna University,
Chennai, India, Pin- 600021

ABSTRACT

Automated software has different dynamic behaviour during

use when compared to general software application. Mostly

these dynamic characteristics degrade the application

performance during operation due to lack of understanding of

performance requirement during testing. Mis-understanding

on requirement for testing by the test engineer lead to loss of

reputation, financial and operational loss to the community

using the automated application. Software-performance issues

are not only to be patched up by coding routines and pumping

testing effort but, can be easily eliminated by inculcating the

best practices during testing phase of the software

development life cycle. Software-performance is the effective

attribute to improve the maintainability and reliability of the

software application. This paper outlines the various activities

to be carried out during the testing phase of the lifecycle while

developing the automated software to eliminate performance

related issues during the software operations and maintenance.

Moreover this paper also presents a set of performance testing

taxonomy to inculcate efficient performance into the

automated applications developed.

Keywords

Performance testing, Automated Software, Load testing.

1. INTRODUCTION
Automatic Software (AS) has a significant role in today’s

industry for conducting process monitoring, testing,

measurement and diagnostics of various components, sub-

assemblies, termed as “unit under monitoring” (UUM) to

ensure that they meet their required performance

characteristics [1]. As the evolution of testing technology

improves the measurement performance capabilities of legacy

test systems need to be analyzed to ensure that both the

system and the testing software still perform according to the

UUM. The performance of the automated software plays a

critical role in determining the financial implication and

reputation of the process [2]. Performance degradation is due

to improper coding, improper design, inadequate testing due

to stringent delivery schedules, and inadequate maintenance

[3]. As far as the automated software is concerned it has an

additional constraint on the dynamic characteristics of the

software and the associated interfaces/UUM. The

performance degradation triggers the deviations in the

response time, abrupt delay between functions [2, 3] causing

disruptions to real time objectives etc. In software

engineering, performance testing is performed, to determine

how fast the key functional aspects of a system perform under

a particular workload. It can also serve to validate and verify

other quality attributes of the system, such as scalability,

reliability and resource usage. Performance testing is a subset

of Performance engineering, an emerging computer science

practice which strives to build performance into the design

and architecture of a system, prior to the onset of actual

coding effort [4][5].

Evaluation process namely has four stages; Evaluation plan,

Establish acceptance criteria, design evaluation and execution

of evaluation process [6] and its associated activities as shown

Figure 1.

1.1 Evaluation plan

Identify the physical test environment and the production

environment as well as the tools and resources available to the

test team. The physical environment includes hardware,

software, and network configurations. Having a thorough

understanding of the entire test environment at the outset

enables more efficient test design and planning and helps you

identify testing challenges early in the project [7]. In some

situations, this process must be revisited periodically

throughout the project’s life cycle. Figure 2 depicts the model

of the schedule for the evaluation of automated software. This

schedule is approximately planned for five week covering

evaluation plan, establishing the evaluation criteria, design of

evaluation scenario and execution of evaluation plan.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 2

Fig 1: Life cycle of the Evaluation process

Fig 2: Schedule for the Evaluation of Automated software performance

1.2 Establish Acceptance Criteria.

Identify the response time, throughput, and resource

utilization goals and constraints. In general, response time is a

user concern, throughput is a business concern, and resource

utilization is a system concern. Additionally, identify project

success criteria that may not be captured by those goals and

constraints[8]; for example, using performance tests to

evaluate what combination of configuration settings will

result in the most desirable performance characteristics.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 3

1.3 Designing evaluation plan:

Identify key scenarios, determine variability among

representative users and how to simulate that variability,

define test data, and establish metrics to be collected.

Consolidate this information into one or more models of

system usage to be implemented, executed, and analyzed.

Configure the Test Environment to prepare the test

environment-tools and resources necessary to execute each

strategy as essential features and components that is available

for test [9]. Ensure that the test environment is instrumented

for resource monitoring as necessary.

1.4 Execution of Evaluation process:

Implement the test design by developing the performance tests

in accordance with the test design. Execute the Test and

monitor your tests. Validate the tests, test data, and results

collection. Execute validated tests for analysis while

monitoring the test and the test environment. Analyze Results,

Tune, and Retest. Analyze, Consolidate and share the results

fine tune the relevant change and retest. Ensure whether there

is Improvement or degradation. Each improvement made will

return smaller improvement in performance than the previous

results. Determine, when do you stop? When do you reach a

CPU bottleneck? The choices then are either improve the code

or add multiple processors (CPU).

In this paper authors have segregated the performance testing

as an evaluation process to find out the possible shortcomings

of the automated software. What are the features that the

automated software must have to ensure better performance?

What are the critical codes of best practices to be identified

during the evaluation of the product?

2. THE CHALLENGES TO THE

AUTOMATED SOFTWARE

Unlike software application the automated software has the

additional responsibilities to understand and react to the

dynamic processes to ensure better performance;

1. Under which load does the application encounter error?

2. Are the system failures reproducible? Or repetitive in

nature,

3. Whether the bad performance reproducible?

4. Is it a system, application or configuration failure?

5. Where is the bottleneck in my infrastructure?

To satisfy the above queries automated software must have

built-in non functional features such as Auto recovery,

Diagnostics, auto logging, auto response to exceptions,

mechanism to monitor network health and recovery, early

warning system etc.,

The performance influencing indicators can be subdivided

into system, application related and load related and the self

inducing issues.

2.1 The system related parameters

1. Number of hardware components

2. Configuration of related hardware

3. Network components

4. Configuration settings (HW)

5. Operating system

6. Standard and custom software components

7. External devices that access the system

The Figure 3 below depicts the overall logical and

architectural requirements of the automated software to

deliver the desired performance.

Fig. 3: Structure (Logical) of the automated software with performance requirements.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 4

2.2 The Application related issues are;

1. Test cases used for the test

2. Type of application

3. Database structure and data quantities

4. Configuration and architecture of the environment

5. Protocols for data exchange

2.3 The load related issues are;

1. Number of users

2. Number of sessions

2.4 The self inducing issues are;

1. Cache/memory leak

2. Log-read –write delay

3. Data capture delay

4. Intermittent interface with UUM

5. Interoperability/protocol mismatches etc.

3.0 THE CHALLENGES TO THE

EVALUATOR

Since the automated software has to be built with the

additional non-functional features as discussed the evaluator

must have the capability to check the functionality of the

automated software to ensure whether the software has the

capability to demonstrate the required performance

[10,11,12]. The evaluation plan must specifically address the

scenarios to demonstrate the capability of the automated

software to manage the desirable performance during critical

performance issues.

3.1 Evaluation plan:

The real engineering challenge during evaluation is not only

being able to meet your business requirements, but also

achieving them on time and the evaluator must first determine

those business requirements. For example, the need to

determine the budget for new hardware, and what existing

hardware is available and also need to know how rigid the

target delivery date is, whether an initial release to a limited

number of users is acceptable, and what project aspects take

priority. Some areas worthy of significant consideration in a

performance plan include:

 Throughput and latency (e.g., do you need to ensure that

deploying this application will not adversely affect other

applications that use the same network?)

 Reaction (e.g., are there components of your application

that need to interact in a timely manner, such as a load

balancer that skips a particular Web server if it does not

respond in <200 milliseconds?)

 Capacity planning (e.g., can you afford the infrastructure

to support up to 500 users under standard conditions?)

 Entry cost (e.g., is it viable to achieve the end-user

requirements with existing hardware?)

3.2 Establishing acceptance criteria:
Determining performance-testing objectives are not easy,

unless the system characteristics are understood and

especially it difficult task for the automated software. The

challenge is that the performance tester does not always have

easy access to either explicit or implied objectives, and

therefore frequently must conduct a systematic search for

these objectives. Determining performance-testing objectives

generally involves the following tasks: Determining the

overall objectives for the performance testing effort, such as

detect bottlenecks that need tuning, assist the development

team in determining the performance characteristics for

various configuration options, providing input data for

scalability and capacity-planning efforts, reviewing the

project plan with individual team members or small groups.

The performance of a system is described by the following

aspects;

1. CPU / Memory usage of the related systems

2. System Calls / Context switches per time period

3. Running / blocking processes per time period

4. Network throughput

5. Paging rates

6. Database calls per timeframe

7. Response times for the end-user

8. Error rate

9. Transactions per time period

All these issues are common to all type of software but the

automated software has a factor of influences in the above

nine aspects. E.g. Usage of CPU in automated software.

Best practices to address the performance related issues are as

listed below and the evaluator must consider every point as

discussed below before deriving the acceptance criteria:

 What functionality, architecture, and/or hardware will be

changing between the last iteration and this iteration?

 Is tuning likely to be required as a result of this change?

Are there any metrics that I can collect to help you with

the tuning?

 Is this change likely to impact other areas for which we

have previously tested/collected metrics?

 Reviewing both the physical and logical architecture

with individual team members or small groups. As you
review the architecture, ask questions such as:

1. Have you ever done this/used this before?

2. How can we determine early in the process if

this is performing within acceptable

parameters?

3. Is this likely to need tuning? What tests can I

run or what metrics can I collect to assist in

making this determination?

4. Asking individual team members about their

biggest performance-related concern(s) for the

project and how you could detect those
problems as early as possible.

3.3 Designing Evaluation

3.3.1 Design Tests.

Identify all key scenarios in addition to the general

performance issues especially scenarios which are influenced

by the inclusion of automated software, determine variability

among representative users. Ensure that automated software

do not have any randomly varying influence in the routine

function of the application and how to simulate that

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 5

variability. Define test data and establish procedure on metrics

to be collected. Consolidate this information into one or more

models of system usage to be implemented, executed, and

analyzed.

3.3.2 Configure the Test Environment.

Prepare the test environment, tools, and resources necessary to

execute each strategy as features and components become

available for test. Ensure that the test environment is

instrumented for resource monitoring as necessary.

3.3.3 Test Data

Test data analysis & design is critical for performance testing,

mainly due to the volumes of data required and the need to

apply load to all parts of the system. This section describes the

plan for data provision and loading.

Three categories of data are required to be produced:

1. Reference data – data that must exist on the

database prior to test execution as it will be

referenced by the transactions executed against the

database during testing; for example, brokers

details, valid banks.

2. Transaction data – the parameterized details of

transactions that are to be executed during testing.

For example, a purchase transaction would need

data of the type buyer’s name and address, purchase

details, etc.

3. Bulk data – this is data that must exist on the

database but is unchanged throughout testing. This

data is either not at all involved or only indirectly

involved in the testing, often for reasons of

providing bulk, realistic searching or sorting, etc.

It is important that all these data types are specified for the

required testing.

The key questions are: What types of data do we need? How

much data do we need? How will it be provided?

a) Data Analysis

1. Describe types and volumes of data needed:

2. Transactional data – for test scripts

3. Reference data – data in database referred to by test

scripts

4. Bulk data – data not directly used by test but

necessary to create a realistic database size

b) Describe relevant data flows:

1. End-to-end across the system

2. Upstream – data flows received from other systems

3. Downstream – data flows sent to other systems

c) Data Provision

1. Describe how data will be generated or sourced, e.g.

2. Copy of data from production – does it need to be

sanitized to comply with the data Protection Act?

3. Generated from scratch – using what tool/process?

d) Implement the Test Design.

Develop the performance tests in accordance with the test

design.

The best practices are;

i) Definition of test cases, business processes?

1. Which Application should be tested?

2. What are the business processes?

3. Measuring points?

4. Test data?

ii) Definition of set of test cases (Multiple Application

Tests)

1. Which test cases are needed?

2. What is the correct ratio?

3. Which Load generators to use?

iii) Modeling of the scenario

1. What are the performance influencing parameters?

2. Single Application Test or how many number of

virtual users

3. Multiple Application Test

4. Increase number of applications

5. Increase load on one of the applications (change

ratio)

6. Constant Load (and start other processes)

iv) Positioning of Load Generators

1. How many Load generators are needed?

2. If it is relevant, where to position the load

generators?

3. Are all the results interpretable by someone?

3.4 Execute Evaluation

Run and monitor your tests. Validate the tests, test data, and

results collection. Execute validated tests for analysis while

monitoring the test and the test environment.

Monitoring of the environment shall cover which components

should be monitored? What parameters are relevant? Which

software is needed for the monitoring? How often to measure

means of the frequency of monitoring, and optimum

analyzes, not too much as to overload the system.

Statistical analysis of all test series need to be analyzed

statistically and in each interval of change (variation of the

“load parameter”, usually the number of users), the Error rate,

the Mean value, the Confidence interval (Reliability/scattering

of the mean value),the test series are used to calculate

parameters that have not been measured. E.g. Signature on

Application, Also Error analysis, what is the error rate

(correct measurements versus Errors), what kind of errors

occurred whether Application errors or Protocol errors, what’s

the reason for the errors? (Load, System, Data- related),

Correlation of test series whether all the test series must be

viewed in a context. Next step is rating of the results, does the

system reach the expected performance ?, were all

performance requirements reached ?, What is the allowance of

the system regarding higher load ?, How are the components

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 6

are effected be changes in the load ?,What are the

performance restricting values or parameters?, Does the

applications Interfere ?

Fig 4: Representation of bottlenecks in the system monitoring architecture.

Based on the analysis a re-run might be required to verify the

evaluation results, test time was not long enough to gather

enough statistical data. Once the system environment changed

the test cases need to be changed or enhanced because of

changed environmental requirements then optimize the system

functions. Finally ensure the expected performance was

reached and troubleshooter (problem was not found until

now). The Figure 4 represents the possible bottleneck in the

overall automated system deployed in monitoring. The key

issues are; 1) load balancer not distributed evenly, 2) improper

optimization of firewall, 3) Server stuck with a cluster of

heavy load, 4) Application server unable to handle requests,

5) Low performance of database to feed data to the

application. Faulty transactions usually have different

response times as compared to correct ones. So they should be

analyzed separately considering, 1) error rate per interval, 2)

Occurrence of the first errors, 3) Interval between the errors

(any regularity or script errors?),4) Un-usable or wrong test

data?

The Average Transaction Response Time shows the response

time for all measurements, Response time is shown against

the elapsed time and whether it is possible to see when the

response time exceeds the target value. The Statistical values

are graphed as minimum, maximum, average with Standard

deviation to understand its behaviors. Mostly the tools

calculate these statistics for the entire test and not for

particular “load steps” but this is not very useful when the

load changed during the run. Figure 5 represents the average

response time of the task of a key function with other

monitoring function running. This delay is generally termed

as “The Cost” or in other terms it is called the consumption of

bandwidth or resources. The evaluation report has to be

submitted after the completion of the evaluation

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 7

Fig 5: Average response time versus the elapsed scenario during the operation of automated software.

(Sample of performance testing result)

Automatic reports, customized to contain the most relevant

information, will be made available in a shared directory after

each test scenario execution. This will contain:

1. Detailed results of test scenarios

2. Summaries of response time data collected during test

run

3. Graphs of transaction throughput and all online monitors

collected during test

4. Error breakdown

The Daily status reports will be sent to test management, the

performance test team, business analysts and the performance

test technical support team during test execution. These will

detail:

1. Progress against plan and test objectives

2. Summary of results & findings so far

3. Planned next steps

The Flash reports will be provided after each test cycle,

containing:

1. Summary of progress against project plan – are we on

course to complete on time? Has the expected amount of

performance testing been done?

2. Summary of results & analysis so far with conclusions &

recommendations – Is the system meeting the

performance requirements? How can the performance be

improved?

The Full results report will be created once the planned tests

are completed, detailing:

1. Summary of tests run, results & system tuning conducted

2. Key findings, conclusions & recommendations

3. RAG metrics reporting on the Measurable Success

Criteria of each test – were the key test objectives met?

4. Statement of Readiness – concise statement answering

the key questions asked during the performance testing.

Is the application ready to go live?

4. CONCLUSION
The performance evaluation taxonomy has been developed

based on the best practices and practical testing and is

presented in the Appendix [A.1]

The evaluation of automated software is not an easy task and

they have to be given with additional effort to plan, define,

design and execute. It is an additional testing effort at the end

of the product development to ensure that the automated

software meets the performance requirement in terms of

reputation, financial or other critical aspects. Because the

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 8

automated software consumes the “The cost” of the actual

process in terms of transaction response, read/write delay or

the delay due to mapping with other UUMs the automated

software must be evaluated beyond its functional requirement

addressing the non-functional requirements such as Auto

recovery, self-diagnostics, auto logging, auto response to

exceptions, mechanism to monitor network health and

recovery, early warning system etc as shown in Figure 3 of

the section 2.1 of this paper. Authors have taken effort to

compile the performance evaluation taxonomy to ease out the

evaluator problems in derive and define the performance

requirement of the automated software deployed for the

monitoring. Further these best practices and taxonomy can be

tailored to meet application of different natures like semi-

automated, standalone, web-based projects.

5. REFERENCES
[1] K. Kumar, “Post Implementation Evaluation of

Computer-Based Information System: Current

Practices,” Comm. ACM, Vol. 33, No. 2, Feb. 1990, pp.

203- 212.

[2] J.S. Chandler, “A Multiple Criteria Approach for

Evaluating Information Systems,” MIS Quarterly, Vol. 6,

No. 1, Mar. 1982, pp. 61-74.

[3] V.R. Basili and H.D. Rombach, “The TAME Project:

Towards Improvement-Oriented Software

Environments,” IEEE Trans. Software Eng., Vol. 14, No.

6, June 1988, pp. 758-773.

[4] J. Mylopoulus, “Conceptual Modeling and Telos,” in

Conceptual Modeling, Databases and CASE, P.

Loucopoulos and R. Zicari, eds., Wiley & Sons, New

York, 1992.

[5] G. Boloix and P.N. Robillard, “Comprehensive Software

Metrics Framework,” Tech. Report EPM/RT-94/07,

Dept. Electrical and Computer Eng.,École

Polytechnique de Montréal, Montréal, 1994.

[6] L.L. Constantine, “Work Organization: Paradigms for

Project Management and Organization,” Comm. ACM,

Vol. 36, No. 10, Oct. 1993, pp. 34-43.

[7] Fuggetta, “A Classification of CASE Technology,”

Computer, Vol. 26, No. 12, Dec. 1993, pp. 25-38.

[8] J. Nielsen, Usability Engineering, Academic Press,

London, 1993.

[9] E. Brynjolfsson, “The Productivity Paradox of

Information Technology,” Comm. ACM, Vol. 36, No.

12, Dec. 1993, pp. 66-77.

[10] T.L. Saaty, The Analytic Hierarchy Process,McGraw-

Hill, New York, 1980.

[11] Clement, “Computing at Work: Empowering Action by

Low-level Users,” Comm. ACM, Vol. 37, No. 1, Jan.

1994, pp. 53-63.

[12] Brown, A.W. Wallnau, K.C, A framework for evaluating

software technology. IEEE Software, Vol. 13, No. 5,

pp.39–49

Appendix [A.1]

Table 1 Performance Evaluation Taxonomy

SlNo Scenarios Evaluation/Type Description

T.1 What is the best end-to-end

performance for each of the

transactions in the automated

application?. What is the Common

performance degradation due to

automated software itself?

Performance benchmarking Measure the performance (response latencies, resource usage

etc) of an application and determine whether it meets the

performance criteria of the business

T.2 How can we improve performance

without upgrading infrastructure?

How without disabling other core

functions of the automated

application. What is the time taken

for diagnostics?

Performance diagnostics

tuning

Identify the cause of a performance issue - find the bottleneck

& suggest remedial actions.

Performance timelines - breakdown of response times into

sub-components - comparison at various load levels to

understand scalability of contributing components

T.3 Will the delivered automated

application meet the performance

requirements?

Performance assurance Test whether an application provided by a third party vendor

meets agreed SLAs and is acceptable to the client

T.4 Will the newly added functions of

the application continue to meet our

performance requirements?

Performance regression Test to determine whether a new version of an application

performs at least as well as the previous version

T.5 How will the application perform

after it goes live? What is the

Maximum client it can connect?

Load testing Test the performance of an application under conditions of

predicted peak load and ensure that business processes still

work correctly

T.6 How to improve a company’s in-

house performance testing skills?

Training Mercury public course, Mercury courses hosted at SQS /

Client sites, bespoke training in the arts of performance

testing.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 9

T.7 At what point will we need new

hardware to replace our current

hardware?

How much do we need to spend to

ensure continued performance in

the coming years?

Capacity

Planning/Sizing/Scalability

Use performance tests simulating predicted usage of an

application to inform the client's infrastructure purchasing

plans.

Scalability assessment - horizontal (better components) versus

vertical (additional servers)

T.8 At what point does the application

or infrastructure suffer catastrophic

failure, or specified unacceptable

performance?

Stress Testing Find limits of application performance by applying load to the

breaking point of the system and observing the root cause of

failure

T.9 Will the application operate reliably

under prolonged continuous load?

Stability/Soak testing Test ability of an application to withstand long periods of load

- likely to find problems with capacity, memory usage etc that

do not occur with shorter tests

T.10 How will the application respond if

everyone logs in at once?

Spike Testing Test ability of an application to withstand sudden, short period

of extremely high load. Likely to find problems with queue

management, resource usage and integration of components

T.11 Will the product we are considering

using in our system give the desired

performance combined with all the

other components?

Product Evaluation Test whether a new system can scale to meet user demand.

Proof of concept that a new technology is scalable

T.12 Does the application function

correctly under real world

conditions?

Functionality Under Load Apply load and test all the business processes of an

application

T.13 How can we simulate internet

traffic coming from different

locations worldwide?

Remote testing Test execution based at a remote location to allow more

realistic internet traffic simulation. This could include:

Remote hosting of load generators, enabling a performance

test to apply load from one or more remote locations.

Penetration/security testing, where testers based remotely try

to illegally access a system.

T.14 How do we reduce costs of

performance testing whilst still

mitigating our risks?

Offshore Each of the above services can be wholly or partly performed

at remote locations, allowing the benefits of an off shoring

model to be gained

T.15 Which performance test tool should

we buy to test the automated

software?

Test tool recommendation/

evaluation

Analyze the system under test and decide the possible test

tools that could be used to performance test given the

technologies involved. Using proof of concept and

knowledge of test tools, recommend to the customer the tool

that best fits their needs

T.16 Which architecture should we use

to ensure system performance?

What are the different probes built

to ensure performance?

System architecture &

planning

Design & architecture of system components to ensure

performance. Recommendations on choice of system

components. Web page design/composition assessments -

optimization of design to improve performance

T.17 How do we know that response

times are acceptable, and when to

upgrade infrastructure?

Production monitoring Monitoring production systems to ensure that performance of

live system stays within the required boundaries.

6. AUTHORS PROFILE
S. Velmourougan is presently working as Scientist at

STQCIT, Chennai, STQC Directorate, Ministry of

Information & Communication Technology, Govt. of India.

He has obtained his B.E in Electronics and Communication

Engineering and M.S in Software Reliability from Anna

University, Chennai, India. He is an ISMS-Lead Auditor,

Certified Ethical Hacker (CEH), Certified Information

Security Professional (CISP), Certified Reliability

Professional (CRP) and Certified Software Test Manager

(CSTM). He is working in the field of application Security

Testing and Information Security Management System. His

experience comprises of Software Reliability Estimation,

Reliability Allocation, System Reliability Analysis, Failure

Analysis, and Reliability development/Growth testing. He has

developed various reliability engineering tools to assess the

reliability of software and hardware. He has published various

research and technical papers in reputed journals, conferences

and Magazines.

Dr. Dhavachelvan Ponnurangam is working as professor,

Department of Computer Science, Pondicherry University,

India. He has obtained his M.E. and Ph.D. in the field of

Computer Science and Engineering in Anna University,

Chennai, India. He is having around a decade of experience as

an academician and his research areas include Software

Engineering and Standards, Software Agents and Distributed

Systems. He has published around 50 research papers in

National and International Journals and Conferences. He is

heading two research groups working towards to develop the

standards for Attributes Specific SDLC Models & Evaluation

and Business Intelligent Logic Based Management and

Evaluation of Web Services.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.1, July 2012

 10

Dr. Baskaran Ramachandran is working as the Assistant

professor in Department of computer science, Anna

University, Chennai. He has obtained his M.E. and Ph.D. in

the field of Computer Science and Engineering in Anna

University, Chennai, India. He is having around a decade of

experience as an academician and his research areas include

Multimedia and principles, Software quality engineering,

Software Agents and Distributed networking. He has

published around 50 research papers in National and

International Journals and Conferences. He is the member of

various forums. He is the editor and the reviewer in various

journals. He is guiding research scholars working in area of

software standards for Attributes Specific SDLC Models &

Evaluation and Metric Based Efficient Traffic Management

and A Multi-object Image Retrieval systems.

