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ABSTRACT 

In this paper we have discussed a special lacunary 
interpolation problem in which the function values, first 
derivatives at the nodes and the third derivatives at any point λ 

(0  in between the nodes are prescribed. We have 

solved the unique existence and convergence problems, using 

spline functions. As this holds for any λ (0 we 

named it a generalized problem.  

General Terms 

Your general terms must be any term which can be used for 
general classification of the submitted material such as Pattern 
Recognition, Security, Algorithms et. al. 
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1. INTRODUCTION 

Let    be a 

partition of unit interval I = [0, 1] with 

  , k = 0, 1 ,… , n-1. Denote by  the 

class of quintic splines s(x) satisfying the condition that 

 and is quintic in each subintervals of I. In 

the past this class of splines is used by various authors with 

different interpolatory conditions. In [2] this class of splines is 

used to solve the interpolation problem with following 

conditions: 

    , k = 0, ….. , n; 

         , k = 0, ….. , n; 

        , k = 0, ….. , n-1;  

where      

      or    .      

Some other authors also solved the similar problems with 

other intermediate points. But the interesting thing is that here 

in this paper we solved a generalized problem when we take λ 

(0  as an intermediate point where third 

derivatives are prescribed. Later we can show that this result 

holds for any value of λ (0 . We proved the 

unique existence theorem and also shown the convergence. 

2. UNIQUE EXISTANCE THEOREM 

2.1 Theorem 1 
Given a partition ∆ of the unit interval  I = [0,1]  and the 

numbers  ,   , k = 0,1, ……. , n-1 ; 

  (0 , k = 0, 1, ……, n – 1 ; ,  ; there 

exists a unique spline s∆(x)  such that  

(1.1)

 

Here     = λ (   and 

 ,  k = 0, 1, …… , n – 1. 

2.1.1 Proof of Theorem 1 
Here we prove the theorem with the initial condition 

only, for the condition          

the similar method can be applied. 

Let us set 

(2.1)                     
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(2.2)                      

   , 

 

(2.3)                     

   , 

 For determining the coefficients we apply the interpolatory 

condition (1.1) and the continuity requirements that 

. Then we have  

 

(2.4)                       

   

(2.5)                       

   

                                   k = 1,2, ……….. , n-2   

and     (2.6)                       

 

(2.7)    

    

(2.8)    

    

(2.9)    

    

From  (2.5) we have, 

(2.10)  

 

(2.11)  
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 (2.12) 

 

Using values of these coefficients in (2.6) we get      

(2.13) 

 

(2.14)  

 

The coefficient matrix of the system of equations (2.13) and 

(2.14) in the unknowns  , k = 1,2, … ,n-1 is seen to be 

nonsingular and hence the coefficients  , k = 1,2, … ,n-

1, are uniquely determined and so are, therefore, the 

coefficients   ,  ,  , k = 1,2, … ,n-1. 

3. THEOREM OF CONVERGENCE 

Let   Then for the unique 

spline  s∆(x) of Theorem 1 associated with the 
function f , we have 
 
(3.1)   

 
  

And if    ≤  and H = 

 , then 

 (3.2)  

q = 0,1,2,3,4.                                                                                       

Where  and are some constants involving   

(0 .  

 

3.1 Auxiliary Lemmas 
Now we give three lemmas that are used to obtain the proof of 

the Theorem of convergence theorem. 

3.1.1 Lemma    

   Let    . 

Then we have for  k = 1,2, … ,n-1. 

 

                  Where . 

Proof   From  (2.14) we have  

(3.1.1)      = 

(  

                                                                 =   (say),  k = 1,2, 

…… , n-2. 

    

 

 then by Taylor’s formula    (3.1.2)   

 . 

Similarly if  then                      (3.1.3)   

  . 

Also from  (2.13) 
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(3.1.4)  = 

 

From (3.1.1) and (3.1.2) and the derivatives for  we have 

  This proves the assertion of lemma. 

3.1.2 Lemma  

  Let         and    ≤ 

 ,    H =  .  

Then we have for  k = 0,1, ..… , n-1.   

 

Where 

. 

Proof   From  (2.8) and (2.11) we see   , then 

(3.1.5)      =   

 +  ,     k = 0,1, …… , n-1 

Where    

 

(3.1.6)       . 

 , then        (3.1.7)       

  , where   

=   . 

Using Lemma 3.1, we have for  k =0,1, …… , n-1. 

 

The result clearly holds for k=0.     Hence if    ≤  λ 

 ,    H =  , 

we have from (3.1.5) to (3.1.7) 

             k = 0,1, …… , n-1. 

This proves Lemma 3.1.2. 

3.1.3 Lemma  

        Let     

Then we have for  k = 0,1, ..… , n-1 

        Where . 

 Proof     Following similar method we can get the results for  

 hence we omitted the proof. 

4. PROOF OF THEOREM 2       

Let    [  , k = 0,1, …… , n-1 

Then from (2.3) we have                           (4.1)   

=  

and                                                               (4.2)   

=   

Therefore     

 

=   
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            +  

. 

If  then using Lemma 3.1.3, we have  

                                                                     (4.3)     

 = . 

Again from (4.2) 

(4.4)    =   + 

 

 

                                             =  

+ (  ,  

  

Thus,             

. 

Now applying Lemma 3.1.2 and 3.1.3 we get, 

(4.5)  =  

+     =  

Now ,   = 

  ≤ 

(   

(4.6)   =  . 

Set      h(  = h(  = 0. 

So by Rolle’s theorem, there exists a   ,  

 ,  such that    =  - 

 = 0. 

This gives             = 

     ≤ 

(   

                                                              =  

(4.7)   =  . 

Again using interpolatory   conditions (1.1) we can write  

 = 

     

(4.8)   =  . 

Similarly  

 (4.9)   = 

     

                                                =  . 

This proves the theorem for . Next we consider 

the case when . Then from       Lemma 3.1.3 

              = 

 ,  

 

                                                    ≤  + 

 . 

Again  

             = 

 ,  

 

Which on using Lemma 3.2 and Lemma 3.3 , gives 

 (4.10)       ≤  + 

 . 

From (4.10) on using method of successive integration we at 

once have 

(4.11)       ≤  + 

 ,  q = 1,2,3,4. 

This proves the theorem of convergence for . 
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