Solution of a Birkhoff Interpolation Problem by a Special Spline Function

Ambrish Kumar Pandey
Department of Mathematics Integral University
Lucknow-226026
(INDIA)

K. B. Singh
Associate Professor
Dept. of Maths. \& Comp. Sc. The Papua New Guinea University of Technology
LAE, Papua New Guinea

Qazi Shoeb Ahmad
Associate Professor
Department of Mathematics Integral University Lucknow-226026
(INDIA)

Abstract

In this paper we have discussed a special lacunary interpolation problem in which the function values, first derivatives at the nodes and the third derivatives at any point λ $(0 \leq \lambda \leq 1)$ in between the nodes are prescribed. We have solved the unique existence and convergence problems, using spline functions. As this holds for any $\lambda(0 \leq \lambda \leq 1)$ we named it a generalized problem.

General Terms

Your general terms must be any term which can be used for general classification of the submitted material such as Pattern Recognition, Security, Algorithms et. al.

Keywords

Lacunary interpolation, Spline functions

1. INTRODUCTION

Let $\Delta: 0=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=1$ be a partition of unit interval $I=[0,1]$ with
$x_{k+1}-x_{k}=h_{k}, k=0,1, \ldots, n-1$. Denote by $S_{n, 5}^{(2)}$ the class of quintic splines $\mathrm{s}(\mathrm{x})$ satisfying the condition that $s(x) \in C^{3}(I)$ and is quintic in each subintervals of I. In the past this class of splines is used by various authors with different interpolatory conditions. In [2] this class of splines is used to solve the interpolation problem with following conditions:

$$
\begin{array}{ll}
s_{\Delta}\left(x_{k}\right)=f_{k} & , k=0, \ldots . ., n \\
s_{\Delta}^{v}\left(x_{k}\right)=f_{k}^{*} & , k=0, \ldots . ., n \\
s_{\Delta}^{(\prime \prime}\left(x_{k+1 / 3}\right)=f_{k+1 / 3}^{(J /} & , k=0, \ldots . ., n-1 ;
\end{array}
$$

where $x_{k+1 / 3}=\frac{1}{3}\left(x_{k}+x_{k+1}\right)$
$s_{\Delta}^{\ddot{E}}\left(x_{0}\right)=f_{0}^{e}$
or $\quad s_{\Delta}^{\text {wI }}\left(x_{0}\right)=f_{0}^{\text {wI }}$.
Some other authors also solved the similar problems with other intermediate points. But the interesting thing is that here in this paper we solved a generalized problem when we take λ
$(0 \leq \lambda \leq 1)$ as an intermediate point where third derivatives are prescribed. Later we can show that this result holds for any value of $\lambda(0 \leq \lambda \leq 1)$. We proved the unique existence theorem and also shown the convergence.

2. UNIQUE EXISTANCE THEOREM

2.1 Theorem 1

Given a partition Δ of the unit interval $\mathrm{I}=[0,1]$ and the numbers $f_{k}, f_{k}^{v}, \mathrm{k}=0,1, \ldots \ldots, \mathrm{n}-1$;
$f_{k+\lambda}^{\text {we }}(0 \leq \lambda \leq 1), \mathrm{k}=0,1, \ldots \ldots, \mathrm{n}-1 ; f_{0}^{\text {w }}, f_{0}^{\text {we }} ;$ there exists a unique spline $\mathrm{s}_{\Delta}(\mathrm{x}) \in S_{n, 5}^{(2)}$ such that
(1.1)

Here $x_{k+\lambda}=\lambda\left(x_{k}+x_{k+1}\right)$ and
$h_{k}=x_{k+1}-x_{k}, \mathrm{k}=0,1, \ldots \ldots, \mathrm{n}-1$.

2.1.1 Proof of Theorem 1

Here we prove the theorem with the initial condition
$s_{\Delta}^{w}\left(x_{0}\right)=f_{0}^{\text {E. }}$ only, for the condition
$s_{\Delta}^{\text {"'I }}\left(x_{0}\right)=f_{0}^{\text {w' }}$ the similar method can be applied.
Let us set
$\left\{\begin{array}{l} \\ s\end{array}\right.$
$\left\{\begin{array}{c}s_{\Delta}(x) \text { when } x_{0} \leq x \leq x_{1} \\ s_{k}(x) \text { when } x_{k} \leq x \leq x_{k+1}, k=1,2, \ldots \ldots, n-1 .\end{array}\right.$

$$
\begin{equation*}
s_{\Delta}(x)= \tag{2.2}
\end{equation*}
$$

$f_{0}+\left(x-x_{0}\right) f_{0}+\frac{\left(x-x_{0}\right)^{2}}{2!} f_{0}^{w}+\frac{\left(x-x_{0}\right)^{3}}{3!} a_{0,3}+$ $\frac{\left(x-x_{0}\right)^{4}}{4!} a_{0,4}+\frac{\left(x-x_{0}\right)^{5}}{5!} a_{0,5}$

$$
\begin{equation*}
s_{k}(x)= \tag{2.3}
\end{equation*}
$$

$$
f_{k}+\left(x-x_{k}\right) f_{k}^{v}+\frac{\left(x-x_{k}\right)^{2}}{2!} a_{k, 2}+
$$

$$
\frac{\left(x-x_{k}\right)^{\pi}}{3!} a_{k, 3}+\frac{\left(x-x_{k}\right)^{4}}{4!} a_{k, 4}+\frac{\left(x-x_{k}\right)^{5}}{5!} a_{k, 5}
$$

For determining the coefficients we apply the interpolatory condition (1.1) and the continuity requirements that
$s_{\Delta}\left(x_{k}\right) \in C^{2}(I)$. Then we have

$$
\left\{\begin{array}{l}
f_{1}=f_{0}+h_{0} f_{0}^{v}+\frac{\left(h_{0}\right)^{2}}{2!} f_{0}^{\sigma}+\frac{\left(h_{0}\right)^{s}}{3!} a_{0,3}+\frac{\left(h_{0}\right)^{4}}{4!} a_{0,4} \tag{2.4}\\
f_{1}^{v}=f_{0}^{v}+h_{0} f_{0}^{\pi \prime}+\frac{\left(h_{0}\right)^{z}}{2!} a_{0,3}+\frac{\left(h_{0}\right)^{s}}{3!} a_{0,4}+\frac{\left(h_{0}\right)^{4}}{4!} a \\
f_{\lambda}^{*=}=a_{0,3}+\lambda h_{0} a_{0,4}+\frac{\left(\lambda h_{0}\right)^{z}}{2!} a_{0,5}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
f_{k+1}=f_{k}+h_{k} f_{k}^{v}+\frac{\left(h_{k}\right)^{2}}{2!} a_{k, 2}+\frac{\left(h_{0}\right)^{3}}{3!} a_{k, 3}+\frac{\left(h_{0}\right)^{4}}{4!} \tag{2.5}\\
f_{k+1}^{v}=f_{k}^{v}+h_{k} a_{k, 2}+\frac{\left(h_{k}\right)^{2}}{2!} a_{k, 3}+\frac{\left(h_{0}\right)^{3}}{3!} a_{k, 4}+! \\
f_{k+\lambda}^{v \prime \prime}=a_{k, 3}+\lambda h_{k} a_{k, 4}+\frac{\left(\lambda h_{0}\right)^{2}}{2!} a_{k, 5}
\end{array}\right.
$$

$$
k=1,2, \ldots \ldots \ldots \ldots, n-2
$$

$$
\begin{aligned}
& \text { and } \\
& \left\{\begin{array}{l}
a_{k+1}=a_{k}+h_{k} a_{k, 3}+\frac{\left(h_{k}\right)^{2}}{2!} a_{k, 4}+\frac{\left(h_{k}\right)^{s}}{3!} a_{k, 5} \\
a_{1,2}=f_{0}^{w}+h_{0} a_{0,3}+\frac{\left(h_{0}\right)^{2}}{2!} a_{0,4}+\frac{\left(h_{0}\right)^{\mathbb{3}}}{3!} a_{0,5}
\end{array}\right.
\end{aligned}
$$

$a_{0,5}=\frac{1}{\left(10 \lambda^{2}-8 \lambda+1\right)}\left[\frac{480(3 \lambda-1)}{h_{0}^{5}}\left(f_{1}-f_{0}-\right.\right.$
$\left.h_{0} f_{0}^{\sigma}-\frac{h_{0}^{2}}{2!} f_{0}^{\sigma}\right)-\frac{120(4 \lambda-1)}{h_{0}^{4}}\left(f_{1}^{\sigma}-f_{0}^{\sigma}-h_{0} f_{0}^{v}\right)+$ $\left.\frac{20 f_{\lambda}^{\prime \prime}}{h_{0}^{2}}\right]$
$a_{0,4}=\frac{1}{\left(10 \lambda^{2}-8 \lambda+1\right)}\left[\frac{-120\left(6 \lambda^{2} 1\right)}{h_{0}^{4}}\left(f_{1}-f_{0}-\right.\right.$
$\left.h_{0} f_{0}^{\sigma}-\frac{h_{0}^{2}}{2!} f_{0}^{\sigma}\right)+\frac{24\left(10 \lambda^{2}-1\right)}{h_{0}^{s}}\left(f_{1}^{\sigma}-f_{0}^{\sigma}-h_{0} f_{0}^{v}\right)-$
$\left.\frac{8 f_{\lambda}^{n}}{h_{0}}\right]$
(2.9)
$a_{0,3}=\frac{1}{\left(10 \lambda^{2}-8 \lambda+1\right)}\left[\frac{120(2 \lambda-1)}{h_{0}^{8}}\left(f_{1}-f_{0}-\right.\right.$
$\left.h_{0} f_{0}^{v}-\frac{h_{0}^{2}}{2!} f_{0}^{v}\right)-\frac{12(5 \lambda-2)}{h_{0}^{z}}\left(f_{1}^{v}-f_{0}^{v}-h_{0} f_{0}^{v}\right)+$
$\left.f_{\lambda}{ }^{* \prime \prime}\right]$

From (2.5) we have,
$a_{k, 5}=\frac{1}{\left(30 \lambda^{2}-24 \lambda+3\right)}\left[\frac{1440(3 \lambda-1)}{h_{k}^{5}}\left(f_{k+1}-f_{k}-\right.\right.$
$\left.h_{k} f_{k}^{v}\right)-\frac{20(72 \lambda-18)}{h_{k}^{4}}\left(f_{k+1}^{v}-f_{k}^{v}\right)+$
$\frac{20(18-36 \lambda)}{h_{k}^{\mathrm{s}}} a_{k, 2}+$
$a_{k, 4}=\frac{1}{\left(30 \lambda^{2}-24 \lambda+3\right)}\left[\frac{\left(-2160 \lambda^{2}+360\right)}{h_{k}^{4}}\left(f_{k+1}-\right.\right.$
$\left.f_{k}-h_{k} f_{k}^{v}\right)+\frac{\left(720 \lambda^{2}-72\right)}{h_{k}^{s}}\left(f_{k+1}^{v}-f_{k}^{v}\right)+$
$+\frac{\left(360 \lambda^{2}-108\right)}{h_{k}^{2}} a_{k, 2}-$

$$
\left.-\frac{24}{h_{k}} f_{k+\lambda}^{m \prime \prime}\right]
$$

(2.12)

$$
\begin{aligned}
& a_{k, 3}=\frac{1}{\left(30 \lambda^{2}-24 \lambda+3\right)}\left[\frac { (7 2 0 \lambda ^ { 2 } - 3 6 0 \lambda) } { h _ { k } ^ { 3 } } \left(f_{k+1}-\right.\right. \\
& \left.f_{k}-h_{k} f_{k}^{v}\right)+\frac{\left(72 \lambda-180 \lambda^{2}\right)}{h_{k}^{2}}\left(f_{k+1}^{v}-f_{k}^{v}\right)+ \\
& \begin{array}{r}
\frac{\left(108 \lambda-180 \lambda^{2}\right)}{h_{k}} a_{k, 2}+ \\
\left.+3 f_{k+\lambda}^{v i n}\right]
\end{array}
\end{aligned}
$$

Using values of these coefficients in (2.6) we get (2.13)

$$
\begin{aligned}
& a_{1,2}= \\
& \frac{1}{\left(10 \lambda^{2}-8 \lambda+1\right)}\left[\frac{\left(20 \lambda^{3}-34 \lambda^{2}+18 \lambda-3\right)}{(2 \lambda-1)} f_{0}^{\text {EI }}+\frac{1}{3} h_{0} f_{\lambda}^{\text {II }}+\right. \\
& \frac{20\left(-6 \lambda^{2}+6 \lambda-1\right)}{h_{0}^{2}}\left(f_{1}-f_{0}-h_{0} f_{0}^{v}\right)+ \\
& +\frac{\left(120 \lambda^{3}-172 \lambda^{2}+72 \lambda-\right.}{(2 \lambda-1) h_{0}} \\
& \left.\left.f_{0}^{v}\right)\right] \\
& \text { (2.14) } a_{k+1,2} \\
& +\frac{\left(-30 \lambda^{2}+36 \lambda-9\right)}{\left(30 \lambda^{2}-24 \lambda+3\right)} a_{k, 2}= \\
& \frac{1}{\left(30 \lambda^{2}-24 \lambda+3\right)}\left[\begin{array}{l}
\frac{\left(-360 \lambda^{2}-360 \lambda-60\right)}{h_{k}^{2}}\left(f_{k+1}-f_{k}-h_{k} f_{k}^{v}\right) \\
+\frac{\left(180 \lambda^{2}-168 \lambda+24\right)}{h_{k}}\left(f_{k+1}^{v}-f_{k}^{v}\right)+h_{k} f_{k}^{*}
\end{array}\right.
\end{aligned}
$$

The coefficient matrix of the system of equations (2.13) and (2.14) in the unknowns $a_{k, 2}, \mathrm{k}=1,2, \ldots, \mathrm{n}-1$ is seen to be nonsingular and hence the coefficients $a_{k, 2}, \mathrm{k}=1,2, \ldots, \mathrm{n}$ 1 , are uniquely determined and so are, therefore, the coefficients $a_{k, 3}, a_{k, 4}, a_{k, 5}, \mathrm{k}=1,2, \ldots, \mathrm{n}-1$.

3. THEOREM OF CONVERGENCE

Let $f \in C^{l}(I), l=5,6$. Then for the unique spline $\mathrm{s}_{\Delta}(\mathrm{x})$ of Theorem 1 associated with the function f, we have

$$
\begin{aligned}
& \| s_{\Delta}^{(5.1)}(x)- \\
& f^{(5)}(x) \| \begin{cases}O\left(\omega_{5}(H)\right), & \text { if } f \in \\
K_{3} H\left\|f^{(6)}\right\|+O\left(\omega_{5}(H)\right), & \text { if } f \in\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \| s_{\Delta}^{(q)}(x)- \\
& f^{(q)}(x) \|\left\{\begin{array}{cc}
o\left(H^{4-q} \omega_{5}(H)\right), \quad \text { if } f \in C^{5}(I), \\
K_{2} H^{6-q}\left\|f^{(6)}\right\|+O\left(H^{5-q} \omega_{5}(H)\right), \text { if } f \in C^{6}(I),
\end{array}\right. \\
& q=0,1,2,3,4 . \\
& \text { Where } K_{2} \text { and } K_{3} \text { are some constants involving } \lambda \\
& (0 \leq \lambda \leq 1) .
\end{aligned}
$$

3.1 Auxiliary Lemmas

Now we give three lemmas that are used to obtain the proof of the Theorem of convergence theorem.

3.1.1 Lemma

$$
\text { Let } \quad A_{k, 2}=a_{k, 2}-f_{k}^{w}
$$

Then we have for $\mathrm{k}=1,2, \ldots, \mathrm{n}-1$.

$$
\begin{gathered}
\left|A_{k, 2}\right|=\left\{\begin{array}{c}
o\left(\sum_{v=0}^{k-1} h_{v}^{3} \omega_{5}\left(h_{v}\right)\right), \quad \text { if } f \in C^{5}(I) \\
K_{1} h_{k}^{4} f^{(6)}+O\left(\sum_{v=0}^{k-1} h_{v}^{4} \omega_{6}\left(h_{v}\right)\right), \text { if } f \in C^{6}(I)
\end{array}\right. \\
\text { Where } \mathrm{K}_{1}=\frac{\left(20 \lambda^{3}-30 \lambda^{2}+12 \lambda-1\right)}{120\left(30 \lambda^{2}-24 \lambda+3\right)} .
\end{gathered}
$$

Proof From (2.14) we have
(3.1.1) $\quad A_{k+1,2}+\frac{\left(-30 \lambda^{2}+36 \lambda-9\right)}{\left(30 \lambda^{2}-24 \lambda+3\right)} A_{k, 2}=$
$\left(a_{k+1,2}-f_{k+1}^{\text {w }}\right)+\frac{\left(-30 \lambda^{2}+36 \lambda-9\right)}{\left(30 \lambda^{2}-24 \lambda+3\right)}\left(a_{k, 2}-f_{k}^{\text {ü }}\right)$

$$
=\alpha_{k}(\text { say }), \mathrm{k}=1,2,
$$

...... , n-2.

If $f \in C^{5}(I)$ then by Taylor's formula
$\alpha_{k}=O\left(h_{k}^{3} \omega_{5}\left(h_{k}\right)\right)$.
Similarly if if $f \in C^{5}(I)$, then
$\alpha_{k}=K_{1} h_{k}^{4} f_{k}^{(6)}+O\left(h_{k}^{4} \omega_{6}\left(h_{k}\right)\right)$.
Also from (2.13)

And if $\frac{\max h_{k}}{\min h_{k}} \leq \lambda \leq \infty$ and $\mathrm{H}=$
$\max _{0 \leq k \leq n-1} h_{k}$, then
(3.2)
(3.1.4) $\left|A_{1,2}\right|=$
$\left|a_{1,2}-f_{1}^{\text {U. }}\right|=$
$\left\{\begin{array}{r}o\left(h_{0}^{3} \omega_{5}\left(h_{v}\right)\right), \text { if } f \in C^{5}(l \\ K_{2} h_{0}^{4} f^{(6)}+O\left(h_{0}^{4} \omega_{6}\left(h_{v}\right)\right), \\ \text { if } f \in C^{6}(I) \text { Where }\end{array}\right.$

From (3.1.1) and (3.1.2) and the derivatives for α_{k} we have
$\left|A_{k_{2} 2}\right|=$
$\left\{\begin{array}{c}O\left(\sum_{v=0}^{k-1} h_{v}^{3} \omega_{5}\left(h_{v}\right)\right), \text { if } f \in C^{5}(I) \\ K_{1} h_{k}^{4} f^{(6)}+O\left(h_{k}^{4} \omega_{6}\left(h_{k}\right)\right), \text { if } f \in C^{6}(I) \\ \text { This proves the assertion of lemma. }\end{array}\right.$

3.1.2 Lemma

Let $\quad A_{k, 4}=a_{k, 4}-f_{k}^{(4)} \quad$ and $\frac{\max h_{k}}{\min h_{k}} \leq$
$\lambda \leq \infty, \quad \mathrm{H}=\max _{0 \leq k \leq n-1} h_{k}$.
Then we have for $\mathrm{k}=0,1, \ldots \ldots, \mathrm{n}-1$.
$\left|A_{k, 4}\right|=$
$\left\{\begin{array}{c}O\left(\omega_{5}(H)\right), \text { if } f \in C^{5}(I) \\ K_{2} H^{2}\left\|f^{(6)}\right\|+O\left(H \omega_{6}(H)\right), \text { if } f \in C^{6}(I)\end{array}\right.$

Where
$\mathrm{K}_{2}=$
$\frac{-40 \lambda^{3}+30 \lambda^{2}-1}{10\left(30 \lambda^{2}-24 \lambda+3\right)}$

Proof From (2.8) and (2.11) we see $A_{0,2}=0$, then
(3.1.5) $A_{k, 4}=a_{k, 4}-f_{k}^{(4)}=\frac{\left(360 \lambda^{2}-108\right)}{\left(30 \lambda^{2}-24 \lambda+3\right) h_{k}^{2}}$
$A_{k, 2}+\beta_{k}, \quad \mathrm{k}=0,1$, \qquad n-1

Where $\beta_{k}=$
$\frac{1}{\left(30 \lambda^{2}-24 \lambda+3\right)}\left[\frac{\left(-2160 \lambda^{2}+360\right)}{h_{k}^{4}}\left(f_{k+1}-f_{k}-h_{k} f_{k}^{v}\right)+\frac{(}{-}\right.$
(3.1.6) $\quad \beta_{k}=O\left(h_{k} \omega_{5}(H)\right)$, if $f \in C^{5}(I)$.

If $\mathrm{f} \in \mathrm{C}^{6}(\mathrm{I})$, then (3.1.7)
$\beta_{k}=K_{2} h_{k}^{2} f_{k}^{(6)}+O\left(h_{k}^{2} \omega_{6}\left(h_{k}\right)\right)$, where K_{2}
$=\frac{\left(-40 \lambda^{3}+30 \lambda^{2}-1\right)}{10\left(30 \lambda^{2}-24 \lambda+3\right)}$.

Using Lemma 3.1, we have for $\mathrm{k}=0,1$ \qquad $\mathrm{n}-1$.
$\left|A_{k, 4}\right|=\left\{\begin{array}{l}O\left(\frac{1}{h_{k}^{2}} \sum_{v=0}^{k-1} h_{v}^{3} \omega_{5}\left(h_{v}\right)\right)+O\left(h_{k} \omega_{5}\left(h_{k}\right)\right), \quad \text { if } f \in C^{5}(l) \\ K_{2} h_{k}^{2} f_{k}^{(6)}+O\left(h_{k}^{2} \omega_{6}\left(h_{k}\right)\right), \text { if } f \in C^{6}(I)\end{array}\right.$ The result clearly holds for $\mathrm{k}=0$. Hence if $\frac{\max h_{k}}{\min h_{k}} \leq \lambda$

$$
\leq \infty, \quad \mathrm{H}=\max _{0 \leq k \leq n-1} h_{k},
$$

we have from (3.1.5) to (3.1.7)

$$
\begin{aligned}
& \left|A_{k, 4}\right|= \\
& \left\{\begin{array}{l}
O\left(\omega_{5}(H)\right), \text { if } f \in C^{5}(I) \\
K_{2} H\left\|f^{(6)}\right\|+O\left(H \omega_{6}(H)\right), \text { if } f \in C^{6}(I) \\
\mathrm{k}=0,1, \ldots \ldots, \mathrm{n}-1 .
\end{array}\right.
\end{aligned}
$$

This proves Lemma 3.1.2.

3.1.3 Lemma

$$
\text { Let } A_{k, 5}=a_{k, 5}-f_{k}^{(5)}
$$

Then we have for $\mathrm{k}=0,1, \ldots ., \mathrm{n}-1$
$\left|A_{k, 5}\right|=$
$\left\{\begin{array}{c}o\left(\omega_{5}(H)\right), \text { if } f \in C^{5}(I) \\ K_{3} H\left\|f^{(6)}\right\|+O\left(H \omega_{6}(H)\right), \text { if } f \in C^{6}(I) \\ \text { Where } \mathrm{K}_{2}=\frac{\left(10 \lambda^{3}-6 \lambda+1\right)}{10\left(30 \lambda^{2}-24 \lambda+3\right)} .\end{array}\right.$
Proof Following similar method we can get the results for $\left|A_{k_{3} 5}\right|$ hence we omitted the proof.

4. PROOF OF THEOREM 2

Let $x \in\left[x_{k}, x_{k+1}\right], \mathbf{k}=\mathbf{0}, \mathbf{1}, \ldots \ldots, \mathbf{n - 1}$
Then from (2.3) we have (4.1) $s_{k}^{(5)}(x)$
$=a_{k, 5}$
and
(4.2) $s_{k}^{(5)}(x)$
$=a_{k, 4}+\left(x-x_{k}\right) a_{k, 5}$
Therefore
$\left|s_{k}^{(5)}(x)-f^{(5)}(x)\right|$
$=\left|s_{k}^{(5)}(x)-f_{k}^{(5)}+f_{k}^{(5)}-f^{(5)}(x)\right|$

$$
\begin{aligned}
& \leq\left|a_{k, 5}-f_{k}^{(5)}\right|+ \\
& \left|f_{k}^{(5)}-f^{(5)}(x)\right| .
\end{aligned}
$$

If $f \in C^{5}(I)$ then using Lemma 3.1.3, we have
$\left|s_{k}^{(5)}(x)-f^{(5)}(x)\right|=O\left(\omega_{5}(H)\right)^{(4.3)}$
Again from (4.2)
(4.4) $s_{k}^{(4)}(x)-f^{(4)}(x)=\left(a_{k, 4}-f^{(4)}\right)+$
$\left(x-x_{k}\right)\left(a_{k, 5}-f_{k}^{(5)}\right)-[$
$\left.f^{(4)}(x)-f_{k}^{(4)}-\left(x-x_{k}\right) f_{k}^{(5)}\right]$

$$
=A_{k, 4}
$$

$+\left(x-x_{k}\right) A_{k, 5}-\left(x-x_{k}\right)\left(f^{(4)}\left(\eta_{k}\right)-f_{k}^{(5)}\right)$,
$x_{k} \leq \eta_{k} \leq x$
Thus,
$\left|s_{k}^{(5)}(x)-f^{(5)}(x)\right| \leq\left|A_{k, 4}\right|+H\left|A_{k, 5}\right|+$ $H \omega_{5}(H)$

Now applying Lemma 3.1.2 and 3.1.3 we get,
(4.5) $\left|s_{k}^{(4)}(x)-f^{(4)}(x)\right|=O\left(\omega_{5}(H)\right)$
$+H O\left(\omega_{5}(H)\right)=O\left(\omega_{5}(H)\right)$.
Now, $\left|s_{k}^{\text {we }}(x)-f^{\text {ex }}(x)\right|=$
$\left|\int_{x_{k+\lambda}}^{x}\left[s_{k}^{(4)}(t)-f^{(4)}(t)\right] d t\right| \leq$
$\left(x-x_{k+\lambda}\right)\left|s_{k}^{(4)}(x)-f^{(4)}(x)\right|$
(4.6) $\left|s_{k}^{* *}(x)-f^{\text {w" }}(x)\right|=\left(H \omega_{5}(H)\right)$.

Set $\quad \mathrm{h}\left(x_{k}\right)=\mathrm{h}\left(x_{k+1}\right)=0$.
So by Rolle's theorem, there exists a μ_{k},
$x_{k}<\mu_{k}<x_{k+1}$, such that $h^{v}\left(\mu_{k}\right)=s_{k}^{w}\left(\mu_{k}\right)$ -
$f^{w}\left(\mu_{k}\right)=0$.
This gives $\quad\left|s_{k}^{\text {Ï }}(x)-f^{\text {II }}(x)\right|=$
$\left|\int_{\mu_{k}}^{x}\left[s_{k}^{m \prime}(t)-f^{\prime \prime \prime}(t)\right] d t\right| \leq$
$\left(x-\mu_{k}\right)\left|s_{k}^{\text {wi }}(x)-f^{\text {mi }}(x)\right|$

$$
=O\left(H H \omega_{5}(H)\right)
$$

$$
\begin{equation*}
\left|s_{k}^{w}(x)-f^{\omega}(x)\right|=\left(H^{2} \omega_{5}(H)\right) \tag{4.7}
\end{equation*}
$$

Again using interpolatory conditions (1.1) we can write

$$
\begin{aligned}
& \quad\left|s_{k}^{v}(x)-f^{*}(x)\right|= \\
& \left|\int_{x_{k}}^{x}\left[s_{k}^{*}(t)-f^{*}(t)\right] d t\right| \\
& \text { (4.8) }\left|s_{k}^{*}(x)-f^{\prime}(x)\right|=\left(H^{3} \omega_{5}(H)\right) .
\end{aligned}
$$

Similarly
(4.9) $\left|s_{k}(x)-f(x)\right|=$
$\left|\int_{x_{k}}^{x}\left[s_{k}^{v}(t)-f^{v}(t)\right] d t\right|$

$$
=O\left(H^{4} \omega_{5}(H)\right)
$$

This proves the theorem for $f \in C^{5}(I)$. Next we consider the case when $f \in C^{6}(I)$. Then from Lemma 3.1.3

$$
\begin{gathered}
\left|s_{k}^{(5)}(x)-f^{(5)}(x)\right|= \\
\left|\left(a_{k, 5}-f^{(5)}\right)+\left(x-x_{k}\right) f_{k}^{(5)}\left(\xi_{k}\right)\right|
\end{gathered}
$$

$$
x_{k} \leq \xi_{k} \leq x
$$

$$
\leq K_{3} H\left\|f^{(6)}\right\|+
$$

$O\left(H \omega_{6}(H)\right)$.
Again

$$
\begin{aligned}
& \quad s_{k}^{(4)}(x)-f^{(4)}(x)= \\
& A_{k, 4}+\left(x-x_{k}\right) A_{k, 5}+\frac{\left(x-x_{k}\right)^{2}}{2} f^{(5)}\left(\xi_{k}\right) \\
& x_{k} \leq \xi_{k} \leq x
\end{aligned}
$$

Which on using Lemma 3.2 and Lemma 3.3, gives
(4.10) $\left|s_{k}^{(4)}(x)-f^{(4)}(x)\right| \leq K_{3} H\left\|f^{(6)}\right\|+$
$\left(H \omega_{6}(H)\right)$.
From (4.10) on using method of successive integration we at once have
(4.11) $\left|s_{k}^{(q)}(x)-f^{(q)}(x)\right| \leq K_{3} H^{6-q}\left\|f^{(6)}\right\|+$ $\left(H^{6-q} \omega_{6}(H)\right), \mathrm{q}=1,2,3,4$.

This proves the theorem of convergence for $f \in C^{6}(I)$.

5. REFERENCES

[1] Burkett, J. and Verma, A.K. (June-1995) On Birkhoff Interpolation $(0 ; 2)$ case, Aprox. Theory and its Appl. , 11;2.
[2] Chawala, M. M., Jain, M.K. and Subramanian, R. (1990) On numerical Integration of a singular two-point boundary value problem Inter. J. Computer. Math. Vol 31, 187-194.
[3] Cheney, E. W. (1966) Interpolation to approximation Theory, McGraw Hill, New York.
[4] Davydov, O. (1997) On almost Interpolation, Journal of Approx. Theory 91(3), 396-418.
[5] Goodman, T.N.T. ; Ivanov, K.G. ; Sharma, A.(1996) Hermite interpolation in the roots of unity, Journal of Approx. Theory, 84(1), 41-60.
[6] Jhunjhunwala, N. and Prasad, J. (1994) on some regular and singular problems of Birkhoff interpolation, Internet. J. Math. \& Math. Sci. 17 No.2, 217-226.
[7] Lorentz, G.G., (1973) Approximation Theory, Academic Press Inc. New York.
[8] Lorentz, G.G., Jetter, K. Riemenschneider, S.D. (1983) Birkhoff Interpolation, Addison-Wesley Publishing.
[9] Neumann, E. (1981) cubic spline with given values of the second derivatives at the knots, Demonstratio Mathematica XIV, No. 1, 155-125.
[10] Saxena, A. , Singh Kulbhushan; Lacunary Interpolation by Quintic splines, Vol. 66 No.1-4 (1999), 0-00, Journal of Indian Mathematical Society, Vadodara, India.
[11] Schoenberg, I.J. (1972) Notes on spline functions, I, Koninkl. Nederl. Akademievan WestenschappenAmesterdam, Series A 75, No. 5 and Indag. Math. 34 No. 5.

