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ABSTRACT 
Mixed convection boundary layer flow, over an isothermal 
vertical plate, of an incompressible and viscous fluid with 
variable thermal conductivity is studied in the present paper 
.The convective flow is taking place in such a porous medium 
whose permeability is assumed to be spatially variable. The 
mixed convective flow is due to the simultaneous effects of 
(1) free stream along the plate and (2) the buoyancy force 
caused by the variations in density due to temperature 

difference. The effects of viscous dissipation have been taken 
into account and the partial differential equations governing 
the boundary layer flow are converted into to a system of 
ordinary differential equations by using suitable similarity 
transformations. These equations are solved numerically and 

effects of various parameters such as 
2

e

Gr

R

, 2

eR

   and Eckert 

number
cE etc. on the flow fields are investigated and 

presented graphically.    

General Terms 
Velocity in X-direction u

 

v- Velocity in Y-direction
 

- Kinematic viscosity  

 - Density of the fluid 

g – Acceleration due to gravity
 

cp = Specific heat at constant pressure 

Pr – Prandtl Number 

Gr – Thermal Grashof Number 

U - Free stream velocity  

T - Temperature of the fluid 

Tw - Temperature of the fluid near the plate 

T - Temperature of the fluid away from the plate

 Coefficient of volume expansion    

Ec - Eckert number 

k -  Variable permeability of the medium 

² -  Non dimensional permeability parameter 

(y)- Variable thermal conductivity 

Keywords 
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1. INTRODUCTION 
Free and forced convection flow and heat transfer problems in 
a fluid saturated porous medium have attracted the attention 
of many workers due to their immense practical importance as 
well as a number of engineering and geophysical applications 
such as, in petroleum reservoirs, geothermal reservoirs, 
industrial and agricultural water distribution, drying of porous 
solids and cooling processes of nuclear reactors, to name a 
few. It is reported in the literature that the study of free 

convection boundary layer flow was initiated by 
Polhausen[1]. Siegel [2] extended the previous investigations 
to deal with the problem of transient free convection flow 
about an isothermal vertical plate. Cheng and Minkowycz [3] 
gave a good account of free convection flow about a vertical 
plate embedded in porous medium with application to heat 
transfer using similarity transformations. The buoyancy 
driven heat and mass transfer problem in porous medium from 
a vertical plate was investigated by Bejan and Khair [4]. 

 It is to be noted that all the aforementioned studies have been 
confined to flows involving such fluids and media that  have 

constant properties. The physical properties of the fluids, 
mainly viscosity may change significantly with temperature. 
Gary et al. [5] have considered the effects of variation of 
viscosity on convective heat transfer. Kays and Crawferd[6] 
have described various relations between the physical 
properties of fluids and temperature. Most of the studies 
involving variable viscosity have considered the permeability 
and thermal conductivity as constants. Tierney [7] has shown 

that the porosity of the medium may change causing a change 
in permeability of the medium. Chandrasekhar et al. [8] took 
into account the variation of permeability in the study of 
mixed convection in the presence of horizontal impermeable 
surfaces in saturated porous media and have shown that the 
variability in porosity has significant effects on the velocity 
distribution and heat transfer. Chandrasekhar and Namboodiri 
[9] carried out the investigation for mixed convection about 

inclined surfaces in a saturated porous media incorporating 
the variation of permeability and thermal conductivity due to 
packing of particles. Singh and Sharma [10] have considered 
the porous medium with periodic permeability, while 
investigating the three dimensional free convection flow and 
heat transfer. Salem and Fathy[11], in their investigation 
relating to  MHD heat and mass transfer flow near  a 
stagnation point , have incorporated the  temperature 
dependent variation of viscosity and thermal conductivity 

Hassanien[12] considered the influence of variable 
permeability and thermal conductivity on the mixed 

convection flow from an impermeable vertical wedge wherein 
he obtained a non similarity solution for the case of variable 
surface heat flux. Ibrahim and Hassanien[13] and Massour 
and El-Shaer[14] have considered the effects of variable 
permeability and thermal conductivity under varying kinds of 
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flow situations. Reddy and Reddy[15] studied the effects of 
variable viscosity and thermal conductivity on an electrically 
conducting fluid flow past a  moving vertical plate. All these 
studies have generally neglected the viscous dissipation, 
although viscous dissipation in porous media is an interesting 

phenomenon and plays an important role in many physical 
processes .The effect of viscous dissipation has been 
incorporated in the modeling of flows in various ways by 
different workers. Nield[16] has discussed quite extensively 
the Brinkman equation and the concept and modeling of 
viscous dissipation in porous media . 

Thus, the aim of the present paper is to investigate the effects 
of variable permeability and thermal conductivity on the 

mixed convection boundary layer flow adjacent to a vertical 
plate in porous medium taking into account viscous 
dissipation. 

2. MATHEMATICAL FORMULATION 
Let us consider a steady two dimensional flow of a viscous, 
incompressible electrically conducting fluid along a vertical 
plate in a porous medium. x direction is taken along the 
leading edge of the plate and y is normal to it, i.e., the plate 
starts at x=0 and extends parallel to the x axis and is of semi 
infinite length. The plate temperature is uniformly maintained 

at wT and the temperature of the fluid far away from the plate 

is T  .
   wT  is higher than the temperature T .  A steady 

flow parallel to the plate with free stream velocity U  is 

assumed to take place. The mixed convective flow is the 
result of   the simultaneous effects of (1) the free stream along 

the plate and (2) the  buoyancy force caused by the variations 
in density due to temperature difference.  Let u and v be the 
velocity components in the boundary layer region along the x 
and y- axes respectively. The permeability of the porous 
medium and the thermal conductivity of the fluid are assumed 
to be variable. Permeability and thermal conductivity both are 
assumed to be exponential functions of distance as proposed 
by Chandrasekhar[9]. Then under the Boussinesq and the 

usual boundary layer approximations, the governing equations 
for the Darcy type flow, following Nield and Bejan [18] and 
Schlichting[19]  are given by: 
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Boundary conditions  

0, v 0, , at 0wu T T y       (4) 

, , atu U T T y   
 

We introduce the following non-dimensional variables:    
1

2U
y

x





 
  

   

 ( )U x f   , such that , vu
y x

  
  
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 . 

Now, we have

   

 '

u U f 
 ,    '1

v
2

 
U

f f
x




 
And these values of the velocity components satisfy the 

equation (1). 

Further we take 

  






w

T T

T T
 

 
Following Chandrasekhar et al. as stated above, the variations 
in the permeability and thermal conductivity have been taken 
as given below- 

*

0
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where *d and d are constants, 
0 , 

0k  and 
0  are the values 

of the diffusivity, permeability and porosity respectively at the 
edge of the boundary layer, b  being the ratio of the thermal 

conductivity of the solid to that of the fluid. 
Now using above non-dimensional variables equations (2) to 
(4) become  
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The transformed boundary conditions are given by-  

'

'

0 0 1 1 at 0

1 0 0 at

     


   

f f

f

  

  
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The physical problem is now mathematically represented by 
the equations (6) and (7) and these equations involve four 

parameters 
2

2
, , r

e e

Gr
P

R R


 and

cE .  From the expressions of Gr   

and
eR given above in the equation (8), it is clear that Gr  

represents the non-dimensional buoyancy parameter and, 

therefore, gives a measure of the free convection and 
eR , the 

Reynolds number, gives  the forced convection. Thus, the 

value of the ratio 2

e

Gr

R
 represents the relative importance of 

forced and free convection in determining the over all flow. In 

the similar fashion, the parameter
2

eR


, being a ratio of non- 

dimensional permeability parameter and the Reynolds number 
represents the relative importance of Darcy and general 
viscous drag. 

The Eckert number 
cE  is due to the viscous dissipation. 

 

3. RESULT AND DISCUSSION  
The equations (6) and (7) together with the boundary 
conditions (8) are solved numerically using BVP 4C method. 
The results depicting the nature of effects of various 

parameters on the profiles of velocity 
'f and temperature    

are displayed with the help of graphical illustrations.  

In figure 1, the effects of the parameter 
2

e

Gr

R

 on the velocity 

and temperature distribution are shown. 
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a = 0.1;  2/Re = 1; d1 = 3.0; b = 2;  

 0 =0.4; d = 1.5; Pr =0.7; Ec=0.5 

Figure 1 

From the figure, it is observed that
2

e

Gr

R
 has very significant 

effects on the velocity  as well as on the temperature profiles. 

As we increase the value of 
2

e

Gr

R
, we find from the figure 1(a) 

that the velocity in the boundary layer increases rapidly near 
the plate and then gradually decreases and  smoothly mixes 
with the uniform free  stream. We have considered the effect 
of this parameter by taking its value negative also, which 

means the opposing flow, because 
2

e

Gr

R
0  means 

wT T  , 

(
2

0
e

Gr

R
 means aiding flow); its effect is depicted by taking 

2

e

Gr

R
=-1.    

From the figure 1(b), we find that the effects of the parameter 

2

e

Gr

R
on the temperature is almost similar, i.e., the temperature 

increases very rapidly close to the plate if we increase the 

value of 
2

e

Gr

R
 and then the temperature profile asymptotically 

merges with the ambient fluid . A noteworthy aspect of this 
profile is that, from and after a certain point on  - axis, the 

value of non-dimensional temperature is greater for smaller 

values of
2

e

Gr

R
.  

The effects of the parameter 
2

eR


 on the velocity and 

temperature profiles are shown in the figures 2(a) & 2(b) 
respectively.  

We observe that as the value of this parameter is increased, 
the non-dimensional velocity increases near the plate and then 
it steadily acquires the free stream velocity value. We have 
also investigated the effect on liquids (water) by taking the 

value of the Prandtl number Pr =7.0. We have taken 

2

e

Gr

R
=0.15, 1.0 and 

2

eR


=1.5. 

2

e

Gr

R
> 0.75 represents forced 

convection, and in the case of 
2

e

Gr

R
=1.0, a significant increase 

in the velocity is observed. 

 
a = 0.1;Gr/Re2 = 0.15; d1 = 3.0; b = 2;  

 0 =0.4; d = 1.5; Pr =0.7; Ec=0.5 

Figure 2 

The parameter 
2

eR


 has an increasing effect on the 

temperature profiles. Again, we have differentiated the case of 
higher Pr fluids by plotting the effects by dashed lines in the 
figure 2 and it is observed that in the case of mixed 
convection, the increase in temperature is more than it is in 
the case of forced convection.  
 

 
 

a = 0.1;Gr/Re2 = 0.15;  2/Re = 1; d1 = 3.0; b = 2;  

 0 =0.4; d = 1.5; Pr =0.7 

Figure 3 

 
a = 0.1;Gr/Re2 = 0.15;  2/Re = 1; d1 = 3.0; b = 2;  

 0 =0.4; d = 1.5; Pr =0.7; Ec=0.5 

Figure 4 

(b) (a) (b) 

(a) (b) 

(a) (b) 

(a) 
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The effects of Eckert number cE
 on the flow and heat 

transfer are shown in figures 3(a) and 3(b) respectively. From 

both the figures, it is observed that an increase in cE
 has the 

uniform effect of increasing the velocity and temperature 
profiles alike. 

Figures 4(a) and 4(b) depict the effects of the permeability 
parameter on the velocity and temperature profiles. For the 
sake of discussing the various cases, we have made use of 
following notation-  

  *(1 )

f

d e 




 , and as a result the equations (6) and (7) 

respectively become  
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Various cases corresponding to 0, 0, 0, 0f f         

and *

1( ) 0d d   have been plotted in figures 4(a) and 4(b). It 

is noteworthy that 
1 0d   corresponds to  constant 

permeability case and in this case we find the standard 
velocity profile i.e., velocity, satisfying no slip condition at 
the plate, steadily increases and attains the free stream 
velocity. Also, it is observed that in this case the velocity is 
less than what it is when permeability of the medium varies. 
But it has an increasing effect on the temperature profile. 

0f    corresponds to the  case when the modification 

suggested by Nield in modeling the dissipation is not taken 

into account and the effect of the absence of this modification 
is to decrease both the velocity  as well as the 

temperature. =0 corresponds to the case when there is no 

Darcy resistance in the boundary layer as well as no Nield 

correction term in  the expression for viscous dissipation. This 
has the effect of significantly increasing the velocity but it has 
the opposite effect on the temperature profile. 
 

4. CONCLUSION  
From the foregoing discussions, it is clear that the variations 
in the thermal conductivity and medium permeability have 
significant effects on the velocity and temperature profiles. 
The findings may prove to be important from the point of 
view of having greater insight and understanding of various 

physical processes.  
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