
International Journal of Computer Applications (0975 – 888)
Volume 48– No.6, June 2012

65

A Temporal Database Compression with Differential

Method

Sushil Kumar

Dept. of C. S. E.
NIRT, Sajjan Singh

Nagar, Bhopal (M.P.),
India

Sarita S. Bhadauria
Dept. of E. C. E., MITS,

Gwalior (M.P.), India

Roopam Gupta

Dept. of I. T., UIT,
RGPV,

Bhopal (M.P.), India

ABSTRACT
Now days it is very tedious job to keep files for personal as well
as commercial computing. There are various type of compressing
technique used, but one step ahead from them available
technique is described here. Almost every application the
backend used is database. That why my technique is dedicated to
this type of databases. In this proposed technique we consider

every type of compression, but when comes to date and time
based database, not much compression technique deals with it.
For text type compression there are many techniques same for
images. But here we are proposing mainly for time and date type
data bases. The practical use for this compression may useful for
LIC policies, Stock Exchange, Railways Reservations databases
etc. It may also useful for Employees working in a firm,
maintaining daily database for salary purposes like Time in and

Time out. For this type of database the proposed technique will
give a big amount of compressions than any other type of
techniques. We have techniques regarding database compression
are character, memo, number, date, time compression which can
work for individual fields in a database. In this paper main
concentration has been given for time compressions. We
suggested one example in tabular form on that our differential
and time method has been applied.

Keywords
Compression, Compression Ratio, Compression factor, Fixed
Length Coding (FLC), Huffman after using Fixed Length Code
(HFLC), LZW(Lampel Ziv Welch), Lossy Compression,
Nonlossy Compression, RLE (Run Length Encoding), Saving
Percentage, Temporal Database.

I. INTRODUCTION
As Compression is known as, it is art of presenting the
information in a compact form rather than of uncompressed
form. There are various compressions proposed but for
particularly date and time very rare one. In this type of
compression a substantial amount of memory can be saved. Our

methodology will compress even more than earlier available
compression types. What we are proposing it can be
implemented on any type of software. It does not require any
special type of software. What our methodology is, it can use
daily today life, as we said in abstract it very much used in
different types of databases. We have taken one example of
employee time in and time out, which is all most every
organizations are using in today computer era. Because it is very

easy to keep track of all employee working under one
organization.

Many compression techniques available are Run Length
Encoding, Huffman Encoding, Lempel Zev Welch, Different
Dictionary Based Compression, Delta and Differential

Compression, Fixed Length Code, Burrow Wheeler Transform,
Move to Front Technique, Word based

Text Compression, Pattern Matching in Compression Form etc.
some of them are described here [19].

1.1 RLE
If a data item d occurs n consecutive times in the input stream,
replace the n occurrences with the single pair nd. The n consecutive

occurrences of a data item are called a run length of n, and this
approach to data compression is called run length encoding or RLE
[18, 20].

1.2 Huffman Encoding
It uses the probability distribution of the alphabets of the source to
develop the code word for symbols. According to the probabilities

the code word has been assigned. Shorter word code words for
higher probabilities and longer code words for smaller probabilities
are assigned. For this type of work binary tree is created using the
symbols as leaves according to their probabilities and path of those
are used as code words. There are two types of Huffman Family are
used: Static Huffman and Adaptive Huffman. In static coding first
frequencies and then it generates a tree for both compression and
decompression process. But adaptive method develops the tree while

calculating the frequency and there will be two trees in both the
process [22, 23].

1.3 Shannon Fano Coding
This is similar to Static Huffman Coding only difference is the
creation of code word. All other process is similar one [20].

1.4 LZW
LZW is a general compression algorithm capable of working on
almost any type of data. It is generally fast in both compressing and
decompressing data and does not require the use of floating-point
operations. Also LZW writes compressed data as bytes and not as
words [20].

LZW is referred as a substitution or dictionary-based encoding

algorithm. The algorithm builds a data dictionary (also called

a translation table or string table) of data occurring in an

uncompressed data stream. Patterns of data (substrings) are
identified in the data stream and are matched to entries in the
dictionary. If the substring is not present in the dictionary, a code
phrase is created based on the data content of the substring, and it is
stored in the dictionary. The phrase is then written to the compressed

output stream.

Data Compression technique on text Files: A comparison study has
been done by Haroon Altarawneh et. al., he has taken different
methods of data compression English text files, LZW, Huffman,

International Journal of Computer Applications (0975 – 888)
Volume 48– No.6, June 2012

66

Fixed Length Coding (FLC) and Huffman after using Fixed
Length Code (HFLC). He evaluated a test on these algorithms on
different text files or different file sizes and taken a comparison
in terms of comparison: Size, Ratio, Time (Speed) and entropy.
And they found that LZW is the best algorithm in all the
compression scales.

According to them LZW is a general compression algorithm
capable of working on almost any type of data. It creates a table
of strings commonly accruing in the data being compressed, and

replaces original data with reference into the table. LZW
Compression replaces strings of characters into a single code.
Compression occurs when a single code is output instead of a
string of characters. It starts with a dictionary of all the single
character with indexes. It starts expanding the dictionary as
information gets send through. Pretty soon, redundant strings
will be coded as a single bit, and compression has occurred [23].

II. MEASURING PERFORMANCES OF

COMPRESSION
There are various criteria of measuring the performance of the

compression depends on the nature of the application used.
Mainly it is used for space the time efficiency is other factor. As
we all know that the compression behavior depends on the
redundancy of symbols in the source files. It is very difficult to
measure performance of compression in general. The
performance of the algorithms depends on structure of the input
source and also category of the compression algorithms i.e. lossy
or lossless. For example lossy and lossles examples are given in

my previous paper [15]. The measuring of general performances
is difficult and there should be different measurements to
evaluate the performances of different compression techniques.

2.1 Compression Ratio

It is the ratio between the size of the compressed file and the size
of the source file [7].

 Size after compression
Compression Ratio =
 Size before compression

2.2 Compression Factor

It is just reverse of the compression ratio. That is ratio between the
size of the source file and the size of the compressed file.

 Size before compression
Compression Factor =

 Size after compression

2.3 Saving Percentage
It calculates the shrinkage of the source file as a percentage.

 Size before compression - size after
compression

 Saving Percentage =
%

 Size before compression

All the above methods evaluate the effectiveness of compression
using file sizes. There are some other methods to evaluate the
performances of compression algorithms like Compression time,
Computational Complexity and Probability Distribution are also
used to measure the effectiveness [20].

DATA Compression is the science and art of representing
information in a compact form.
The data may also classified as text, audio, image and video while
the real digital data format consists of 0‟s and 1‟s in a binary format

 Text data are usually represented by 8-bit extended ASCII
code or EBCDIC having extension .txt, .tex, .doc.

 Binary data include data base file spreadsheet data,
excitable files and program codes having extension as
.bin.

 Image data are represented often by a two dimensional
array of pixels in which each pixel is associated with its

color code having extension as .bmp, and .psd.

 Graphics data are in the form of vectors or mathematical
equations, for example data format is .png (portable

network graphics).

 Sound data are represented by a wave function having

extension as wav [7].

III. PROPOSED NEW METHODOLOGY

 Characters can be coded into 5-bits coding.

 Memo can be coded into 6-bits coding.

 Dates can be coded into 16-bits coding.

 Time can also be coded into 16-bits coding [15].

IV. IMPLIMENTATION OF PROPOSED

 METHODOLOGY
We have proposed some new techniques that can be implemented as
given below:

4.1 Character
 In general 8-bit ASCII code have been used for representing

character, but when one declare any attribute to be of character type
they often interested only in alphabet character from A-Z or a-z. But
with character some more information is needed while dealing with
character like space, end of line, comma, full stop, single codes, and
nothing. These all will counts only 32 in number and that can be
coded in 5-bit coding only [7].

4.2 Memo
The memo field often includes character other than alphabets like
number underscore plus minus etc. and it is found that at most 64
symbols are used in general so in this situation 6 bits are sufficient to
represent them. Out of these 32 are the same as that in the previous
case and remaining 32 are used for numbers 0 to 9 and special
characters like “”, !, @, #, $, ^, &, *, (,), -, _, =, +, <, >, ?, /, :, ;, |, \.

So in this way 64 symbols can be accommodated in 6-bit coding
only [7].

4.3 Number
An attribute having this type is often used to represent certain
quantity or amount or extent that anything may have. It can be either
the integer or float depending upon the nature or accuracy of the

quantity.
By far the most compact and exact representation of this type of data
is their own binary equivalent. But it has found that of the following
method, which can take advantage of nature and format of the
quantity.
Differential Method, Delta Method, BCD Code [15].

International Journal of Computer Applications (0975 – 888)
Volume 48– No.6, June 2012

67

4.3.1 Differential Method
In this approach when one wants to compress this type of data
we can either look out for the smallest or largest value for this
attribute, and store this value together with the table structure.
Now the original value could be represented as the difference

between the original value and this value, which in fact will be
less than the original quantity, if the values are distributed in a
linear fashion. For example if it has the following values like755,
762,792,720,725,789 then if one choose 720 as the base value
and store it together with the attribute definition in the table
structure, then the original data will be stored as 35,42,72,0,5,69
much less than the original one. Now during the query
processing these values could be used directly without any

additional processing if the query is being modified to process
them.

4.4 Date
Date field is often associated with temporal database, and most
often used inside the data ware house, that contains historical
information about any aspect of life. Most database store the

date as 8-byte entry (2 for day, 2 for month & 4 for year). Here
we have proposed only 2-byte format that works with traditional
DOS and WINDOW environment [7].

4.5 Time
The usual ways of storing a time stamp of any event require 6-
byte and implemented in that manner in most of the database

systems. But here again we could save substantial space by
representing a time stamp in a manner that require only 2-byte
for its storage that used in DOS and WINDOW. The Bit-wise
distribution of Hour, Minutes & Second is shown below.

H H H H H M M M M M M S S S S S

The time can be converted into a 2-byte value using the
following formula.

Time = 2048*HOUR+32* MINUTE + SEC/2.

This scheme is quite common in traditional MS-DOS file system
where second value is measured in two-second interval. If we
want to be more precise we have to add one more bit to
accommodate second entry because 6 bits are required to

represent 60-second domain. We will take the first mentioned
scheme to represent time of any event.

Let we have a time value of 16:40:24 in HH: MM: SS format,
applying this to formula.

We get time = 34060 and its binary equivalent is:

1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0

Hour Minutes Second

So in this way we can represent this time stamp. Now to get
each of these separately we have to perform the bit wise shift
operation in the following way. In this field 1952 could be used
for temporal variable and 1984 for NULL value.

Hour: Right shift the entry by 11 Bit position.

Minutes: Left shift by 5-Bit position followed by right shift of
10 times.

Second: Left shift by 11-bit position followed by right shift of
11 times and multiply it by 2.

There is one problem it counts in 2 seconds intervals, other than
that it works efficiently like other environments.

V. RESULTS AND EVALUATION OF

PROPOSED METHODOLOGY

We have taken some 25 employee records on one day attendance
from an organization. Now apply on that the different compressions
which are proposed in this paper above. In below table we have
applied Differential Compression for numbers and Time
Compression on both Time fields and also calculated the number of
bits before compression and after compression. Below the table we
have calculated the total number of bits before compression and after
compression. One can see that original size i.e. ASCII size in bits is
3000. But the same file size has been compressed to 1064 bits. The

same comparison is also can be seen graphically given below. In
modern database systems table structure is also stored together with
the database file so that any application can make use of it. When we
consider this compression scheme we will store this structure
without any modification, it is only the data that will be stored
according to this new scheme. The file also store some additional
words like field separator, end of record to mark and distinguish
separate attribute and record, and these will be there in proportion to

the number of records in the file.
From table1 the compression ratio, compression factor and saving
percentage can be found as below:
Compression Ratio = 1064/3000 = 0.035467.

Compression Factor = 3000/1064 = 28.19548.

Saving Percentage = (3000 – 1064) / 3000 = 0.6453 = 64.53 %.

It means there is saving in memory is 64.53. Through graph shown
below is also giving the clear picture of saving a drastic difference
between original size and compressed size. The blue one is before
compression i.e. full coverage of graph, but the red one is only
compressed one. So after compression only this much area of storage
is required and it is very less, only 100 – 64.53 = 35.47 % of original
size.

Table1. List of employees for one day attendance

Emp

loyee

ID

Time in Time out Original

size

(Bits)

Compressed

size (Bits)

136 08:30:00 16:30:55 120 44

101 08:35:09 16:20:34 120 38

134 08:37:07 16:10:02 120 44

108 08:39:58 16:10:00 120 38

112 08:45:09 15:55:56 120 44

109 08:45:03 16:40:09 120 38

138 08:46:00 16:30:34 120 44

135 08:47:34 16:50:55 120 44

100 08:47:39 16:00:02 120 38

111 08:48:00 16:01:59 120 44

137 08:48:34 16:02:02 120 44

103 08:48:35 16:10:00 120 38

195 08:48:36 16:34:00 120 44

128 08:48:37 16:01:11 120 44

104 08:49:45 16:55:09 120 38

124 08:50:02 16:20:00 120 44

142 08:51:00 16:21:00 120 44

178 08:52:54 16:04:04 120 44

129 08:52:55 16:04:05 120 44

159 08:53:09 16:06:59 120 44

192 08:53:10 16:12:12 120 44

184 08:53:11 16:11:16 120 44

189 08:53:57 16:00:58 120 44

156 08:54:49 16:23:12 120 44

174 08:55:46 15:56:57 120 44

 TOTAL 3000 1064

International Journal of Computer Applications (0975 – 888)
Volume 48– No.6, June 2012

68

VI. CONCLUDING REMARK
In our paper we have taken original size of Employee record. On
that our proposed methodology has been applied. We have
presented a very new compression technique for temporal
database. Our technique will give better results, so that the
proposed technique has better performance. The CPU utilization
will also increases due to compression. Also compression is
beneficiate for Input and Output performance. The graph above

fig.1 will give the clear picture of compression. The red colour
area is only required after compression rest can be saved. In
comparison to blue area red is much smaller, it shows better
compression.

VII. REFERENCES
[1] A.S. Tanenbaum “Computer Network” (Fourth Edition

Prentice-Hall of India Limited).

[2] Cormack, G. V. 1985. “Data Compression on a
Database System”. Commun. ACM 28 12, (Dec.),
1336-1342.

[3] Debra A. Ielwer and Daniel S. Hirschberg “Data
Compression” –IEEE JUNE 2002.

[4] Navathe S.B, Elmasn R. “Fundamentals of Database
System” (Pearson Education).

[5] Pujari. A. K “Data Mining Technique” (University
Press).

[6] Reghbati, H.K “An Overview of Data Compression
Technique” IEEE computer (1981).

[7] Saloman D. “Data Compression the Complete
Reference” Springer, 3rd Edition (2004).

[8] William Stallings, “Network Security Essentials
Application and Standard” (Pearson Education)

[9] Holger Kruse, Amar Mukherjee, “Data Compression
Using Text Encryption” FL 32816 Page No. 1068-
0314/97 Years 1997 IEEE Department of Computer
Science University of Central Florida Orlando, 32816.

[10] En-Hui Yang And John C. Kieffer, “On The
Performance Of Data Compression Algorithms Based
Upon String Matching” Fellow Ieee, Ieee Transactions
On Information Theory, Vol, 44, No. 1, January 1998

0018-9448 1998 Ieee.

[11] Ming-Bo Lin, Member and Yung-Yi Chang, “A New
Architecture of a Two-Stage Lossless Data Compression
and Decompression Algorithm” IEEE TRANSACTIONS
ON VERY LARGE SCALEINTEGRATION (VLSI)
SYSTEMS, VOL, 17, NO, 9, SEPTEMBER 2009 1063-
8210 Years 2009 IEEE.

[12] „N. Magotra‟, W. McCoy‟, S. Stearns‟ Dept. of EECE, “A
Lossless Data Compression In Real Time F. Livingston.”
University of New Mexico, Albuquerque, NM 87131:

Dept, 9311, Sandia National Laboratory, Albuquerque,
NM 87185 1058-6393/95 year 1995 IEEE.

[13] Thanos Makatos, Yannis Klonatos, Manolis Marazakis,
Michail D. Flouris, and Angelos Bilas, “ZBD: Using
Transparent Compression at the Block Level to Increase
Storage Space Efficiency”, Foundation for Research and
Technology – Hellas (FORTH), P.O. Box 2208, Heraklion,
GR 71409, Greece, 978-07695-2/10, © 2010 IEEE.

[14] Ming-Bo Lin, Member, IEEE, and Yung-Yi Chang, “A
New Architecture of a Two-Stage Lossless Data
Compression and Decompression Algorithm”, 1063-8210,
©2009 IEEE.

[15] Sushil Kumar, Dr. Sarita S. Bhadauria, Dr. Roopam
Gupta, “A Digital Compression Scheme Using
Delta and Differential Methods”, IJCA (0975-8887)
Volume 25 – No.7, July 2011, page No. 18 – 25.

[16] Senthil Shanmugasundaram, Robert Lourdusamy, “IIDBE:
A Lossless Text Transform for Better Compression”
International Journal of Wisdom Based Computing, Vol. 1
(2), August 2011, Page No. 1 – 6.

[17] Tanakorn Wichaiwong, Kitti Koonsanit, Chuleerat
Jaruskulchai, “A Simple Approach to Optimized Text
Compression‟s Performance” 4th International Conference
on Web Services Practices, IEEE Computer Society, 978-

0-7695-3455-8/08, Page no. 66 – 70.

[18] M. Baritha Begum, Dr. Y. Venkataramani, “An Efficient
Text Compression for Massive Volume of Data” IJCA
(0975 - 8887), Volume 21 – No. 5, May 2011, page No. 5
– 9.

[19] Md. Nasim Akhtar, Md. Mamunur Rashid, Md. Shafiqul
Islam, Mohammod Abul Kashem, Cyrll Y. Kolybanov,
“Position Index Preserving Compression for Text Data”
JCS&T Vol. !! No. 1, April 2011, Page No. 9 – 14.

[20] S. R. Kodituwakku, U.S. Amarasinghe, “Comparison of
Lossless Data Compression Algorithms for Text Data”
IJCSE Vol. 1 No. 4 416-425, ISSN : 0976-5166, Page No.
416-4125.

[21] Rexline S. J, Robert L, “Dictionary Based Preprocessing
Methods in Text Compression – A Survey” IJWBC, Vol. 1
(2), August 2011, Page No. 13-18.

[22] Umesh S. Bhadade, Prof. A. I. Trivedi, “Lossless Text

Compression using Dictionaries” IJCA (0975 - 8887)
Volume 13- No. 8, January 2011, Page No. 27-34.

[23] Haroon Altarawneh, Mohammad Altarawneh, “Data
Compression Techniques on Text Files: A Comparison
Study”, IJCA (0975 - 8887) Volume 26- No.5, july2011.

