
International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

29

Four Stage Pipelined 16 bit RISC on Xilinx Spartan 3AN

FPGA

Aboobacker Sidheeq.V.M
Department of Electrical & Computer Engineering,

Institute of Technology,
Hawassa University,

P. O. Box 05, Hawassa, Ethiopia

ABSTRACT
This paper describes the design and implementation of a 16
bit 4 stage pipelined Reduced Instruction Set Computer
(RISC) processor on a Xilinx Spartan 3AN Field
programmable gate array (FPGA). The processor implements
the Harvard memory architecture, so the instruction and data

memory spaces are both physically and logically separate.
The RISC processor architecture presented in this paper is
designed by six units, they are instruction cache, instruction
unit, decode unit, execute unit, data cache unit and register
file unit. The processor has been described using Verilog
HDL, simulated using ModelSim 6.5-SE simulator and
synthesized using Xilinx ISE 11.1i.The proposed processor
has been implemented and physically tested Xilinx FPGA

Spartan 3AN development board, It uses ChipScope Pro 9.2i
embedded logic analyzer to monitor any or all of the signals
in the design.

Keywords
FPGA, VERILOG HDL, RISC

1. INTRODUCTION
Reduced Instruction Set Computers (RISCs) are now in
widespread use for all type of computational tasks [4]. In the
area of scientific computing, RISC workstation are being
increasingly used for compute intensive task such as digital

signal and image processing. Pipelined RISC is an evolution
in computer architecture, it emphasizes on speed and cost
effectiveness over the ease of hardware description language
programming and conservation of memory and RISC based
designs will continue to grow in speed and ability, more
rapidly than CISC design [1]. Pipelining, a standard feature in
RISC processors, is much like an assembly line. Because the
processor works on different steps of the instruction at the
same time, more instructions can be executed in a shorter

period of time [5].

FPGA based computing architectures offer a unique
opportunity for the design of custom instruction processor
matched to user specified application. One or several loop
bodies can be synthesized on each of the FPGAs [8]. Internal
FPGA register resources and direct wires can be used to
establish high performance inter stage communication,
avoiding excessive buffer read/write and speed, space,

facilities and feature inclusion in their design. The designer
may even specify the pin number and timing constraints to
suit their requirements [4].

This paper presents a very simple 16 bit general purpose 4
stage pipelined processor on FPGA. The instruction cycle of
pipeline stages are namely instruction fetch, instruction
decode, ALU operation and register file write. After every
instruction fetch, the program counter (PC) pointed to next the

selected Instruction. The architecture in this paper supports 16

instructions, which are described in the figure 2.3 (Section II).
They can be broadly classified into Arithmetic, Logical,
Shifting and Rotational Instructions. In this paper all
components of processor design have been designed in
Verilog code, implemented and tested on Xilinx FPGA
Spartan 3AN development board. ModelSim have been used
for simulation. Before mapping the entire processor, all the
six units in the entire processor architecture is separately

mapped to the FPGA and verified by executing a random
testbench which is also synthesized to the FPGA [4].

This paper is organized as follows. There are 6 sections in this
paper. The introduction is given in section I; Section II
describes about the system architecture. It also explains the
each instruction format and addressing modes used in the
processor. The design flow of 16 bit RISC processor
architecture is given in section II; Section IV describes the

simulation and synthesis results of the pipelined design by
selecting best and suitable Xilinx Spartan 3an FPGA. It also
gives the detailed synthesis report and other parameters,
which is required for the optimization of the design. The
simulation results consists of all the six modules separately
and the combined top module waveforms in the system
architecture ; The conclusion at the end in section V.

2. INSTRUCTION SET AND

PROCESSOR ARCHITECTURE
A pipelined RISC improves CPU speed and system

throughput because several instruction can be processed in
parallel [1]. The CPU can begin processing the next
instruction before the current instruction is completed, that is
the system can overlap the execution of contiguous
instructions [5].

Fetching the instruction from main memory or cache is a
major bottleneck due to the relatively slow access time. The
slow access time can be alleviated by prefetching instruction
before they are required by processing unit. The prefetched

instructions are loaded into a prefetch buffer where they are
retained until needed by the processor. Prefetching can be
overlapped with normal processing and can be accomplished
on unused memory bus cycle [1] [7].

There are many different stages in a pipeline, with each stage
performing one unique operation in the instruction processing.
When the pipeline is full, a result is obtained every clock
cycle [1]. A 4 stage pipeline is shown in Figure 1. The

Instruction fetch stage fetches the instruction from memory,
The Decode stage decode the instruction and fetches the
operands, The Execute stage perform the operation specified
in the instruction, The store stage store the result in the
destination location. Four instructions are in progress at any

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

30

given clock cycle. Each stage of the pipeline performs its task
in parallel with all other stages.

Four clock cycle

Figure 1: Example of 4 stage pipeline

If the instruction required is not available in cache, then a
cache miss occur, necessitating a fetch from main memory
[7]. This is referred to as a pipeline stall and delays processing
the next instruction. Information is passed from one stage to
the next by means of storage buffer as shown in Figure 2.
There must be a register in the input of each stage (or between
stages) to store information that is transmitted from the

preceding stage. This prevents data being processed by one
stage from interfering with the following stage during the
same clock period.

Storage buffer

Figure 2: Four stage of pipeline showing the Inter stage

storage buffer

RISC processors have only a small number of instructions
compared to complex instruction set computer (CISC). The
instructions are also smaller in size with a smaller number of
field and usually of fixed length. Most instructions have same
format with limited number of addressing modes and executed

by hardware. RISC processors have an instruction cache and
data cache, only load and store instructions reference memory
[5].

Figure 3: Instructions & Instructions set format for the

pipelined RISC processor

The operands are loaded from register file and stored in the
register file. There are large register files that provide fast
access, thereby eliminating many slow memory accesses [1].
The control unit is hardwired, not micro program controlled,
for increased speed [7].

Design module presents the Verilog design of pipelined RISC
processor with no prefetch buffer. Although this is a small

RISC processor, the same technique can be applied to any size
processor. There are 16 instructions and the various fields for
each instruction as shown in Figure3.All instructions, except
load and store, have the same format.

Figure 4: Structural block diagram for the pipelined RISC

processor

There are six units (modules) in the processor architecture of

16 bit pipelined RISC. Instruction cache (icache), instruction
unit (iunit), decode unit (decode), execution unit (eunit), data
cache (dcache) and register file (regfile). Each unit will be
behavioral oXr mixed design module and will be compiled

Fetch Decode Execute

EEe

Store

Fetch

Decode

Execute

EEe

Store

Decode Fetch Execute Store

Opcode

Opnd

A

Opnd

B Dst

nnnn RRRR RRRR RRRR

15 12 11 8 7 4 3 0

 Where RRRR specifies on of sixteen register

for Opnd A, Opnd B and Dst

Load Operation

Opcode

Opnd A

Dst

1110

(Load)

Memory

Address RRR

15 12 1110 9 5 4 3 0

Store Operation

Opcode

Opnd

A Dst

1111

(Load) RRR

Memory

Address

15 12 11 9 8 5 4 0

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

31

and simulated using a test bench to show binary output and
waveforms. The entire processor will then configure using a
structural module and will display the waveforms. The
structural block diagram of Figure 4 shows the hierarchy. The
system architecture of Figure 5 shows the six units and their

interconnections.

Figure 5: System Architecture for the pipelined RISC

processor

The instruction cache and data cache will be preloaded in their
respective modules with the instruction and data. The

instruction cache content shows all the instruction and the
application program. A predefined program is used so that the
result can be easily verified. The operand size is sixteen bits.

RISC instruction typically has a fixed length instruction
format [6]. The instruction length for this design is 16 bits.
Only load and store instruction can access memory [1]. The
addressing mode is register that means operand is in the
register file. In this design there are 16 registers, which are

initialized by 16 load instruction that load certain data cache
contents into the register file. The initial contents of register
file shown in Table 1. The final contents of register file are

shown in Table 2.

Table 1. Register file contents before execution

Address Data Address Data

0000 0000 0000 0000

0000

1000 0010 0010 0000

0000

0001 0000 0000 0100

0100

1001 0100 0100 0000

0000

0010 0000 0000 1000

1000

1010 1000 1000 0000

0000

0011 0000 0000 1011

1011

1011 1010 1010 0000

0000

0100 0000 0000 1111

1111

1100 1011 1011 0000

0000

0101 0100 0100 0000

0000

1101 1100 1100 0000

0000

0110 1000 1000 0000

0000

1110 1101 1101 0000

0000

0111 1011 1011 0000

0000

1111 1111 1111 0000

0000

Table 2. Register file contents after execution

Address Data Address Data

0000 0000 0000 0100

0100

1000 1000 0111 1111

1111

0001 0000 0000 0100

0100

1001 0100 0100 1111

1111

0010 0000 0000 1000

1000

1010 0000 0000 0000

0000

0011 0100 0100 0000

0001

1011 0000 0000 0010

0010

0100 0100 0100 1111

1111

1100 0000 0001 0001

0000

0101 0000 0000 1111

1111

1101 0000 0000 1111

1111

0110 0000 0000 1000

1000

1110 0000 0001 1111

1110

0111 1111 1111 1011

1100

1111 1111 1111 0000

0000

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

32

2.1 Instruction Cache
The small dark squares represent the ports of module. There

are two ports in the instruction cache. Instruction, which sends
16 bit instruction to the iunit, and a port for 6 bit program
counter pc that receives the necxt instruction cache address
from iunit. The instruction cache is as shown in the Figure 6.

Figure 6: Instruction cache for the pipelined RISC

processor

2.2 Instruction Unit

Figure 7: Instruction unit for the pipelined RISC

processor

The instruction unit has five ports. One each for the clock clk
and reset rst inputs, a port to receive a 16 bit instruction from
the instruction cache called instruction[15:0] that is loaded
into the instruction register ir, the net name from the
instruction cache is labeled instruction[15:0], a port the output
of the program counter pc[5:0] that sends the program counter

to the instruction cache on a net labeled iu_pc[5:0] and a port
called ir[15:0] that passes the 16 bit instruction to the decode
unit on a net called iu_instr[15:0]. The instruction unit is as
shown in the Figure 7.

2.3 Decode Unit
The decode unit has three input ports and five output ports.

The input ports are clk and rst, plus a port instr to receive the
instruction from the instruction unit. There is an output port
opcode[3:0] that sends the operation code to the execution
unit on a net labeled du_opcode[3:0]. A port dcaddr[4:0] that
sends the data cache address to the execution unit on net
labeled du_dcaddr4:0]; a port opnda[3:0] that sends the
address of operand A to the execution unit on a net labeled
du_opnd_addr[3:0], a net opndb[3:0] that sends the address of

operand B to the execution unit on a net labeled
du_opndb_addr[3:0], and a port dst that sends the destination
address to the execution unit on a net labeled du_dst[3:0] to
be used by the register file. The decode unit is as shown in the
Figure 8.

Figure 8: Decode unit for pipelined RISC processor

2.4 Execution Unit

Figure 9: Execution unit for the pipelined RISC

The execution unit is the dominant unit in the processor all
operations are performed by execution unit. It obtains the
opcode and operand address from the decode unit. There are
sixteen 16 bit input ports that connect the sixteen registers of
the register file to the ALU by means of multiplexers. The
multiplexers inputs are selected by signals from the ctrl block.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

33

The operand addresses then select the appropriate operands to
be utilized in the execution of the instruction. The result the
operation is placed in an rslt register also controlled by the ctrl
block then sent to the register file and data cache. This will
become more apparent when the execution unit module is

presented. The execution unit is as shown in the Figure 9.

2.5 Register File Unit
The reg_wr_vld port is an input from the execution unit that
enables a write operation to the register file. The signal at the
load_op port then loads the register file with the result of an

instruction execution or data from the data cache. The result
of an instruction execution is available at the input port rslt.
The data from the data cache is available at the input port
dcdataout. There are sixteen 16 bit output ports that provide
data to the execution unit. A logic diagram for the register file
will be shown when the register file module is presented. The
register file unit is as shown in the Figure 10.

Figure 10: Register file for the pipelined RISC processor

2.6 Data Cache Unit

Figure 11: The data cache unit for the pipelined

RISC processor

The data cache input port dcenbl enables the data cache for a
read or write operation. The rdwr port provides a read enable
(rdwr=1) or a write enable (rdwr=0) for the data cache at the
address specified by the address at port dcaddr. The data to be

written to the data cache is available at the dcdatain port. The
data to be read from the data cache is available at the
dcdataout port. The data cache unit is as shown in the Figure
11.

3. HARDWARE AND SOFTWARE

DESIGN FLOW

The design phases of the 16 bit pipelined RISC processor

architecture are Instruction cache (icache), instruction unit
(iunit), decode unit (decode), execution unit (eunit), data
cache (dcache) and register file (regfile). Each unit will be
behavioral or mixed design module and will be compiled and
simulated using a test bench to show binary output and
waveforms. The entire processor will then configure using a
structural module and will display the waveforms.

There are several differences between the traditional software

design flow and the established Verilog design flow for
FPGAs [2]. After designing and implementing hardware
design there is a multistage process to go through before the
design can be used in an FPGA [4]. The first stage is
Synthesis, which takes HDL code and translates it into a
netlist. A netlist is a textual description of a circuit diagram or
schematic. Next, simulation is used to verify that the design
specified in the netlist functions correctly. Once verified, the

netlist is converted into a binary format (Translate), the
components and connections that it defines are mapped to
CLBs (Map) and the design is placed and routed to fit onto the
target FPGA (Place and route)[8][2]. A second simulation
(post place and route simulation) is performed to help
establish how well the design has been placed and routed.
Finally, a .bit file is generated to load the design onto an
FPGA [2]. A .bit file is a configuration file that is used to

program all of the resources within the FPGA. Using tools
such as Xilinx ChipScope it is then possible to verify and
debug the design while it is running on the FPGA [4]. The
software design flow has no requirement for a pre
implementation simulation step.

Compile times for software are much shorter than
implementation times for hardware designs [2]. So it is
practical to recompile code and perform debugging as an
iterative process. In hardware it is very important to establish

that a design is functionally correct prior to implementation as
a broken design FPGA [8].

4. EXPERIMENTS AND RESULTS

4.1 Simulation Results

Simulation output is generated in the form of a waveform for
visual inspection or data files for machine readability. The
simulation results of all six modules in the design phase as
explained in the following sections.

4.1.1 Instruction Cache

Instructions are assigned to the the system task
$readmemb,which reads and load data from a specified text
file into the instruction cache. The text file is saved in the
project file as icache.instr with no .v extesin. The outputs are

shown in Table 3

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

34

Table 3 .Outputs for instruction cache

address 0=e000

address 1=e021

address 2=e042

address 3=e063

address 4=e084

address 5=e0a5

address 6=e0c6

address 7=e0e7

address 8=e108

address 9=e129

address 10=e14a

address 11=e16b

address 12=e18c

address 13=e1ad

address 14=e1ce

address 15=e1ef

address 16=1010

address 17=2127

address 18=3236

address 19=4345

address 20=5454

address 21=6563

address 22=7678

address 23=8709

address 0=e000

address 1=e021

address 2=e042

address 3=e063

address 4=e084

address 5=e0a5

address 6=e0c6

address 7=e0e7

address 8=e108

address 9=e129

address 10=e14a

address 11=e16b

address 12=e18c

address 13=e1ad

address 14=e1ce

address 15=e1ef

address 16=1010

address 17=2127

address 18=3236

address 19=4345

address 20=5454

address 21=6563

address 22=7678

address 23=8709

4.1.2 Instruction Unit

The outputs are shown in Table 4.The program counter places
the instruction on icdataout and the next load the instruction
into instruction register.

Table 4. Outputs for the instruction unit

pc=xx,instuction=e000,ir=xxxx

pc=01,instuction=e021,ir=e000

pc=02,instuction=e042,ir=e021

pc=03,instuction=e063,ir=e042

pc=04,instuction=e084,ir=e063

pc=05,instuction=e0a5,ir=e084

pc=06,instuction=e0c6,ir=e0a5

pc=07,instuction=e0e7,ir=e0c6

pc=08,instuction=e108,ir=e0e7

pc=09,instuction=e129,ir=e108

pc=0a,instuction=e14a,ir=e129

pc=0b,instuction=e16b,ir=e14a

pc=0c,instuction=e18c,ir=e16b

pc=0d,instuction=e1ad,ir=e18c

pc=0e,instuction=e1ce,ir=e1ad

pc=0f,instuction=e1ef,ir=e1ce

pc=10,instuction=2127,ir=e1ef

pc=11,instuction=3236,ir=2127

pc=12,instuction=4345,ir=3236

pc=13,instuction=5454,ir=4345

pc=14,instuction=6563,ir=5454

pc=15,instuction=7678,ir=6563

pc=16,instuction=8709,ir=7678

pc=17,instuction=901a,ir=8709

pc=18,instuction=a12b,ir=901a

pc=19,instuction=b23c,ir=a12b

pc=1a,instuction=c34d,ir=b23c

pc=1b,instuction=d45e,ir=c34d

pc=1c,instuction=f010,ir=d45e

pc=1d,instuction=f031,ir=f010

pc=1e,instuction=f052,ir=f031

pc=1f,instuction=f073,ir=f052

pc=20,instuction=f094,ir=f073

pc=21,instuction=f0b5,ir=f094

pc=22,instuction=f0d6,ir=f0b5

pc=23,instuction=f0f7,ir=f0d6

pc=24,instuction=f118,ir=f0f7

pc=25,instuction=f139,ir=f118

pc=26,instuction=f15a,ir=f139

pc=27,instuction=f17b,ir=f15a

pc=28,instuction=f19c,ir=f17b

pc=29,instuction=f1bd,ir=f19c

pc=2a,instuction=f1de,ir=f1bd

pc=2b,instuction=f1ff,ir=f1de

pc=2c,instuction=0000,ir=f1ff

pc=2d,instuction=0000,ir=0000

pc=2e,instuction=0000,ir=0000

4.1.3 Decode Unit

The 16 bit instruction received from the instruction unit is
decoded into its constituent parts. A 4 bit operation code, a 4

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

35

bit operand A, a 4 bit operand B and a 4 bit designation
address in the register file.

If the operation is a load instruction (load register file from
data cache), then data cache address ins instr[9:5] and the
destination address in the register file is instr[3:0].If the

operation is store instruction (store register file to data
cache),then register file address is instr[8:5] and data cache
address is instr[4:0]. The outputs are shown in Table 5.

Table 5: Outputs for decode unit

opcode=1110,dcaddr=00000,dst=0000

opcode=1110,dcaddr=00001,dst=0001

opcode=1110,dcaddr=00010,dst=0010

opcode=1110,dcaddr=00011,dst=0011

opcode=1110,dcaddr=00100,dst=0100

opcode=1110,dcaddr=00101,dst=0101

opcode=1110,dcaddr=00110,dst=0110

opcode=1110,dcaddr=00111,dst=0111

opcode=1110,dcaddr=01000,dst=1000

opcode=1110,dcaddr=01001,dst=1001

opcode=1110,dcaddr=01010,dst=1010

opcode=1110,dcaddr=01011,dst=1011

opcode=1110,dcaddr=01100,dst=1100

opcode=1110,dcaddr=01101,dst=1101

opcode=1110,dcaddr=01110,dst=1110

opcode=1110,dcaddr=01111,dst=1111

opcode=0001,opnda=0000,opndb=0001,dst=0000

opcode=0010,opnda=0001,opndb=0010,dst=0111

opcode=0011,opnda=0010,opndb=0011,dst=0110

opcode=0100,opnda=0011,opndb=0100,dst=0101

opcode=0101,opnda=0100,opndb=0101,dst=0100

opcode=0110,opnda=0101,opndb=0110,dst=0011

opcode=0111,opnda=0110,opndb=0111,dst=0010

opcode=1000,opnda=0111,opndb=0000,dst=0001

opcode=1001,opnda=0000,opndb=0001,dst=0000

opcode=1010,opnda=0001,opndb=0010,dst=0001

opcode=1011,opnda=0010,opndb=0011,dst=0010

opcode=1100,opnda=0011,opndb=0100,dst=0011

opcode=1101,opnda=0100,opndb=0101,dst=0100

opcode=1111,dcaddr=10000,opnda=0000

opcode=1111,dcaddr=10001,opnda=0001

opcode=1111,dcaddr=10010,opnda=0010

opcode=1111,dcaddr=10011,opnda=0011

opcode=1111,dcaddr=10100,opnda=0100

opcode=1111,dcaddr=10101,opnda=0101

opcode=1111,dcaddr=10110,opnda=0110

opcode=1111,dcaddr=10111,opnda=0111

opcode=1111,dcaddr=11000,opnda=1000

opcode=1111,dcaddr=11001,opnda=1001

opcode=1111,dcaddr=11010,opnda=1010

opcode=1111,dcaddr=11011,opnda=1011

opcode=1111,dcaddr=11100,opnda=1100

opcode=1111,dcaddr=11101,opnda=1101

opcode=1111,dcaddr=11110,opnda=1110

opcode=1111,dcaddr=11111,opnda=1111

opcode=0000,opnda=1111,opndb=0000,dst=0000

opcode=0000,opnda=0000,opndb=0000,dst=0000

opcode=0000,opnda=0000,opndb=0000,dst=0000

4.1.4 Execution Unit

The multiplexer logic that guides the operands to the ALU.
The instruction and their functions are listed in Table 6.There
are two sets of sixteen 16:1 multiplexer, one set for operand A
and one set of operand B. Each multiplexer selects bit 0
through 15 of register file 0 through register file 7 for the
appropriate operand, as a function of the multiplexer select

inputs.

Table 6. Instruction for execution

Instruction Function

Nop

Add

Sub

And

No operation

Operand A plus operand B

Operand A minus operand B

Operand A AND operand B

Or

Xor

Inc

Dec

Operand A OR operand B

Operand A EXCLUSIVE-OR operand B

Increment Operand A by 1

Decrement Operand A by 1

Not

Neg

Shr

Form the 1s complement of Increment of

Operand A

Form the 2s complement of Increment of

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

36

Shl Operand A

Shift right logical Operand A

Shift left logical Operand A

Ror

Rol

Id

st

Rotate right logical Operand A

Rotate left logical Operand A

Load register file from memory

Store register file to memory

Operation code 0001 is an ADD operation. The operand A
address is register file0, which contains the value
0000_0000_0000_ 0000.The operand B address is register file
7,which contains the value 0000_0000_0100_0100.After
adding the two operands,the result is 0000_0000_0100_0100.

Now consider an exclusive_OR instruction with an operation
code of 0101.Operand A is in register file 4, which contains
the value 0000_0000_1111_1111.

The negate instruction has an operation code of 1001 and
obtain the 2‟s complement of operand A,which is located in
register file 0 with a value of 0000_0000_0000_0000.When
the 2‟s complement of 0000_0000_0000_0000 is obtained the
result will still be a value of 0000_0000_0000_0000.

The shift right instruction has an operation code of 1010.The
operation is performed on operand A only,which is loaded in
he register file 1 containing a value of

0000_0000_0100_0100.After shifting one bit position ,The
result is 0000_0000_0010_0010.

The rotatae left instruction has an operation code of 1101 and
uses operand A only,which is contained in the register file
4and has a value of 0000_0000_1111 _1111.After the
execution of the instruction,the result is

0000_0001_1111_1110.

4.1.5 Register File

A register file is selected by means of 5:8 decoder with input
that are destination address dst[3:0].The output of decoder in
conjunction with a valid write signal(reg_wr_vld) selects the
appropreiate register file.The data that is to be written to the
register file comes from one of two sources,from the result of
an operation rslt[15:0] or from the data cache dataout[15:0].

4.1.6 Data Cache

The data cache is a memory of 32,16 bit word that is
preloaded with specific operands so that the result of the
program execution will known.The data cache has five ports,
they are dcenbl to enable cache for a read or write
operation.rdwr to allow reading(rdwr=1)or
writing(rdwr=0),dacaddr[4:0] selects an address in the cache
to either read or write data,dcdataout[15:0] provides data for

a write operation and dcdataout[15:0] provide cache contents
for read operation.

The test bench reads the content of the cache addresses
dcache[00000] through dcache[10000],then writes
0000_0000_0000_0000 to cache address dcache[10001]
through dcache[11111].The ouputs are shown in Table 9.

Table 9. Outputs for the data cache

dcaddr=00000,dcdatain=0000,dcataout=0000

dcaddr=00001,dcdatain=0000,dcataout=0044

dcaddr=00010,dcdatain=0000,dcataout=0088

dcaddr=00011,dcdatain=0000,dcataout=00bb

dcaddr=00100,dcdatain=0000,dcataout=00ff

dcaddr=00101,dcdatain=0000,dcataout=4400

dcaddr=00110,dcdatain=0000,dcataout=8800

dcaddr=00111,dcdatain=0000,dcataout=bb00

dcaddr=01000,dcdatain=0000,dcataout=2200

dcaddr=01001,dcdatain=0000,dcataout=4400

dcaddr=01010,dcdatain=0000,dcataout=8800

dcaddr=01011,dcdatain=0000,dcataout=aa00

dcaddr=01100,dcdatain=0000,dcataout=bb00

dcaddr=01101,dcdatain=0000,dcataout=cc00

dcaddr=01110,dcdatain=0000,dcataout=dd00

dcaddr=01111,dcdatain=0000,dcataout=ff00

dcaddr=10000,dcdatain=0000,dcataout=ff00

dcaddr=10001,dcdatain=1111,dcataout=ff00

dcaddr=10010,dcdatain=2222,dcataout=ff00

dcaddr=10011,dcdatain=3333,dcataout=ff00

dcaddr=10100,dcdatain=4444,dcataout=ff00

dcaddr=10101,dcdatain=5555,dcataout=ff00

dcaddr=10110,dcdatain=6666,dcataout=ff00

dcaddr=10111,dcdatain=7777,dcataout=ff00

dcaddr=11000,dcdatain=8888,dcataout=ff00

dcaddr=11001,dcdatain=9999,dcataout=ff00

dcaddr=11010,dcdatain=aaaa,dcataout=ff00

dcaddr=11011,dcdatain=bbbb,dcataout=ff00

dcaddr=11100,dcdatain=cccc,dcataout=ff00

dcaddr=11101,dcdatain=dddd,dcataout=ff00

dcaddr=11110,dcdatain=eeee,dcataout=ff00

#dcaddr=11111,dcdatain=ffff,dcataout=ff00

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

37

4.1.7 System Top

Figure 12:Simulation waveforms for pipelined

RISC processor

The system top structural module instatiates the risc_cpu_top
module together with the instruction cache and data cache.The
only inputs are reset and clock signal.

The register file contents at the end of the waveform correctly
depicts the result of program and based upon the original
register file contents.Although this was a comparatively
simple processor design,the same rationale applies equaly

well to a more complex pielined RISC processor.

The simulation waveforms are displayed in the Figure 12 and
show the complete execution of the application program
together with the values of the register and wires for the
modules.

4.2 Synthesis Results on Spartan 3AN

FPGA

A bitstream file needs to be prepared for each design and
downloaded onto the Pegasus prototyping board. The design
step as follows

1. In order to test the design in the Pegasus board, the inputs
need to be connected to the switches/buttons on the board and
the outputs need to be connected to the onboard LED‟s.

2. Assign pin numbers to the input and output pins in the
Verilog design file using a User Constraint File (ucf file). The
pin numbers can be assigned by looking at Figure 13.

Figure 13: Slide Switches and Push Button Switches

Ensure that the Programmed Successfully message
appears in the message window. In order to use the respective
input/output device on the board, the pin number of the device
must be connected properly to the designs input/output. If the
Programmed Successfully message appears in the message
window and can start testing the design in the FPGA board

using the input and output devices on the board. The Figure
14 shows downloaded the design to target device FPGA.

Figure 14: Downloading to target device FPGA

If this does not appear, it could be due to the following
reasons.

1. The JTAG cable is not connected between the FPGA board

and the PC parallel port.

2. You did not select the proper device for download in the
JTAG chain.

3. The bitstream generated was not for the device:
XC3S700AN -FGG484.

Once design is on the board and can actually use ChipScope
to debug the design. Start the ChipScope Pro Analyzer. It can
run it either run it directly from the Start Menu or can use the

Analyze Design Using ChipScope option from Processes
window in Project Navigator.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.6, June 2012

38

Figure 15: RISC Signals in ChipScope Pro Logic Analyzer

To view the waveform for a particular ILA or IBA core, select
Window → New Unit Windows and the core desired. A
dialog box appears for that ChipScope Pro Unit and the user
can select the Trigger Setup, Waveform, Listing and/or Bus

Plot window or any combination. The RISC signals displays
on the waveform window as shown in the Figure 15. The
Waveform window displays the sample buffer as a waveform
display, similar to many modern simulators and logic
analyzers.

5. CONCLUSION
In this paper we have presented 16 bit pipelined RISC
Processor on Xilinx Spartan3AN FPGA. The design has been
done in Verilog hardware description language and tested on
Xilinx Spartan3AN development broad using ChipScope logic
analyzer. All the blocks of processor were individually
simulated using ModelSim 6.5-SE simulator and synthesized
using Xilinx ISE 11.1i. Spartan3AN FPGA was sufficient for
implementing the whole design into a real hardware, since the

total available logic gate in Spartan3AN is 700K Logic Gate,
which was more enough for implementing the whole
processor. A simple sequential blocks performance was
observed under the constraints clock frequency 50 MHz

6. REFERENCES
[1] J.L.Hennessy, D.A.Patterson.2003,‟Computer

Organization and Design: The Hardware/Software
Interface‟, 2nd Edition, Morgan Kaufmann.

[2] D. J. Smith. (2010), „HDL Chip Design‟, International
Edition, Doone Publications,

[3] A. S. Tanenbaum. 2000, „Structured Computer
Organization‟, 4th Edition, Prentice-Hall

[4] Luker, Jarrod D., Prasad, Vinod B.2001, „RISC system

design in an FPGA‟, MWSCAS 2001, v2, , p532536.

[5] David A. Patterson, and John L Hennessy. 2006,
‟Computer Architecture A Quantitative Approach‟, 4th
Edition;.

[6] Vincent P. Heuring, and Harry F. Jordan. 2003, „Computer

Systems Design and Architecture‟, 2nd Edition..

[7] W. Stallings. 2003 „Computer Organization &
Architecture. Designing for Performance‟. Prentice Hall,
6th edition.

[8] Wayne Wolf. 2005, „FPGA Based System Design‟,
Prentice Hall.

[9] Samir Palnitkar.1996,‟Verilog HDL A guide to Digital
Design and Synthesis‟, SunSoft Pre.

[10] ChipScope pro logic anlyser.2010, „Support,
Documentation and Software Manual. Available at:
http://www.xilinx.com/support/documentation/sw_manu
als/chipscope_pro_sw_cores_10_1_ug029.pdf‟

[11] Brunelli Claudio. 2006, Cinelli Federico, Rossi Davide,
Nurmi Jari, “A VHDL model and implementation of a
coarsegrain reconfigurable coprocessor for a RISC core”,
2nd Conference on Ph.D. Research in MicroElectronics
andElectronics Proceedings,PRIME, , p 229232.

7. ABOUT AUTHOR’S

Aboobacker Sidheeq.V.M is a Lecturer in Electrical
and Computer Engineering at Hawassa University,
Ethiopia. He received M-tech in VLSI Design and
Embedded System from Visvesvaraya Technological
University, and B-tech in Electronics and
communication from Calicut University. His current

research interests include high-speed parallel and VLSI
computer architecture, computer-aided design, and
reconfigurable computing.

