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ABSTRACT 
This paper describes the design and implementation of a 16 
bit 4 stage pipelined Reduced Instruction Set Computer 
(RISC) processor on a Xilinx Spartan 3AN Field 
programmable gate array (FPGA). The processor implements 
the Harvard memory architecture, so the instruction and data 

memory spaces are both physically and logically separate. 
The RISC processor architecture presented in this paper is 
designed by six units, they are instruction cache, instruction 
unit, decode unit, execute unit, data cache unit and register 
file unit. The processor has been described using Verilog 
HDL, simulated using ModelSim 6.5-SE simulator and 
synthesized using Xilinx ISE 11.1i.The proposed processor 
has been implemented and physically tested Xilinx FPGA 

Spartan 3AN development board, It uses ChipScope Pro 9.2i 
embedded logic analyzer to monitor any or all of the signals 
in the design.   

Keywords 
FPGA, VERILOG HDL, RISC 

1. INTRODUCTION 
Reduced Instruction Set Computers (RISCs) are now in 
widespread use for all type of computational tasks [4]. In the 
area of scientific computing, RISC workstation are being 
increasingly used for compute intensive task such as digital 

signal and image processing. Pipelined RISC is an evolution 
in computer architecture, it emphasizes on speed and cost 
effectiveness over the ease of hardware description language 
programming and conservation of memory and RISC based 
designs will continue to grow in speed and ability, more 
rapidly than CISC design [1]. Pipelining, a standard feature in 
RISC processors, is much like an assembly line. Because the 
processor works on different steps of the instruction at the 
same time, more instructions can be executed in a shorter 

period of time [5].  

FPGA based computing architectures offer a unique 
opportunity for the design of custom instruction processor 
matched to user specified application. One or several loop 
bodies can be synthesized on each of the FPGAs [8]. Internal 
FPGA register resources and direct wires can be used to 
establish high performance inter stage communication, 
avoiding excessive buffer read/write and speed, space, 

facilities and feature inclusion in their design. The designer 
may even specify the pin number and timing constraints to 
suit their requirements [4]. 

This paper presents a very simple 16 bit general purpose 4 
stage pipelined processor on FPGA. The instruction cycle of 
pipeline stages are namely instruction fetch, instruction 
decode, ALU operation and register file write. After every 
instruction fetch, the program counter (PC) pointed to next the 

selected Instruction. The architecture in this paper supports 16 

instructions, which are described in the figure 2.3 (Section II). 
They can be broadly classified into Arithmetic, Logical, 
Shifting and Rotational Instructions. In this paper all 
components of processor design have been designed in 
Verilog code, implemented and tested on Xilinx FPGA 
Spartan 3AN development board. ModelSim have been used 
for simulation. Before mapping the entire processor, all the 
six units in the entire processor architecture is separately 

mapped to the FPGA and verified by executing a random 
testbench which is also synthesized to the FPGA [4].  

This paper is organized as follows. There are 6 sections in this 
paper. The introduction is given in section I; Section II 
describes about the system architecture. It also explains the 
each instruction format and addressing modes used in the 
processor. The design flow of 16 bit RISC processor 
architecture is given in section II; Section IV describes the 

simulation and synthesis results of the pipelined design by 
selecting best and suitable Xilinx Spartan 3an FPGA. It also 
gives the detailed synthesis report and other parameters, 
which is required for the optimization of the design. The 
simulation results consists of all the six modules separately 
and the combined top module waveforms in the system 
architecture ; The conclusion at the end in section V. 

2. INSTRUCTION SET AND 

PROCESSOR ARCHITECTURE 
A pipelined RISC improves CPU speed and system 

throughput because several instruction can be processed in 
parallel [1]. The CPU can begin processing the next 
instruction before the current instruction is completed, that is 
the system can overlap the execution of contiguous 
instructions [5].  

Fetching the instruction from main memory or cache is a 
major bottleneck due to the relatively slow access time. The 
slow access time can be alleviated by prefetching instruction 
before they are required by processing unit. The prefetched 

instructions are loaded into a prefetch buffer where they are 
retained until needed by the processor. Prefetching can be 
overlapped with normal processing and can be accomplished 
on unused memory bus cycle [1] [7]. 

There are many different stages in a pipeline, with each stage 
performing one unique operation in the instruction processing. 
When the pipeline is full, a result is obtained every clock 
cycle [1]. A 4 stage pipeline is shown in Figure 1. The 

Instruction fetch stage fetches the instruction from memory, 
The Decode stage decode the instruction and fetches the 
operands, The Execute stage perform the operation specified 
in the instruction, The store stage store the result in the 
destination location. Four instructions are in progress at any 
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given clock cycle. Each stage of the pipeline performs its task 
in parallel with all other stages. 

Four clock cycle 

 

 

 

 

 

Figure 1: Example of 4 stage pipeline 

If the instruction required is not available in cache, then a 
cache miss occur, necessitating a fetch from main memory 
[7]. This is referred to as a pipeline stall and delays processing 
the next instruction. Information is passed from one stage to 
the next by means of storage buffer as shown in Figure 2. 
There must be a register in the input of each stage (or between 
stages) to store information that is transmitted from the 

preceding stage. This prevents data being processed by one 
stage from interfering with the following stage during the 
same clock period. 

 

 

 

 

Storage buffer 

 

Figure 2: Four stage of pipeline showing the Inter stage 

storage buffer 

RISC processors have only a small number of instructions 
compared to complex instruction set computer (CISC). The 
instructions are also smaller in size with a smaller number of 
field and usually of fixed length. Most instructions have same 
format with limited number of addressing modes and executed 

by hardware. RISC processors have an instruction cache and 
data cache, only load and store instructions reference memory 
[5]. 

 

 

 

Figure 3: Instructions & Instructions set format for the 

pipelined RISC processor 

The operands are loaded from register file and stored in the 
register file. There are large register files that provide fast 
access, thereby eliminating many slow memory accesses [1]. 
The control unit is hardwired, not micro program controlled, 
for increased speed [7].  

Design module presents the Verilog design of pipelined RISC 
processor with no prefetch buffer. Although this is a small 

RISC processor, the same technique can be applied to any size 
processor. There are 16 instructions and the various fields for 
each instruction as shown in Figure3.All instructions, except 
load and store, have the same format. 

 

Figure 4: Structural block diagram for the pipelined RISC 

processor 

There are six units (modules) in the processor architecture of 

16 bit pipelined RISC. Instruction cache (icache), instruction 
unit (iunit), decode unit (decode), execution unit (eunit), data 
cache (dcache) and register file (regfile). Each unit will be 
behavioral oXr mixed design module and will be compiled 
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and simulated using a test bench to show binary output and 
waveforms. The entire processor will then configure using a 
structural module and will display the waveforms. The 
structural block diagram of Figure 4 shows the hierarchy. The 
system architecture of Figure 5 shows the six units and their 

interconnections. 

 

Figure 5: System Architecture for the pipelined RISC 

processor 

The instruction cache and data cache will be preloaded in their 
respective modules with the instruction and data. The 

instruction cache content shows all the instruction and the 
application program. A predefined program is used so that the 
result can be easily verified. The operand size is sixteen bits. 

RISC instruction typically has a fixed length instruction 
format [6]. The instruction length for this design is 16 bits. 
Only load and store instruction can access memory [1]. The 
addressing mode is register that means operand is in the 
register file. In this design there are 16 registers, which are 

initialized by 16 load instruction that load certain data cache 
contents into the register file. The initial contents of register 
file shown in Table 1. The final contents of register file are 

shown in Table 2. 
 

Table 1. Register file contents before execution 

Address            Data Address            Data 

0000 0000 0000 0000 

0000 

1000 0010 0010 0000 

0000 

0001 0000 0000 0100 

0100 

1001 0100 0100 0000 

0000 

0010 0000 0000 1000 

1000 

1010 1000 1000 0000 

0000 

0011 0000 0000 1011 

1011 

1011 1010 1010 0000 

0000 

0100 0000 0000 1111 

1111 

1100 1011 1011 0000 

0000 

0101 0100 0100 0000 

0000 

1101 1100 1100 0000 

0000 

0110 1000 1000 0000 

0000 

1110 1101 1101 0000 

0000 

0111 1011 1011 0000 

0000 

1111 1111 1111 0000 

0000 

 

Table 2. Register file contents after execution 

Address            Data Address            Data 

0000 0000 0000 0100 

0100 

1000 1000 0111 1111 

1111 

0001 0000 0000 0100 

0100 

1001 0100 0100 1111 

1111 

0010 0000 0000 1000 

1000 

1010 0000 0000 0000 

0000 

0011 0100 0100 0000 

0001 

1011 0000 0000 0010 

0010 

0100 0100 0100 1111 

1111 

1100 0000 0001 0001 

0000 

0101 0000 0000 1111 

1111 

1101 0000 0000 1111 

1111 

0110 0000 0000 1000 

1000 

1110 0000 0001 1111 

1110 

0111 1111 1111 1011 

1100 

1111 1111 1111 0000 

0000 
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2.1 Instruction Cache 
The small dark squares represent the ports of module. There 

are two ports in the instruction cache. Instruction, which sends 
16 bit instruction to the iunit, and a port for 6 bit program 
counter pc that receives the necxt instruction cache address 
from iunit. The instruction cache is as shown in the Figure 6. 

 

Figure 6: Instruction cache for the pipelined RISC 

processor 

2.2 Instruction Unit 

 

Figure 7: Instruction unit for the pipelined RISC 

processor 

The instruction unit has five ports. One each for the clock clk 
and reset rst inputs, a port to receive a 16 bit instruction from 
the instruction cache called instruction[15:0] that is loaded 
into the instruction register ir, the net name from the 
instruction cache is labeled instruction[15:0], a port the output 
of the program counter pc[5:0] that sends the program counter 

to the instruction cache on a net labeled iu_pc[5:0] and a port 
called ir[15:0] that passes the 16 bit instruction to the decode 
unit on a net called iu_instr[15:0]. The instruction unit is as 
shown in the Figure 7. 

2.3 Decode Unit 
The decode unit has three input ports and five output ports. 

The input ports are clk and rst, plus a port instr to receive the 
instruction from the instruction unit. There is an output port 
opcode[3:0] that sends the operation code to the execution 
unit on a net labeled du_opcode[3:0]. A port dcaddr[4:0] that 
sends the data cache address to the execution unit on net 
labeled du_dcaddr4:0]; a port opnda[3:0] that sends the 
address of operand A to the execution unit on a net labeled 
du_opnd_addr[3:0], a net opndb[3:0] that sends the address of 

operand B to the execution unit on a net labeled 
du_opndb_addr[3:0], and a port dst that sends the destination 
address to the execution unit on a net labeled du_dst[3:0] to 
be used by the register file. The decode unit is as shown in the 
Figure 8. 

 

Figure 8: Decode unit for pipelined RISC processor 

2.4 Execution Unit 

 

Figure 9: Execution unit for the pipelined RISC 

The execution unit is the dominant unit in the processor all 
operations are performed by execution unit. It obtains the 
opcode and operand address from the decode unit. There are 
sixteen 16 bit input ports that connect the sixteen registers of 
the register file to the ALU by means of multiplexers. The 
multiplexers inputs are selected by signals from the ctrl block. 
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The operand addresses then select the appropriate operands to 
be utilized in the execution of the instruction. The result the 
operation is placed in an rslt register also controlled by the ctrl 
block then sent to the register file and data cache. This will 
become more apparent when the execution unit module is 

presented. The execution unit is as shown in the Figure 9. 

2.5 Register File Unit 
The reg_wr_vld port is an input from the execution unit that 
enables a write operation to the register file. The signal at the 
load_op port then loads the register file with the result of an 

instruction execution or data from the data cache. The result 
of an instruction execution is available at the input port rslt. 
The data from the data cache is available at the input port 
dcdataout. There are sixteen 16 bit output ports that provide 
data to the execution unit. A logic diagram for the register file 
will be shown when the register file module is presented. The 
register file unit is as shown in the Figure 10. 

Figure 10: Register file for the pipelined RISC processor 

2.6 Data Cache Unit 

 

Figure 11: The data cache unit for the pipelined 

RISC processor 

The data cache input port dcenbl enables the data cache for a 
read or write operation. The rdwr port provides a read enable 
(rdwr=1) or a write enable (rdwr=0) for the data cache at the 
address specified by the address at port dcaddr. The data to be 

written to the data cache is available at the dcdatain port. The 
data to be read from the data cache is available at the 
dcdataout port.  The data cache unit is as shown in the Figure 
11. 

3. HARDWARE AND SOFTWARE 

DESIGN FLOW 

The design phases of the 16 bit pipelined RISC processor 

architecture are Instruction cache (icache), instruction unit 
(iunit), decode unit (decode), execution unit (eunit), data 
cache (dcache) and register file (regfile). Each unit will be 
behavioral or mixed design module and will be compiled and 
simulated using a test bench to show binary output and 
waveforms. The entire processor will then configure using a 
structural module and will display the waveforms.  

There are several differences between the traditional software 

design flow and the established Verilog design flow for 
FPGAs [2]. After designing and implementing hardware 
design there is a multistage process to go through before the 
design can be used in an FPGA [4]. The first stage is 
Synthesis, which takes HDL code and translates it into a 
netlist. A netlist is a textual description of a circuit diagram or 
schematic. Next, simulation is used to verify that the design 
specified in the netlist functions correctly. Once verified, the 

netlist is converted into a binary format (Translate), the 
components and connections that it defines are mapped to 
CLBs (Map) and the design is placed and routed to fit onto the 
target FPGA (Place and route)[8][2]. A second simulation 
(post place and route simulation) is performed to help 
establish how well the design has been placed and routed. 
Finally, a .bit file is generated to load the design onto an 
FPGA [2]. A .bit file is a configuration file that is used to 

program all of the resources within the FPGA. Using tools 
such as Xilinx ChipScope it is then possible to verify and 
debug the design while it is running on the FPGA [4]. The 
software design flow has no requirement for a pre 
implementation simulation step. 

Compile times for software are much shorter than 
implementation times for hardware designs [2]. So it is 
practical to recompile code and perform debugging as an 
iterative process. In hardware it is very important to establish 

that a design is functionally correct prior to implementation as 
a broken design FPGA [8].  

4. EXPERIMENTS AND RESULTS  

4.1 Simulation Results  

Simulation output is generated in the form of a waveform for 
visual inspection or data files for machine readability. The 
simulation results of all six modules in the design phase as 
explained in the following sections. 

4.1.1 Instruction Cache 

Instructions are assigned to the the system task 
$readmemb,which reads and load data from a specified text 
file into the instruction cache. The text file is saved in the 
project file as icache.instr with no .v extesin. The outputs are 

shown in Table 3 
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Table 3 .Outputs for instruction cache 

# address           0=e000 

# address           1=e021 

# address           2=e042 

# address           3=e063 

# address           4=e084 

# address           5=e0a5 

# address           6=e0c6 

# address           7=e0e7 

# address           8=e108 

# address           9=e129 

# address          10=e14a 

# address          11=e16b 

# address          12=e18c 

# address          13=e1ad 

# address          14=e1ce 

# address          15=e1ef 

# address          16=1010 

# address          17=2127 

# address          18=3236 

# address          19=4345 

# address          20=5454 

# address          21=6563 

# address          22=7678 

# address          23=8709 

# address           0=e000 

# address           1=e021 

# address           2=e042 

# address           3=e063 

# address           4=e084 

# address           5=e0a5 

# address           6=e0c6 

# address           7=e0e7 

# address           8=e108 

# address           9=e129 

# address          10=e14a 

# address          11=e16b 

# address          12=e18c 

# address          13=e1ad 

# address          14=e1ce 

# address          15=e1ef 

# address          16=1010 

# address          17=2127 

# address          18=3236 

# address          19=4345 

# address          20=5454 

# address          21=6563 

# address          22=7678 

# address          23=8709 

 

4.1.2 Instruction Unit 

The outputs are shown in Table 4.The program counter places 
the instruction on icdataout and the next load the instruction 
into instruction register. 

Table 4. Outputs for the instruction unit 

pc=xx,instuction=e000,ir=xxxx 

pc=01,instuction=e021,ir=e000 

pc=02,instuction=e042,ir=e021 

pc=03,instuction=e063,ir=e042 

pc=04,instuction=e084,ir=e063 

pc=05,instuction=e0a5,ir=e084 

pc=06,instuction=e0c6,ir=e0a5 

pc=07,instuction=e0e7,ir=e0c6 

pc=08,instuction=e108,ir=e0e7 

pc=09,instuction=e129,ir=e108 

pc=0a,instuction=e14a,ir=e129 

pc=0b,instuction=e16b,ir=e14a 

pc=0c,instuction=e18c,ir=e16b 

pc=0d,instuction=e1ad,ir=e18c 

pc=0e,instuction=e1ce,ir=e1ad 

pc=0f,instuction=e1ef,ir=e1ce 

pc=10,instuction=2127,ir=e1ef 

pc=11,instuction=3236,ir=2127 

pc=12,instuction=4345,ir=3236 

pc=13,instuction=5454,ir=4345 

pc=14,instuction=6563,ir=5454 

pc=15,instuction=7678,ir=6563 

pc=16,instuction=8709,ir=7678 

pc=17,instuction=901a,ir=8709 

pc=18,instuction=a12b,ir=901a 

pc=19,instuction=b23c,ir=a12b 

pc=1a,instuction=c34d,ir=b23c 

pc=1b,instuction=d45e,ir=c34d 

pc=1c,instuction=f010,ir=d45e 

pc=1d,instuction=f031,ir=f010 

pc=1e,instuction=f052,ir=f031 

pc=1f,instuction=f073,ir=f052 

pc=20,instuction=f094,ir=f073 

pc=21,instuction=f0b5,ir=f094 

pc=22,instuction=f0d6,ir=f0b5 

pc=23,instuction=f0f7,ir=f0d6 

pc=24,instuction=f118,ir=f0f7 

pc=25,instuction=f139,ir=f118 

pc=26,instuction=f15a,ir=f139 

pc=27,instuction=f17b,ir=f15a 

pc=28,instuction=f19c,ir=f17b 

pc=29,instuction=f1bd,ir=f19c 

pc=2a,instuction=f1de,ir=f1bd 

pc=2b,instuction=f1ff,ir=f1de 

pc=2c,instuction=0000,ir=f1ff 

pc=2d,instuction=0000,ir=0000 

pc=2e,instuction=0000,ir=0000 

4.1.3 Decode Unit 

The 16 bit instruction received from the instruction unit is 
decoded into its constituent parts. A 4 bit operation code, a 4 
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bit operand A, a 4 bit operand B and a 4 bit designation 
address in the register file. 

If the operation is a load instruction (load register file from 
data cache), then data cache address ins instr[9:5] and the 
destination address in the register file is instr[3:0].If the 

operation is store instruction (store register file to data 
cache),then register file address is instr[8:5] and data cache 
address is instr[4:0]. The outputs are shown in Table 5. 

Table 5: Outputs for decode unit 

# opcode=1110,dcaddr=00000,dst=0000 

# opcode=1110,dcaddr=00001,dst=0001 

# opcode=1110,dcaddr=00010,dst=0010 

# opcode=1110,dcaddr=00011,dst=0011 

# opcode=1110,dcaddr=00100,dst=0100 

# opcode=1110,dcaddr=00101,dst=0101 

# opcode=1110,dcaddr=00110,dst=0110 

# opcode=1110,dcaddr=00111,dst=0111 

# opcode=1110,dcaddr=01000,dst=1000 

# opcode=1110,dcaddr=01001,dst=1001 

# opcode=1110,dcaddr=01010,dst=1010 

# opcode=1110,dcaddr=01011,dst=1011 

# opcode=1110,dcaddr=01100,dst=1100 

# opcode=1110,dcaddr=01101,dst=1101 

# opcode=1110,dcaddr=01110,dst=1110 

# opcode=1110,dcaddr=01111,dst=1111 

opcode=0001,opnda=0000,opndb=0001,dst=0000 

opcode=0010,opnda=0001,opndb=0010,dst=0111 

opcode=0011,opnda=0010,opndb=0011,dst=0110 

opcode=0100,opnda=0011,opndb=0100,dst=0101 

opcode=0101,opnda=0100,opndb=0101,dst=0100 

opcode=0110,opnda=0101,opndb=0110,dst=0011 

opcode=0111,opnda=0110,opndb=0111,dst=0010 

opcode=1000,opnda=0111,opndb=0000,dst=0001 

opcode=1001,opnda=0000,opndb=0001,dst=0000 

opcode=1010,opnda=0001,opndb=0010,dst=0001 

opcode=1011,opnda=0010,opndb=0011,dst=0010 

opcode=1100,opnda=0011,opndb=0100,dst=0011 

opcode=1101,opnda=0100,opndb=0101,dst=0100 

# opcode=1111,dcaddr=10000,opnda=0000 

# opcode=1111,dcaddr=10001,opnda=0001 

# opcode=1111,dcaddr=10010,opnda=0010 

# opcode=1111,dcaddr=10011,opnda=0011 

# opcode=1111,dcaddr=10100,opnda=0100 

# opcode=1111,dcaddr=10101,opnda=0101 

# opcode=1111,dcaddr=10110,opnda=0110 

# opcode=1111,dcaddr=10111,opnda=0111 

# opcode=1111,dcaddr=11000,opnda=1000 

# opcode=1111,dcaddr=11001,opnda=1001 

# opcode=1111,dcaddr=11010,opnda=1010 

# opcode=1111,dcaddr=11011,opnda=1011 

# opcode=1111,dcaddr=11100,opnda=1100 

# opcode=1111,dcaddr=11101,opnda=1101 

# opcode=1111,dcaddr=11110,opnda=1110 

# opcode=1111,dcaddr=11111,opnda=1111 

opcode=0000,opnda=1111,opndb=0000,dst=0000 

opcode=0000,opnda=0000,opndb=0000,dst=0000 

opcode=0000,opnda=0000,opndb=0000,dst=0000 

 

4.1.4 Execution Unit 

The multiplexer logic that guides the operands to the ALU. 
The instruction and their functions are listed in Table 6.There 
are two sets of sixteen 16:1 multiplexer, one set for operand A 
and one set of operand B. Each multiplexer selects bit 0 
through 15 of register file 0 through register file 7 for the 
appropriate operand, as a function of the multiplexer select 

inputs. 

Table 6. Instruction for execution 

Instruction                              Function 

Nop 

Add 

Sub 

And 

No operation  

Operand A plus operand B 

Operand A minus operand B 

Operand A AND operand B 

Or  

Xor 

Inc  

Dec 

Operand A OR  operand B 

Operand A EXCLUSIVE-OR operand B 

Increment Operand A by 1 

Decrement Operand A by 1 

Not 

Neg 

Shr 

Form the 1s complement of Increment of  

Operand A  

Form the 2s complement of Increment of  
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Shl Operand A  

Shift right logical Operand A  

Shift left logical Operand A 

Ror 

Rol 

Id 

st 

Rotate right logical Operand A 

Rotate left logical Operand A 

Load register file from memory 

Store register file to memory  

 

Operation code 0001 is an ADD operation. The operand A 
address is register file0, which contains the value 
0000_0000_0000_ 0000.The operand B address is register file 
7,which contains the value 0000_0000_0100_0100.After 
adding the two operands,the result is 0000_0000_0100_0100. 

Now consider an exclusive_OR instruction with an operation 
code of 0101.Operand A is in register file 4, which contains 
the value 0000_0000_1111_1111. 

The negate instruction has an operation code of 1001 and 
obtain the 2‟s complement of operand A,which is located in 
register file 0 with a value of  0000_0000_0000_0000.When 
the 2‟s complement of 0000_0000_0000_0000 is obtained the 
result will still be a value of 0000_0000_0000_0000. 

The shift right instruction has an operation code of 1010.The 
operation is performed on operand A only,which is loaded in 
he register file 1 containing a value of 

0000_0000_0100_0100.After shifting one bit position ,The 
result is 0000_0000_0010_0010. 

The rotatae left instruction has an operation code of 1101 and 
uses operand A only,which is contained in the register file 
4and has a value of 0000_0000_1111 _1111.After the 
execution of the instruction,the result is 

0000_0001_1111_1110. 

4.1.5 Register File 

A register file is selected by means of 5:8 decoder with input 
that are destination address dst[3:0].The output of decoder in 
conjunction with a valid write signal(reg_wr_vld) selects the 
appropreiate register file.The data that is to be written to the 
register file comes from one of two sources,from the result of 
an operation rslt[15:0] or from the data cache dataout[15:0]. 

4.1.6 Data Cache 

The data cache is a memory of 32,16 bit word that is 
preloaded with specific operands so that the result of the 
program execution will known.The data cache has five ports, 
they are dcenbl to enable cache for a read or write 
operation.rdwr to allow reading(rdwr=1)or 
writing(rdwr=0),dacaddr[4:0] selects an address in the cache 
to either read or write data,dcdataout[15:0] provides data for 

a write operation and dcdataout[15:0] provide cache contents 
for read operation. 

The test bench reads the content of the cache addresses 
dcache[00000] through dcache[10000],then writes 
0000_0000_0000_0000 to cache address dcache[10001] 
through dcache[11111].The ouputs are shown in Table 9. 

 

Table 9. Outputs for the data cache 

# dcaddr=00000,dcdatain=0000,dcataout=0000 

# dcaddr=00001,dcdatain=0000,dcataout=0044 

# dcaddr=00010,dcdatain=0000,dcataout=0088 

# dcaddr=00011,dcdatain=0000,dcataout=00bb 

# dcaddr=00100,dcdatain=0000,dcataout=00ff 

# dcaddr=00101,dcdatain=0000,dcataout=4400 

# dcaddr=00110,dcdatain=0000,dcataout=8800 

# dcaddr=00111,dcdatain=0000,dcataout=bb00 

# dcaddr=01000,dcdatain=0000,dcataout=2200 

# dcaddr=01001,dcdatain=0000,dcataout=4400 

# dcaddr=01010,dcdatain=0000,dcataout=8800 

# dcaddr=01011,dcdatain=0000,dcataout=aa00 

# dcaddr=01100,dcdatain=0000,dcataout=bb00 

# dcaddr=01101,dcdatain=0000,dcataout=cc00 

# dcaddr=01110,dcdatain=0000,dcataout=dd00 

# dcaddr=01111,dcdatain=0000,dcataout=ff00        

# dcaddr=10000,dcdatain=0000,dcataout=ff00 

# dcaddr=10001,dcdatain=1111,dcataout=ff00 

# dcaddr=10010,dcdatain=2222,dcataout=ff00 

# dcaddr=10011,dcdatain=3333,dcataout=ff00 

# dcaddr=10100,dcdatain=4444,dcataout=ff00 

# dcaddr=10101,dcdatain=5555,dcataout=ff00 

# dcaddr=10110,dcdatain=6666,dcataout=ff00 

# dcaddr=10111,dcdatain=7777,dcataout=ff00 

# dcaddr=11000,dcdatain=8888,dcataout=ff00 

# dcaddr=11001,dcdatain=9999,dcataout=ff00 

# dcaddr=11010,dcdatain=aaaa,dcataout=ff00 

# dcaddr=11011,dcdatain=bbbb,dcataout=ff00 

# dcaddr=11100,dcdatain=cccc,dcataout=ff00 

# dcaddr=11101,dcdatain=dddd,dcataout=ff00 

# dcaddr=11110,dcdatain=eeee,dcataout=ff00 

#dcaddr=11111,dcdatain=ffff,dcataout=ff00            

 

 



International Journal of Computer Applications (0975 – 888) 

Volume 48– No.6, June 2012 

37 

4.1.7 System Top 

Figure 12:Simulation waveforms for pipelined 

RISC processor 

The system top structural module instatiates the risc_cpu_top 
module together with the instruction cache and data cache.The 
only inputs are reset and clock signal. 

The register file contents at the end of the waveform correctly 
depicts the result of program and based upon the original 
register file contents.Although this was a comparatively 
simple processor design,the same rationale applies equaly 

well to a more complex pielined RISC processor. 

The simulation waveforms are displayed in the Figure 12 and 
show the complete execution of the application program 
together with the values of the register and wires for the 
modules. 

4.2 Synthesis Results on Spartan 3AN 

FPGA 

A bitstream file needs to be prepared for each design and 
downloaded onto the Pegasus prototyping board. The design 
step as follows  

1. In order to test the design in the Pegasus board, the inputs 
need to be connected to the switches/buttons on the board and 
the outputs need to be connected to the onboard LED‟s. 

2. Assign pin numbers to the input and output pins in the 
Verilog design file using a User Constraint File (ucf file). The 
pin numbers can be assigned by looking at Figure 13.  

 

Figure 13: Slide Switches and Push Button Switches 

 

 

 

Ensure that the Programmed Successfully message 
appears in the message window. In order to use the respective 
input/output device on the board, the pin number of the device 
must be connected properly to the designs input/output. If the 
Programmed Successfully message appears in the message 
window and can start testing the design in the FPGA board 

using the input and output devices on the board. The Figure 
14  shows downloaded the design to target device FPGA. 

 

 

Figure 14: Downloading to target device FPGA 

 

If this does not appear, it could be due to the following 
reasons. 

1. The JTAG cable is not connected between the FPGA board 

and the PC parallel port. 

2. You did not select the proper device for download in the 
JTAG chain. 

3. The bitstream generated was not for the device: 
XC3S700AN -FGG484. 

Once design is on the board and can actually use ChipScope 
to debug the design. Start the ChipScope Pro Analyzer.  It can 
run it either run it directly from the Start Menu or can use the 

Analyze Design Using ChipScope option from Processes 
window in Project Navigator. 

 



International Journal of Computer Applications (0975 – 888) 

Volume 48– No.6, June 2012 

38 

Figure 15: RISC Signals in ChipScope Pro Logic Analyzer 

To view the waveform for a particular ILA or IBA core, select 
Window → New Unit Windows and the core desired. A 
dialog box appears for that ChipScope Pro Unit and the user 
can select the Trigger Setup, Waveform, Listing and/or Bus 

Plot window or any combination. The RISC signals displays 
on the waveform window as shown in the Figure 15. The 
Waveform window displays the sample buffer as a waveform 
display, similar to many modern simulators and logic 
analyzers. 

5. CONCLUSION 
In this paper we have presented 16 bit pipelined RISC 
Processor on Xilinx Spartan3AN FPGA. The design has been 
done in Verilog hardware description language and tested on 
Xilinx Spartan3AN development broad using ChipScope logic 
analyzer. All the blocks of processor were individually 
simulated using ModelSim 6.5-SE simulator and synthesized 
using Xilinx ISE 11.1i. Spartan3AN FPGA was sufficient for 
implementing the whole design into a real hardware, since the 

total available logic gate in Spartan3AN is 700K Logic Gate, 
which was more enough for implementing the whole 
processor. A simple sequential blocks performance was 
observed under the constraints clock frequency 50 MHz 
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