
International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

42

Integrating Genetic Algorithm, Tabu Search and

Simulated Annealing For Job Shop Scheduling Proble

R. Thamilselvan
Associate Professor

Kongu Engineering College
Perundi, Erode – 638052

Tamilnadu, India

P. Balasubramanie
Professor

Kongu Engineering College
Perundurai, Erode - 638 052

Tamilnadu, India

ABSTRACT
Job Shop Scheduling Problem (JSSP) is an optimization
problem in which ideal jobs are assigned to resources at
particular times. In recent years many attempts have been
made at the solution of JSSP using a various range of tools
and techniques such as Branch and Bound and Heuristics

algorithms. This paper proposed a new algorithm based on
Genetic Algorithm (GA), Tabu Search (TS) and Simulated
Annealing (SA) algorithms to solve JSSP. The proposed
algorithm is mainly based on the genetic algorithm. The
reproduction phase of the genetic algorithm uses the tabu
search to generate new population. Simulated annealing
algorithm is used to speed up the genetic algorithm to get
the solution by applying the simulated annealing test for all
the population members. The proposed algorithm used

many small but important features such as chromosome
representation, effective genetic operators, and restricted
neighbourhood strategies. The above features are used in
the hybrid algorithm to solve several bench mark
problems.

Keywords
Simulated Annealing, Tabu Search, Genetic Algorithm and
Job Shop Scheduling

1. INTRODUCTION
Scheduling in the manufacturing systems is one of the
most important issues in the planning and operation. Many
scheduling problems are difficult to solve due to complex
in nature. The JSSP can be described as follows. There is a
set of jobs and each job consists of set of operations. The
operations have to processed uninterrupted on a given
machine for a specified length of time. A schedule is an

allocation of operation to time intervals on the machine.
Proficient algorithms are used to solve JSSP, it will
increase the production efficiency, cost reduction in the
manufacturing system. JSSP is one of the most difficult
NP-hard problems [1] and there is exact algorithm to
solve. Due to the complexity of the problem, techniques
such as branch and bound [2, 3] and dynamic
programming [4, 5] are used only for the moderate

problems. But most of them failed to get the solution
because it required huge amount of memory and lengthy
computational time. With the development of new
techniques from the field of artificial intelligence, more
importance has been given to metaheuristics. The tabu
search [6, 7, 8] and simulated annealing [9, 10] are the
type of metaheuristics and it is the construction and
improvement heuristic. Genetic algorithm (GA) [11, 12,

13], particle swarm optimization (PSO) [14, 15] is the
population based algorithms.

Genetic Algorithm proposed by John Holland [16] and
Goldberg [17], is regarded as problem independent
approach and is well suited to dealing with hard

combinational problems. GAs uses the basic Darwinian
mechanism of “survival of the fittest” and repeatedly
utilizes the information contained in the solution
population to generate new solutions with better
performance. The goal of the scheduling algorithms is to
find a solution that satisfies the constraints.

Tabu Search was developed by Glover [18, 19, 20]. TS is a
search procedure that limits the searching and negotiates a

local minimum, while keeping the history of searching in
memory. According to Brucker [21], TS is an intelligent
search technique that uses a memory function in order to
avoid being trapped at a local minimum and hierarchically
canalizes one or more local search procedure in order to
search quickly the global optimality.

2. THE JOB SHOP SCHEDULING

PROBLEM
The nxm Job Shop Scheduling problem is labeled by the

symbol n, m, J, O, G and Cmax. It can be described by the
finite set of n jobs J={J0, J1, J2, J3,…..Jn, Jn+1} (the
operation 0 and n+1 has duration and represents the initial
an final operations), each job consist of a chain of
operations O={O1,O2,O3,….Om}, each operation has
processing time {λi1, λi2, λi3,…. λim}, finite set of m
machines M={M1, M2, M3….Mm}, G is the matrix that
represents the processing order of job in different

machines and Cmax is the makespan that represents the
completion time of the last operation in job shop. On O
define A, a binary relation representing precedence
between operations. If (𝑣, 𝑢) ∈ 𝐴 then u has to be

performed before v. A schedule is a function 𝑆: 𝑂 → 𝐼𝑁 ∪
{𝑂} that for each operation u defines a start time S(u). A
schedule S is feasible if

∀𝑢 ∈ 𝑂: 𝑆 𝑢 ≥ 0 (1)

∀𝑢, 𝑣 ∈ 𝑂, 𝑢, 𝑣 ∈ 𝐴: 𝑆 𝑢 + 𝜆 𝑢 ≤ 𝑆 𝑣 (2)

∀u, v ∈ O, u ≠ v, M u = M v :
S u + λ u ≤ S v orS v + λ v ≤ S u (3)

The length of a schedule S is
 𝑙𝑒𝑛 𝑆 = 𝑚𝑎𝑥𝑣∈0 (𝑆 𝑢 + 𝜆 𝑢). (4)

The goal is to find an optimal schedule, a feasible schedule
of minimum length, min(len(S)).

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

43

An instance of the JSS problem can be represented by
means of a disjunctive graph G=(O, A, E). Here O is the
vertex which represents the operations and A represents the
conjunctive arc which represents the priority between the
operations and the edge in

𝐸 = 𝑢, 𝑣 𝑢, 𝑣 ∈ 𝑂,𝑢 ≠ 𝑣, 𝑀 𝑢 = 𝑀 𝑣 represent the

machine capacity constraints. Each vertex u has a weight,
equal to the processing time λ(u). Let us consider the
bench mark problem of the JSSP with four jobs, each has

three different operations and there are three different
machines. Operation sequence, machine assignment and
processing time are given in Table 1.

Based on the above bench mark problem, we create a

matrix G, in which rows represent the processing order of
operation and the column represents the processing order
of jobs. Also we create a matrix P, in which row i
represents the processing time of Ji for different operations.

Table 1. Processing Time and Sequence for 4X3 problem instance

Job
Operation Number and
Processing Sequence

Machine
Assigned

Processing Time

Start Operation 0 -- 0

J1

O11 M1 2

O12 M2 3

O13 M3 4

J2

O21 M3 4

O22 M2 4

O23 M1 1

J3

O31 M2 2

O32 M3 2

O33 M1 3

J4

O41 M1 3

O42 M3 3

O43 M2 1

End Operation 0 -- 0

G =

𝑀1 𝑀2 𝑀3

𝑀3 𝑀2 𝑀1

𝑀2 𝑀3 𝑀1

𝑀1 𝑀3 𝑀2

 P =

2 3 4
4 4 1
2 2 3
3 3 1

Figure 1. Illustration of disjunctive graph

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

44

M
ac

h
in

e
M1 O11 O41 O23 O33

M2 O31 O12 O22 O43

M3 O21 O32 O42 O13

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2. A Schedule of Gantt Chart for 4X3 problem Instance

The processing time of operation i on machine j is

represented by Oij. Let λij be the processing time of Oij in the

relation 𝑂𝑖𝑗 → 𝑂𝑖𝑗 . Cij represents the completion of the

operation Oij. So that the value Cij= Cik + λij represents the
completion time of Oij. The main objective is to minimize of

Cmax. It can be calculated as

𝐶𝑚𝑎𝑥 = maxall 𝑂𝑖𝑗∈O(𝐶𝑖𝑗) (5)

The distinctive graph of the above bench mark job
scheduling problem is shown in Figure 1, in which vertices
represents the operation. Precedence among the operation of
the same job is represented by Conjunctive arc, which are
doted directed lines. Precedence among the operation of
different job is represented by Disjunctive arc, which are

undirected solid lines. Two additional vertices S and E
represent the start and end of the schedule.

The Gantt Chart of the above bench mark job scheduling
problem is shown in Figure 2. Gantt Chart is the simple
graphical representation technique for job scheduling. It
simply represents a graphical chart for display schedule;
evaluate makespan, idle time, waiting time and machine
utilization etc.

3. LITERATURE REVIEW
There are many local search algorithms have been proposed
by various researchers. Local search algorithms such as
Genetic Algorithms (GA) [22-35], Tabu Search (TS) [17,

19,25, 31, 36, 37], ant optimization and genetic local search
(GLS) [39, 41,42, 43], scatter search and path relinking (SS
and PR) and Simulated Annealing (SA). The majority of the
GA methods gave a poor result due to the difficulty in
crossover operation and schedule representation. TS
algorithms are able to generate good schedule with in the
reasonable computing time. TS algorithm has to maintain
many parameters and these parameters can carefully

adjusted for each problem. It is therefore apparent that if the
current obstacles within job shop scheduling problems are
to be overcome, hybrid approaches are worth considering.

There are many metaheuristic algorithms has been
integrated to improve the solution of JSSP Guohui Zhang
et.al [28, 44, 45], Wang and Zheng (GA and SA); Park et al.
(parallel GA (PGA)). Hybridization of the meta-heuristic
algorithms improves the performance of the JSSP. But it

requires huge computing time. And there is no proper
method to hybrid the algorithms; hence there is a need for
exploring various combinations of search techniques. There
are number of algorithms proposed with the combination of
GA and TS. Meeran and Morshed [46] have used GA as the

base search mechanism and TS to improve their search.

They have measured the effectiveness of hybrid GA and TS
which is called GTA against GA and TS. González et
al.[47] presented a hybrid GA and TS system as in the case
of Meeran and Morshed [46], however Gonzalez et.al
proposed method is for the job shop scheduling problem
with set-up times. Although they have obtained some very
good results, but they have tested only the limited number
of bench mark problems. Thamilselvan et.al [48, 49] has

used the GA with TS and GA with parallel SA for JSSP.
Here GA is used as a base algorithm and other two
algorithms are used to improve the performance of the
algorithm. Both of the algorithms are very efficient for the
small size problems. The system being presented here is
tested on a substantial number of bench mark problems
including hard instances from FT, LA, ABZ and ORB,
attaining optimum solutions.

4. PROPOSED ALGORITHM
4.1. Hybridization of GA, TS and SA

(HGATSSA)
The proposed algorithm hybrids the important features of
genetic algorithm, tabu search and simulated annealing. The
proposed hybrid algorithm is implemented on JSSP. Genetic
algorithm integrates the TS algorithm in the reproduction
phase to generate a new schedule. To escape the local
minimum and to prevent the early convergence of the GA,
insert the new members in GA. Simulated annealing is used
to improve the convergence of the GA testing each

scheduling members after each generation.

The proposed algorithm runs on a group of networked
machines. One machine act as a coordinating machine and
others are the client machines. Initially GA generates a
number of initial solutions from coordinating machine for
distributing among n client machines. GA uses the
Unordered Subsequence Exchange Crossover (USXX) for

generating initial solutions. The n machines in the network
run the SA and TS algorithms by using different initial
solutions. After a fixed number of iterations the best
solution is selected. Each machine in the network can
exchange the partial solutions after a fixed number of
iterations. Client machine in the network use the TS
algorithm to generate a neighborhood of the initial solution
and SA is used to improve the convergence of the solution.

Procedure: HGATSSA()

Step 1: Initialize the parameter of GA, SA and TS.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

45

n (number of client machines); gn= 1(iteration number), ti =
m (number of iterations)

Step 2: Generate a n number of initial schedule S[i] (i=1..n)
using GA.

Step 3: Compute the cost CS[i] of initial schedule S[i].

Step 4: If the stopping criterion is satisfied. Stop the
process.

Step 5: Distribute each initial schedule S[i] to the client
machines.

Step 6: Each client node use the TS to generate a neighbor
S[j] of S[i].

Step 7: Apply the USXX to the current schedule to
complete the new set of schedules.

Step 8: Apply the mutation operator to the new schedules.

Step7: Calculate the new temperature of the SA algorithm
cooling schedule. Apply the SA test to accept or
reject the members of the new population (one by
one) according to the SA current solution.

Step 8: Calculate the objective function of new schedule
S[j].

Step 9: if (gn<ti) go to Step 4 otherwise go to Step 6.

Step 10: Coordinator node receive the current solution from
each client machine.

Step 11: Select the best schedule among the set of current
solutions.

Step 12: Go to step 3.

Step 13. Stop.

Stopping Criteria: There are many stopping criteria for job
scheduling. In this proposed algorithm, we stop the search
if one of the following conditions is satisfied.
 The number of iterations performed since the best

solution last changed is greater than a prespecified

maximum number of iterations, or
 Maximum allowable number of iterations

(generations) is reached.

Schedule Representation: The main idea is how to
represent the jobs in terms of sequence. In the relationship
between the job scheduling and the chromosomes to
represent the schedule. So that we can use the GA to find
better job scheduling. For the above 4X3 job shop

scheduling the chromosome such as [3 4 1 2 1 4 3 4 1 2 3 2]
may be formed and then change the order for the better
schedule. In the given chromosome the genes “1” stands for
J1, “2” stands for J2 and so on. The order of the operation
corresponds to the relative position of the gene. For
example the first gene “3” stands for first operation of J3,
seventh gene “3” stands for the second operation of J3,
second gene “4” stands for first operation of J4 and so on.

The above scheduling chromosome is also represented as
[O31, O41, O11, O21, O12, O42, O32, O43, O13, O22, O33, O23].
Oij stands for the jth operation of the job Ji. For example O31
stands for the first operation of J3.

Reproduction strategies: The crossover operator involves
the swapping of genetic material (bit-values) between the
two parent strings. Two parents produce two offspring.

There is a chance that the chromosomes of the two parents
are copied unmodified as offspring. There is a chance that
the chromosomes of the two parents are randomly
recombined (crossover) to form offspring. Generally the
chance of crossover is between 0.6 and 1.0 [6]. The

following sections propose the new crossover algorithms for
job shop scheduling.

The second genetic operator, mutation, can help GA to get a
better solution in a faster time. In this model, relocation is

used as a key mechanism for mutation. Operations of a
particular job that is chosen randomly are shifted to the left
or to the right of the string. Hence the mutation can
introduce diversity without disturbing the sequence of jobs
operations. When applying mutation one has to be aware
that if the diversity of the population is not sufficiently
maintained, early convergence could occur and the
crossover cannot work well.

4.2. TS implementation of the proposed

algorithm
In the proposed algorithm TS is used to generate new
neighbors to randomly selected members of the GA
populations. TS algorithm is generally simple for JSSP. The
algorithm begins with initial solution and stored it as the

current seed and the best solution. The neighbors of the
current schedule are produced by neighborhood algorithm.
They are evaluated for an objective function and a candidate
which is not in tabu list and this is selected as a new seed
solution. This selection is added to tabu list and this is
compared with current best solution. If it is better, it is
stored as a best solution. Iterations are repeated until the
stopping criteria are satisfied. The following is the TS part

of the proposed algorithm.

Procedure: TS(JSSP)
Initialize the parameter of TS.
S (schedule); N(S) (neighbor of schedule S);S[i] (initial
schedule); TL (tabu list); Bc (Best Cost); Bs (Best schedule
S← S[i]

𝐵𝐶 ← 𝐶𝑆[𝑖]

𝐵𝑆 ← 𝑆

𝑇𝑆 ← ∅

Do 𝑁 𝑆 ← {𝑆[𝑗] ∈ 𝑁(𝑆)|𝑀𝑜𝑣𝑒(𝑆, 𝑆[𝑗] ≠ 𝑇𝐿}
if 𝑁(𝑆) ≠ ∅

then 𝑆′ ← 𝑥 ∈ 𝑁(𝑆)|∀𝑦 ∈ 𝑁 𝑆 𝐶𝑥 ≤ 𝐶𝑦

 Update the tabu list for S’

𝑖𝑓(𝐶𝑚𝑜𝑣𝑒 𝑆, 𝑆 ′) < 𝐵𝑐 then

 Bs←S’

 𝐵𝐶 ← 𝐶𝑆′

 𝑆 ← 𝑆′
Return Bs

Aspiration Criteria: Different forms of aspiration criteria
are used in the literature. The one we used in this work is to
override the tabu status if the current solution associated
with tabu status has a better objective function than the one
obtained before, for the same move.

Variable tabu list size: The basic role of the tabu list is to
prevent cycling. The fixed length tabu cannot prevent

cycling. We can observe that if the length of the list is too
short, cycling cannot be prevented, and long-size tabu
creates many restrictions so as to increase the mean value of
the visited solutions. An effective way of removing this
difficulty is to use a tabu list with variable size according to
the current iteration number. The length of the tabu list is
initially assigned according to the size of the problem and it
will be decreased and increased during the construction of

the solution so as to achieve better exploration of the search
space.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

46

4.3. SA implementation of the proposed

algorithm
Simulated annealing gives new chances to commence new
valuable hill climbing processes in which the considered
particular solution may have chances to change to better
situation. Therefore, the more time to see a particular
solution for SA, the better to reach global optimum. SA
algorithm generates an initial solution randomly. A
neighbor of this solution is then generated by a suitable
mechanism and the change in the cost function is calculated.
If a decrease in the cost function is obtained, the current

solution is replaced by the generated neighbour. If the cost
function fun of the neighbour is greater, the newly
generated neighbour replaces the current solution with an
acceptance probability function given in equation (6)

𝑃 𝑑, 𝑇 = exp⁡(−
𝑑

𝑇
) (6)

 Where 𝑑 = 𝐶𝑆[𝑗] − 𝐶𝑆[𝑖]

Procedure: SA(JSSP)
Input:
T: Temperature; Ts : Starting temperature; Te : Ending
temperature; N :Number of iteration.

Begin
generate initial schedule S[i] .
compute the cost CS[i] of initial schedule S[i].
 n=1, T=Ts.
while T<Te
 while n<N
select neighbourhood S[j] of S[i].
 compute the cost CS[j] of the new schedule S[j].

 compute = 𝐶𝑆[𝑗] − 𝐶𝑆[𝑖] .

 if𝑑 ≤ 0 then

 S[i]=S[j].
 CS[i]=CS[j].
 else
generate a random variable R~(0,1).

ifexp⁡(−𝑑/𝑇) > 𝑅

 S[i]=S[j].
 CS[i]=CS[j].
end if
 end if

n=n+1.
end while
 T= T*0.995.
end while
if CS[i]<Bc
Bc=CS[i].
Bs=S[i].
end if

 End

5. RESULTS AND DISCUSSIONS
The efficiency of the proposed algorithm is tested with
standard bench marks problems of Lawrence instances from

LA30 to LA40 ,Storer et al. instances SWV11-SWV20 and
Yamada and Nakano instances from YN01-YN04. The

output of this algorithm is compared against the Genetic
Algoritm, parallel simulated annealing and hybrid algorithm
of Genetic algorithm with parallel simulated annealing.
Twenty five bench mark problems were tested with
proposed algorithm and other algorithms. Table 2 shows

that the proposed algorithm produces better results than the
other algorithm. Several measures, which gain some
statistics relating to implementation of these methods, are
created. They are the mean relative improvement (MRI%),
the mean relative error (MRE%) shown in equation (7) and
(8) respectively.

𝑀𝑅𝐼% =
(𝑀𝑆𝐶−𝑀𝑆𝐻𝐺𝐴𝑇𝑆𝑆𝐴)

(𝑀𝑆𝐶)
𝑋100 (7)

𝑀𝑅𝐸% =
(𝑀𝑆𝐶−𝑀𝑆𝑂)

(𝑀𝑆𝑂)
𝑋100 (8)

Where MSC is the makespan of the algorithm being
compared to, MSHGATSSA is the makespan of the proposed

algorithm, MSO is the optimal makespan of the given
problem.

Table 2. Makespan value comparison

Algorithm
No. of Problems reached optimal

makespan

GA 3

PSA 3

HGAPSA 12

HGATSSA 23

Table 3 shows comparison of makespan value produced
from different algorithms for problem instances LA30-
LA40 (Lawrence, 1984) Column 1 specifies the problem
instances, Column 2 specifies the number of jobs, Column 3
shows the number of machines, Column 4 specify the
optimal value for each problem. Column 5, 6, 7 and 8
specify results from GA, PSA, HGATSSA and HGAPSA

respectively. It shows that the proposed hybrid algorithm
has succeeded in getting the optimal solutions for all the
problems. The average makespan value of the proposed
algorithm is comparetively lower than the other algorithms.

Table 4 shows comparison of relative error and relative
improvement of different algorithms for problem instances
LA30-LA40 (Lawrence, 1984). The relative error for all the

problem instances becomes 0 for the proposed algorithm,
but other algirhtms there is a relative error value that shows
that the problem does not reach the optimal makespan. The
comparision average markspan and relative error are also
shown in Figure 3 and 4 respectively. The relative
improvement is also compared with other algorithms. There
is a 0.13% improvement compared to HGAPSA, 0.95%
imporvement compare to PSA and 2.09% improvement
compare to genetic algorithm.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

47

Table 3. Results for instances by Lawrence (1984)

Problem
Name

Problem Size Makespan

Jobs (n)
Machines

(m)
Optimal GA PSA HGATSSA HGAPSA

LA30 20 10 1355 1398 1360 1355 1355

LA31 30 10 1784 1829 1800 1784 1790

LA32 30 10 1850 1877 1875 1850 1860

LA33 30 10 1719 1820 1740 1719 1719

LA34 30 10 1721 1810 1742 1721 1725

LA35 30 10 1888 1950 1953 1888 1895

LA36 15 15 1279 1279 1285 1279 1279

LA37 15 15 1408 1441 1423 1408 1408

LA38 15 15 1219 1220 1219 1219 1219

LA39 15 15 1246 1246 1250 1246 1246

LA40 15 15 1241 1241 1245 1241 1241

Average 1519.09 1555.55 1535.64 1519.09 1521.55

Table 4. Results for instances by Lawrence (1984)

Problem
Name

Problem Size Relative Error Relative Improvement (%)

Jobs (n)
Machines

(m)
GA PSA HGATSSA HGAPSA

With
GA

With
PSA

With
HGAPSA

LA30 20 10 3.17 0.37 0.00 0.00 3.08 0.37 0.00

LA31 30 10 2.52 0.90 0.00 0.34 2.46 0.89 0.34

LA32 30 10 1.46 1.35 0.00 0.54 1.44 1.33 0.54

LA33 30 10 5.88 1.22 0.00 0.00 5.55 1.21 0.00

LA34 30 10 5.17 1.22 0.00 0.23 4.92 1.21 0.23

LA35 30 10 3.28 3.44 0.00 0.37 3.18 3.33 0.37

LA36 15 15 0.00 0.47 0.00 0.00 0.00 0.47 0.00

LA37 15 15 2.34 1.07 0.00 0.00 2.29 1.05 0.00

LA38 15 15 0.08 0.00 0.00 0.00 0.08 0.00 0.00

LA39 15 15 0.00 0.32 0.00 0.00 0.00 0.32 0.00

LA40 15 15 0.00 0.32 0.00 0.00 0.00 0.32 0.00

Average 2.17 0.97 0.00 0.13 2.09 0.95 0.13

Figure 3. Average Makespan values obtained by Different algorithms for LA30-LA40

1500.00

1510.00

1520.00

1530.00

1540.00

1550.00

Optimal GA PSA HGATSSA HGAPSA

1519.09

1555.55

1535.64

1519.09
1521.55

M
a
k

e
sp

a
n

Methods

Average Makespan

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

48

Figure 4. Average Relative Error obtained by Different algorithms for LA30-LA40

Table 5. Results for instances by Storer, Wu and Vaccari (1992)

Problem
Name

Problem Size Makespan

Jobs (n)
Machines

(m)

Optimal
GA PSA HGATSSA HGAPSA

UB LB

SWV11 50 10 2991 2983 3200 3012 2983 3048

SWV12 50 10 3003 2972 3250 3120 2972 3012

SWV13 50 10 3104 3754 3250 3104 3108

SWV14 50 10 2968 3487 3212 2968 2968

SWV15 50 10 2904 2885 4235 3225 2885 2904

SWV16 50 10 2924 3547 3332 2950 3025

SWV17 50 10 2794 3269 3002 2794 2800

SWV18 50 10 2852 3156 2962 2860 2875

SWV19 50 10 2843 3169 2930 2843 2850

SWV20 50 10 2823 3231 2963 2823 2823

Average 2920.60 2946.67 3429.80 3100.80 2918.20 2941.30

Table 5 and Table 7 shows comparison of makespan value
produced from different algorithms for problem instances
SWV11-SWV20 and YN01-YN04 respectively. Column 1
specifies the problem instances, Column 2 specifies the
number of jobs, Column 3 shows the number of machines,
Column 4 specify the optimal value for each problem.
Column 5, 6, 7 and 8 specify results from GA, PSA,

HGATSSA and HGAPSA respectively. It shows that the
proposed hybrid algorithm has succeeded in getting the
optimal solutions for all the problems. The average
makespan value of the proposed algorithm is comparetively
lower than the other algorithms.

Table 6 shows comparison of relative error and relative
improvement of different algorithms for problem instances
SWV11-SWV20. There are 10 bench mark problems were

testing and 9 problems reached the optimal makespan using
proposed algorithm. The average relative error is also very
less for the proposed algorithm. The comparision average
markspan and relative error are also shown in Figure 5 and
6 respectively. The relative improvement is also compared
with other algorithms. There is a 0.77% improvement
compared to HGAPSA, 5.79% imporvement compare to
PSA and 14.31% improvement compare to genetic

algorithm.

0.00

0.40

0.80

1.20

1.60

2.00

GA PSA HGATSSA HGAPSA

2.17

0.97

0.00
0.13

R
e
la

ti
v
e
 E

r
r
o
r

Methods

Average Relative Error

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

49

Table 6. Results for instances by Storer, Wu and Vaccari (1992)

Problem
Name

Problem Size Makespan Relative Error Relative Improvement (%)

Jobs
(n)

Machines
(m)

Optimal
GA PSA HGATSSA HGAPSA

With
GA

With
PSA

With
HGAPSA UB LB

SWV11 50 10 2991 2983 6.99 0.70 0.00 1.91 6.78 0.96 2.13

SWV12 50 10 3003 2972 8.23 3.90 0.00 0.30 8.55 4.74 1.33

SWV13 50 10 3104 20.94 4.70 0.00 0.13 17.31 4.49 0.13

SWV14 50 10 2968 17.49 8.22 0.00 0.00 14.88 7.60 0.00

SWV15 50 10 2904 2885 45.83 11.05 0.00 0.65 31.88 10.54 0.65

SWV16 50 10 2924 21.31 13.95 0.89 3.45 16.83 11.46 2.48

SWV17 50 10 2794 17.00 7.44 0.00 0.21 14.53 6.93 0.21

SWV18 50 10 2852 10.66 3.86 0.28 0.81 9.38 3.44 0.52

SWV19 50 10 2843 11.47 3.06 0.00 0.25 10.29 2.97 0.25

SWV20 50 10 2823 14.45 4.96 0.00 0.00 12.63 4.72 0.00

Average 2920.60 2946.67 17.44 6.19 0.12 0.77 14.31 5.79 0.77

Figure 5. Average Makespan values obtaind by Different algorithms for SWV11-SWV20

Figure 6. Average Relative error obtained by Different algorithms for SWV11-SWV20

2900.00

3000.00

3100.00

3200.00

3300.00

3400.00

3500.00

Optimal GA PSA HGATSSA HGAPSA

2920.60

3429.80

3100.80

2918.20
2941.30

M
a

k
e
sp

a
n

Methods

Average Makespan

0.00

3.00

6.00

9.00

12.00

15.00

18.00

GA PSA HGATSSA HGAPSA

17.44

6.19

0.12 0.77

R
e
la

ti
v
e
 E

r
r
o
r

Methods

Average Relative Error

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

50

Table 7. Results for instances by Yamada and Nakano (1992)

Problem
Name

Problem Size Makespan

Jobs (n)
Machines

(m)

Optimal
GA PSA HGAPSA HGATSSA

UB LB

YN01 20 20 888 826 890 888 888 826

YN02 20 20 909 861 910 909 909 861

YN03 20 20 893 827 924 900 893 827

YN04 20 20 968 918 1098 1012 942 918

Average 914.50 858.00 955.50 927.25 908.00 858.00

Table 8. Results for instances by Yamada and Nakano (1992)

Problem
Name

Problem Size
Optimal

Relative Error Relative Improvement

Jobs
(n)

Machines
(m)

GA PSA HGAPSA HGATSSA
With
GA

With
PSA

With
HGAPSA UB LB

YN01 20 20 888 826 0.23 0.00 0.00 0.00 7.19 6.98 6.98

YN02 20 20 909 861 0.11 0.00 0.00 0.00 5.38 5.28 5.28

YN03 20 20 893 827 3.47 0.78 0.00 0.00 10.50 8.11 7.39

YN04 20 20 968 918 13.43 4.55 2.48 0.00 16.39 9.29 2.55

Average 914.50 858.00 4.31 1.33 0.62 0.00 9.87 7.42 5.55

Table 8 shows comparison of relative error and relative
improvement of different algorithms for problem instances
YN01-YN04. The result in the table shows that the

proposed algorithm produced better result compare to the
other algorithms. The average relative error is also very less
for the proposed algorithm. The comparision average
markspan and relative error are also shown in Figure 7 and
8 respectively. The relative improvement is also compared
with other algorithms. There is a 5.55% improvement
compared to HGAPSA, 7.42% imporvement compare to

PSA and 9.87% improvement compare to genetic algorithm.

Typical runs of problem instances LA30 and SWV15 are
illustrated in Figure 9 and 10 respectively by the GA, PSA,
HGAPSA and HGATSSA. The graph shows that the

proposed HGATSSA reach the optimal solution faster than
other two methods. In the graph x axis represnt the number
of iterations and y axis represent the makespan value. For
both the problems, proposed algorithm takes less number of
iterations to reach the optimal value.

Figure. 7. Average Makespan values obtained by Different algorithms for YN01-YN04

850.00

870.00

890.00

910.00

930.00

950.00

Optimal GA PSA HGAPSA HGATSSA

858.00

955.50

927.25

908.00

858.00

M
a
k

e
sp

a
n

Methods

Average Makespan

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

51

Figure 8. Average Relative error obtained by Different algorithms for YN01-YN04

Figure 9. The time evolutions of makespans for the LA30 (20 jobs and 10 machines)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

GA PSA HGAPSA HGATSSA

4.31

1.33

0.62

0.00

R
e
la

ti
v
e
 E

r
r
o
r

Methods

Average Relative Error

1300

1500

1700

1900

2100

2300

2500

2700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

M
a
k

es
p

a
n

Iterations

GA

PSA

HGAPSA

HGATSSA

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

52

Figure 10. The time evolutions of makespans for the SWV15 (50 jobs and 10 machines)

6. CONCLUSIONS
In this paper we have proposed a new hybrid algorithm for
job shop scheduling. The algorithm incorporates the main
features of the meta-heuristic algorithm GA, TS and SA.
The algorithm is based mainly on the GA, while the TS
method is used to generate new members in the GA
population. The SA algorithm is used to accelerate the

convergence of the GA by testing all the GA members after
each reproduction of a new population. This algorithm is
implemented in a group of machine. GA is working on the
coordinator node and other two algorithms are working in
the client nodes. A TS implement of the proposed algorithm
is used to generate a neighbor schedule and the SA part is
used to simplify and speed up the calculations. The main
advantage of the proposed algorithm is speed up the

convergence of the optimal schedule of job shop scheduling
compare to GA, PSA and HGAPSA.

REFERENCES
[1]. Garey.E.L, Johnson. D. S and Sethi. R, “The

complexity of flow shop and job shop scheduling”,
Mathematics of Operations Research, Vol. 1, pp.117-
129, 1976.

[2]. Brucker. P, Jurisch. B and Sievers. B, “A branch and
bound algorithm for job shop scheduling problem”,
Discrete Applied Math, Vol. 49, pp. 105-127, 1994.

[3]. Artigues. C, Feillet. D, “A branch and bound method
for the job shop problem with sequence dependent

setup times”, Annals of Operations Research, Vol. 159,
No. 1, pp. 135-159, 2008.

[4]. Lorigeon. T, “A dynamic programming algorithm for
scheduling jobs in a two-machine open shop with an
availability constraint”, Journal of the Operational
Research Society, Vol. 53, No. 11, pp. 1239-1246,
2002.

[5]. Potts. C. N and Van Wassonhove. L. N, “Dynamic
programming and decomposition approaches for the

single machine total tardiness problem”, European

Journal of Operational Research, Vol. 32, pp, 405-414,
1987.

[6]. Zhang. C.Y, Li. P. G, Rao. Y. Q, “A very fast TS/SA
algorithm for the job shop scheduling problem”,
Computers and Operations Research, Vol. 35, pp. 282-
294, 2008.

[7]. Nowicki. E andSmutnicki. C, “A fast taboo search
algorithm for the job shop scheduling problem”,
Management Science, Vol. 41, No. 6, pp. 113-125,
1996.

[8]. Dell. A. M, Trubian. M, “Applying tabu-search to job
shop scheduling problem,” Annals of Operations
Research, Vol. 41, No. 3, pp. 231-252, 1993.

[9]. Wang. T. Y, Wu. K. B, “A revised simulated annealing
algorithm for obtaining the minimum total tardiness in
job shop scheduling problems”, International Journal
of Systems Science, vol. 31, no. 4, pp. 537-542, 2000.

[10]. Kolonko. M, “Some new results on simulated

annealing applied to the job shop scheduling problem”,
European Journal of Operational Research, vol. 113,
no. 1, pp. 123-136, 1999.

[11]. Moon. I, Lee. S and Bae. H, “Genetic algorithms for
job shop scheduling problems with alternative
routings”, International Journal of Production
Research, Vol. 46, No. 10, pp. 2695-2705, 2008.

[12]. Goncalves. J. F, Mendes. J. J. D. M and, Resende. M.

G. C, “A hybrid genetic algorithm for the job shop
scheduling problem”, European Journal of Operational
Research, Vol. 167, No. 1, pp. 77-95, 2005.

[13]. Bierwirth. C and Mattfeld. D. C, “Production
scheduling and rescheduling with genetic algorithms”,
Evolutionary Computation, Vol. 7, No. 1, pp. 1-17,
1999.

[14]. Liu. B, Wang. L and Jin. Y. H, “An effective hybrid
PSO-based algorithm for flow shop scheduling with

limited buffers”, Computers and Operations Research,
Vol. 35, No. 9, pp. 2791-2806, 2008.

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

M
a
k

es
p

a
n

Iterations

GA

PSA

HGAPSA

HGATSSA

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

53

[15]. Tasgetiren. M. F, Liang. Y. C and Sevkli. M, “A
particle swarm optimization algorithm for makespan
and total flowtime minimization in the permutation
flowshop sequencing problem”, European Journal of
Operational Research, Vol. 177, No. 3, pp. 1930-1947,

2007.

[16]. Holland. J. H, Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan
Press, 1975.

[17]. Goldberg. G. E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley, 1989.

[18]. Glover. F , “Future paths for integer programming and

links to artificial intelligence”, Computer and
Operation Research, Vol.13, No. 5, pp. 533-549, 1986.

[19]. Glover. F , Tabu Search – Part I, ORSA Journal on
Computing, Vol.1, No. 3, pp. 190-206, 1989.

[20]. Glover. F , Tabu Search – Part II, ORSA Journal on
Computing, Vol.2, No. 3, pp. 4-32, 1990.

[21]. Brucker. P, Scheduling Algorithms, Springer Verlag,
Berlin, 1995

[22]. Davis, L. Job-shop scheduling with genetic algorithm.
In Proceedings of the 1st international conference on
genetic algorithms and their applications, Pittsburgh,
PA, pp. 136–140, 1985.

[23]. Della Croce. F., Tadei. R., andVolta. G. A genetic
algorithm for the job shop problem. Computers and
Operations Research, Vol.22, No.1,pp. 15–24, 1995.

[24]. Dorndorf. U., and Pesch. E. Evolution based learning

in a job-shop scheduling environment. Computers and
Operations Research, Vol.22, No.1, pp. 25–40, 1995.

[25]. Eswarmurthy. V., and Tamilarasi. A. Hybridizing tabu
search with ant colony optimization for solving job
shop scheduling problem. The International Journal of
Advanced Manufacturing Technology, Vol.40, pp.
1004–1015, 2009.

[26]. Mattfeld. D. C. Evolutionary search and the job shop:
Investigations on genetic algorithms for production

scheduling. Heidelberg, Germany: Physica-Verlag,
1996.

[27]. Yamada. T. and Nakano. R. Scheduling by genetic
local search with multi-step crossover. In PPSN’IV 4th
international conference on parallel problem solving
from nature, Berlin, Germany, pp. 960-969, 1996.

[28]. Park. B. J., Choi, H. R., and Kim. H. S. A hybrid
genetic algorithm for the job shop scheduling

problems. Computers and Industrial Engineering,
Vol.45, pp.597–613, 2003

[29]. Aydin. M. E., and Fogarty. T. C. A simulated
annealing algorithm for multi-agent systems: A job-
shop scheduling application. Journal of Intelligent
Manufacturing, Vol.15, No.6, pp.805–814, 2004.

[30]. Gao. J., Gen. M., and Sun. L. Scheduling jobs and
maintenances in flexible job shop with a hybrid genetic

algorithm. Journal of Intelligent Manufacturing,
Vol.17, No.4, pp.493–507, 2006.

[31]. Pezzella. F., and Merelli. E. A tabu search method
guided by shifting bottleneck for the job shop

scheduling problem. European Journal of Operation
Research, Vol.120, pp.297–310, 2000.

[32]. Pezzella. F., Morganti. G., and Ciaschetti. G. A genetic
algorithm for the flexible job-shop scheduling
problem. Computers and Operations Research, Vol.35,

pp.3202–3212, 2008.

[33]. Gholami. M. and Zandieh. M. Integrating simulation
and genetic algorithm to schedule a dynamic flexible
job shop. Journal of Intelligent Manufacturing, Vol.20,
No.4, pp.481–498, 2009.

[34]. Gen. M., Gao. J., and Lin. L. Multistage-based genetic
algorithm for flexible job-shop scheduling problem.
Intelligent and Evolutionary Systems, Studies in

Computational Intelligence, Vo. 187, pp.183–196,
2009.

[35]. Pérez. E., Posada. M., and Herrera. F. Analysis of new
niching genetic algorithms for finding multiple
solutions in the job shop scheduling. Journal of
Intelligent Manufacturing, Online Firsttrademark,
March 10, 2010.

[36]. Dell’Amico. M., and Trubian, M. Applying tabu search

to the job-shop scheduling problem. Annals of
Operations Research, Vol. 41, pp. 231–252, 1993.

[37]. Thomsen. S. Meta-heuristics combined with branch
and bound. Technical Report. Copenhagen Business
School, Copenhagen, Denmark, 1997.

[38]. Chen. L., Bostel. N., Dejax, P., Cai. J., and xi. L. A
tabu search algorithm for the integrated scheduling
problem of container handling systems in a maritime

terminal. European Journal of Operational Research,
Vol. 181, No.1, pp.40–58, 2007.

[39]. Yamada, T. and Nakano, R. Scheduling by genetic
local search with multi-step crossover. In PPSN’IV 4th
international conference on parallel problem solving
from nature, Berlin, Germany, pp. 960–969, 1996

[40]. Zhou, R., Nee, A. Y. C., and Lee, H. P. Performance of
an ant colony optimisation algorithm in dynamic job
shop scheduling problems. International Journal of

Production Research, Vol. 47, pp. 2903–2920, 2009.

[41]. Jain, A. S., andMeeran, S. A multi-level hybrid
framework applied to the general flow-shop scheduling
problem. Computers and Operations Research, Vol. 29,
pp.1873–1901, 2002.

[42]. Satake, T., Morikawa, K., Takahashi, K., and
Nakamura, N. Simulated annealing approach for
minimizing the make-span of the general job shop.

International Journal of Production Economics, Vol.
60, No. 61, pp.515–522, 1999.

[43]. Suresh, R. K., andMohanasundaram, K. M. Pareto
archived simulated annealing for job shop scheduling
with multiple objectives. The International Journal of
Advanced Manufacturing Technology, Vol. 29,
pp.184–196, 2005.

[44]. Guohui Zhang, Liang Gao and Yang Shi, “A Genetic

Algorithm and Tabu Search for Multi Objective
Flexible Job Shop Scheduling Problems”, International
Conference on Computing, Control and Industrial
Engineering, 2010.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.5, June 2012

54

[45]. Wang. L., and Zheng, D. Z. An effective hybrid
optimisation strategy for job shop scheduling
problems. Computers and Operations Research, Vol.
28, pp.585–596, 2001.

[46]. Meeran. S. andMorshed. M. S. A hybrid configuration

for solving job shop scheduling problems. In 8th Asia
Pacific industrial engineering and mangement science
Conference, Kaohsiung, Taiwan, 2007.

[47]. González, M. A., Vela, C. R., and Varela, R. Genetic
algorithm combined with tabu search for the job shop
scheduling problem with setup times’ methods and
models in artificial and natural computation. A homage
to professor Mira’s scientific legacy. Lecture Notes in

Computer Science, 5601/2009, pp.265–274, 2009.
doi:10.1007/978-3-642-02264-7_28.

[48]. Thamilselvan, R, P.Balasubramanie, Analysis of
Various Alternate Crossover Strategies for Genetic
Algorithm to Solve Job Shop Scheduling. European

Journal of Scientific Research, 64(4): 538-554,
2011.www.europeanjournalofscientificresearch.com
/ISSUES/EJSR_64_4_05.pdf.

[49]. Thamilselvan, R, P.Balasubramanie, Integration of
Genetic Algorithm with Tabu Search for Job Shop
Scheduling with Unordered Subsequence Exchange
Crossover. Journal of Computer Science, 8(5): 681-
693. DOI: 10.3844/jcssp.2012.681.693, 2012

