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ABSTRACT 
Job Shop Scheduling Problem (JSSP) is an optimization 
problem in which ideal jobs are assigned to resources at 
particular times. In recent years many attempts have been 
made at the solution of JSSP using a various range of tools 
and techniques such as Branch and Bound and Heuristics 

algorithms. This paper proposed a new algorithm based on 
Genetic Algorithm (GA), Tabu Search (TS) and Simulated 
Annealing (SA) algorithms to solve JSSP. The proposed 
algorithm is mainly based on the genetic algorithm. The 
reproduction phase of the genetic algorithm uses the tabu 
search to generate new population. Simulated annealing 
algorithm is used to speed up the genetic algorithm to get 
the solution by applying the simulated annealing test for all 
the population members. The proposed algorithm used 

many small but important features such as chromosome 
representation, effective genetic operators, and restricted 
neighbourhood strategies. The above features are used in 
the hybrid algorithm to solve several bench mark 
problems.  
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1. INTRODUCTION 
Scheduling in the manufacturing systems is one of the 
most important issues in the planning and operation. Many 
scheduling problems are difficult to solve due to complex 
in nature. The JSSP can be described as follows. There is a 
set of jobs and each job consists of set of operations. The 
operations have to processed uninterrupted on a given 
machine for a specified length of time. A schedule is an 

allocation of operation to time intervals on the machine. 
Proficient algorithms are used to solve JSSP, it will 
increase the production efficiency, cost reduction in the 
manufacturing system. JSSP is one of the most difficult 
NP-hard problems [1] and there is exact algorithm to 
solve. Due to the complexity of the problem, techniques 
such as branch and bound [2, 3] and dynamic 
programming [4, 5] are used only for the moderate 

problems. But most of them failed to get the solution 
because it required huge amount of memory and lengthy 
computational time. With the development of new 
techniques from the field of artificial intelligence, more 
importance has been given to metaheuristics. The tabu 
search [6, 7, 8] and simulated annealing [9, 10] are the 
type of metaheuristics and it is the construction and 
improvement heuristic. Genetic algorithm (GA) [11, 12, 

13], particle swarm optimization (PSO) [14, 15] is the 
population based algorithms. 

 
Genetic Algorithm proposed by John Holland [16] and 
Goldberg [17], is regarded as problem independent 
approach and is well suited to dealing with hard 

combinational problems. GAs uses the basic Darwinian 
mechanism of “survival of the fittest” and repeatedly 
utilizes the information contained in the solution 
population to generate new solutions with better 
performance. The goal of the scheduling algorithms is to 
find a solution that satisfies the constraints. 

 
Tabu Search was developed by Glover [18, 19, 20]. TS is a 
search procedure that limits the searching and negotiates a 

local minimum, while keeping the history of searching in 
memory. According to Brucker [21], TS is an intelligent 
search technique that uses a memory function in order to 
avoid being trapped at a local minimum and hierarchically 
canalizes one or more local search procedure in order to 
search quickly the global optimality. 
 

2. THE JOB SHOP SCHEDULING 

PROBLEM 
The nxm Job Shop Scheduling problem is labeled by the 

symbol n, m, J, O, G and Cmax. It can be described by the 
finite set of n jobs J={J0, J1, J2, J3,…..Jn, Jn+1} (the 
operation 0 and n+1 has duration and represents the initial 
an final operations), each job consist of a chain of 
operations O={O1,O2,O3,….Om},  each operation has 
processing time {λi1, λi2, λi3,…. λim}, finite set of m 
machines M={M1, M2, M3….Mm}, G is the matrix that 
represents the processing order of job in different 

machines and Cmax is the makespan that represents the 
completion time of the last operation in job shop. On O 
define A, a binary relation representing precedence 
between operations. If (𝑣, 𝑢) ∈ 𝐴 then u has to be 

performed before v. A schedule is a function 𝑆: 𝑂 → 𝐼𝑁 ∪
{𝑂} that for each operation u defines a start time S(u). A 
schedule S is feasible if  
 
∀𝑢 ∈ 𝑂:        𝑆 𝑢 ≥ 0   (1) 

∀𝑢, 𝑣 ∈ 𝑂,  𝑢, 𝑣 ∈ 𝐴: 𝑆 𝑢 + 𝜆 𝑢 ≤ 𝑆 𝑣  (2) 

∀u, v ∈ O, u ≠ v, M u = M v :   
S u + λ u ≤ S v orS v + λ v ≤ S u  (3) 

The length of a schedule S is  
 𝑙𝑒𝑛 𝑆 = 𝑚𝑎𝑥𝑣∈0 (𝑆 𝑢 + 𝜆 𝑢 ).  (4) 

The goal is to find an optimal schedule, a feasible schedule 
of minimum length, min(len(S)). 
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An instance of the JSS problem can be represented by 
means of a disjunctive graph G=(O, A, E). Here O is the 
vertex which represents the operations and A represents the 
conjunctive arc which represents the priority between the 
operations and the edge in 

𝐸 =   𝑢, 𝑣  𝑢, 𝑣 ∈ 𝑂,𝑢 ≠ 𝑣, 𝑀 𝑢 = 𝑀 𝑣   represent the 

machine capacity constraints. Each vertex u has a weight, 
equal to the processing time λ(u). Let us consider the 
bench mark problem of the JSSP with four jobs, each has 

three different operations and there are three different 
machines. Operation sequence, machine assignment and 
processing time are given in Table 1. 
 
Based on the above bench mark problem, we create a 

matrix G, in which rows represent the processing order of 
operation and the column represents the processing order 
of jobs. Also we create a matrix P, in which row i 
represents the processing time of Ji for different operations.

 
Table 1. Processing Time and Sequence for 4X3 problem instance 

 

Job 
Operation Number and 
Processing Sequence 

Machine 
Assigned 

Processing Time 

Start Operation  0 -- 0 

J1 

O11 M1 2 

O12 M2 3 

O13 M3 4 

J2 

O21 M3 4 

O22 M2 4 

O23 M1 1 

J3 

O31 M2 2 

O32 M3 2 

O33 M1 3 

J4 

O41 M1 3 

O42 M3 3 

O43 M2 1 

End Operation  0 -- 0 

 

G =  

𝑀1 𝑀2 𝑀3

𝑀3 𝑀2 𝑀1

𝑀2 𝑀3 𝑀1

𝑀1 𝑀3 𝑀2

  P =  

2 3 4
4 4 1
2 2 3
3 3 1

  

 
Figure 1.  Illustration of disjunctive graph 
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M3 O21 O32 O42 O13 
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Figure 2. A Schedule of Gantt Chart for 4X3 problem Instance 

 
The processing time of operation i on machine j is 

represented by Oij. Let λij be the processing time of Oij  in the 

relation 𝑂𝑖𝑗 → 𝑂𝑖𝑗 . Cij represents the completion of the 

operation Oij. So that the value Cij= Cik + λij represents the 
completion time of Oij. The main objective is to minimize of 

Cmax. It can be calculated as  

𝐶𝑚𝑎𝑥 = maxall  𝑂𝑖𝑗∈O(𝐶𝑖𝑗 )   (5) 

The distinctive graph of the above bench mark job 
scheduling problem is shown in Figure 1, in which vertices 
represents the operation. Precedence among the operation of 
the same job is represented by Conjunctive arc, which are 
doted directed lines. Precedence among the operation of 
different job is represented by Disjunctive arc, which are 

undirected solid lines. Two additional vertices S and E 
represent the start and end of the schedule. 

The Gantt Chart of the above bench mark job scheduling 
problem is shown in Figure 2. Gantt Chart is the simple 
graphical representation technique for job scheduling. It 
simply represents a graphical chart for display schedule; 
evaluate makespan, idle time, waiting time and machine 
utilization etc. 

 

3. LITERATURE REVIEW 
There are many local search algorithms have been proposed 
by various researchers. Local search algorithms such as 
Genetic Algorithms (GA) [22-35], Tabu Search (TS) [17, 

19,25, 31, 36, 37],  ant optimization and genetic local search 
(GLS) [39, 41,42, 43], scatter search and path relinking (SS 
and PR) and Simulated Annealing (SA). The majority of the 
GA methods gave a poor result due to the difficulty in 
crossover operation and schedule representation. TS 
algorithms are able to generate good schedule with in the 
reasonable computing time. TS algorithm has to maintain 
many parameters and these parameters can carefully 

adjusted for each problem. It is therefore apparent that if the 
current obstacles within job shop scheduling problems are 
to be overcome, hybrid approaches are worth considering.  

 
There are many metaheuristic algorithms has been 
integrated to improve the solution of JSSP Guohui Zhang 
et.al [28, 44, 45], Wang and Zheng (GA and SA); Park et al. 
(parallel GA (PGA)). Hybridization of the meta-heuristic 
algorithms improves the performance of the JSSP. But it 

requires huge computing time. And there is no proper 
method to hybrid the algorithms; hence there is a need for 
exploring various combinations of search techniques. There 
are number of algorithms proposed with the combination of 
GA and TS. Meeran and Morshed [46] have used GA as the 

base search mechanism and TS to improve their search. 

They have measured the effectiveness of hybrid GA and TS 
which is called GTA against GA and TS. González et 
al.[47] presented a hybrid GA and TS system as in the case 
of Meeran and Morshed [46], however Gonzalez et.al 
proposed method is for the job shop scheduling problem 
with set-up times. Although they have obtained some very 
good results, but they have tested only the limited number 
of bench mark problems. Thamilselvan et.al [48, 49] has 

used the GA with TS and GA with parallel SA for JSSP. 
Here GA is used as a base algorithm and other two 
algorithms are used to improve the performance of the 
algorithm. Both of the algorithms are very efficient for the 
small size problems. The system being presented here is 
tested on a substantial number of bench mark problems 
including hard instances from FT, LA, ABZ and ORB, 
attaining optimum solutions. 

 

4. PROPOSED ALGORITHM 
4.1. Hybridization of GA, TS and SA 

(HGATSSA) 
The proposed algorithm hybrids the important features of 
genetic algorithm, tabu search and simulated annealing. The 
proposed hybrid algorithm is implemented on JSSP. Genetic 
algorithm integrates the TS algorithm in the reproduction 
phase to generate a new schedule. To escape the local 
minimum and to prevent the early convergence of the GA, 
insert the new members in GA. Simulated annealing is used 
to improve the convergence of the GA testing each 

scheduling members after each generation.  
 
The proposed algorithm runs on a group of networked 
machines. One machine act as a coordinating machine and 
others are the client machines. Initially GA generates a 
number of initial solutions from coordinating machine for 
distributing among n client machines. GA uses the 
Unordered Subsequence Exchange Crossover (USXX) for 

generating initial solutions.  The n machines in the network 
run the SA and TS algorithms by using different initial 
solutions. After a fixed number of iterations the best 
solution is selected. Each machine in the network can 
exchange the partial solutions after a fixed number of 
iterations. Client machine in the network use the TS 
algorithm to generate a neighborhood of the initial solution 
and SA is used to improve the convergence of the solution.   
 
Procedure: HGATSSA() 

Step 1: Initialize the parameter of GA, SA and TS. 
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n (number of client machines); gn= 1(iteration number), ti = 
m (number of iterations) 

Step 2: Generate a n number of initial schedule S[i] (i=1..n) 
using GA. 

Step 3: Compute the cost CS[i] of initial schedule S[i]. 

Step 4: If the stopping criterion is satisfied. Stop the 
process. 

Step 5:  Distribute each initial schedule S[i]  to the client 
machines. 

Step 6: Each client node use the TS to generate a neighbor 
S[j] of S[i]. 

Step 7: Apply the USXX to the current schedule to 
complete the new set of schedules. 

Step 8: Apply the mutation operator to the new schedules. 

Step7: Calculate the new temperature of the SA algorithm 
cooling schedule. Apply the SA test to accept or 
reject the members of the new population (one by 
one) according to the SA current solution.  

Step 8: Calculate the objective function of new schedule 
S[j]. 

Step 9: if (gn<ti) go to Step 4 otherwise go to Step 6. 

Step 10: Coordinator node receive the current solution from 
each client machine. 

Step 11: Select the best schedule among the set of current 
solutions. 

Step 12: Go to step 3. 

Step 13. Stop. 

 
Stopping Criteria: There are many stopping criteria for job 
scheduling.  In this proposed algorithm, we stop the search 
if one of the following conditions is satisfied. 
 The number of iterations performed since the best 

solution last changed is greater than a prespecified 

maximum number of iterations, or 
 Maximum allowable number of iterations 

(generations) is reached. 
 

Schedule Representation: The main idea is how to 
represent the jobs in terms of sequence. In the relationship 
between the job scheduling and the chromosomes to 
represent the schedule. So that we can use the GA to find 
better job scheduling. For the above 4X3 job shop 

scheduling the chromosome such as [3 4 1 2 1 4 3 4 1 2 3 2] 
may be formed and then change the order for the better 
schedule. In the given chromosome the genes “1” stands for 
J1, “2” stands for J2 and so on. The order of the operation 
corresponds to the relative position of the gene. For 
example the first gene “3” stands for first operation of J3, 
seventh gene “3” stands for the second operation of J3, 
second gene “4” stands for first operation of J4 and so on. 

The above scheduling chromosome is also represented as 
[O31, O41, O11, O21, O12, O42, O32, O43, O13, O22, O33, O23]. 
Oij stands for the jth operation of the job Ji. For example O31 
stands for the first operation of J3.  

 
Reproduction strategies: The crossover operator involves 
the swapping of genetic material (bit-values) between the 
two parent strings. Two parents produce two offspring. 

There is a chance that the chromosomes of the two parents 
are copied unmodified as offspring. There is a chance that 
the chromosomes of the two parents are randomly 
recombined (crossover) to form offspring. Generally the 
chance of crossover is between 0.6 and 1.0 [6]. The 

following sections propose the new crossover algorithms for 
job shop scheduling.  
  
The second genetic operator, mutation, can help GA to get a 
better solution in a faster time. In this model, relocation is 

used as a key mechanism for mutation. Operations of a 
particular job that is chosen randomly are shifted to the left 
or to the right of the string. Hence the mutation can 
introduce diversity without disturbing the sequence of jobs 
operations. When applying mutation one has to be aware 
that if the diversity of the population is not sufficiently 
maintained, early convergence could occur and the 
crossover cannot work well. 

 

4.2. TS implementation of the proposed 

algorithm 
In the proposed algorithm TS is used to generate new 
neighbors to randomly selected members of the GA 
populations. TS algorithm is generally simple for JSSP. The 
algorithm begins with initial solution and stored it as the 

current seed and the best solution. The neighbors of the 
current schedule are produced by neighborhood algorithm. 
They are evaluated for an objective function and a candidate 
which is not in tabu list and this is selected as a new seed 
solution. This selection is added to tabu list and this is 
compared with current best solution. If it is better, it is 
stored as a best solution. Iterations are repeated until the 
stopping criteria are satisfied. The following is the TS part 

of the proposed algorithm. 
 

Procedure: TS(JSSP) 
Initialize the parameter of TS. 
S (schedule); N(S) (neighbor of schedule S);S[i] (initial 
schedule); TL (tabu list); Bc (Best Cost); Bs (Best schedule 
S← S[i] 

𝐵𝐶 ← 𝐶𝑆[𝑖] 

𝐵𝑆 ← 𝑆 

𝑇𝑆 ← ∅ 

Do  𝑁 𝑆 ← {𝑆[𝑗] ∈ 𝑁(𝑆)|𝑀𝑜𝑣𝑒(𝑆, 𝑆[𝑗] ≠ 𝑇𝐿} 
if 𝑁(𝑆) ≠ ∅ 

then  𝑆′ ← 𝑥 ∈ 𝑁(𝑆)|∀𝑦 ∈ 𝑁 𝑆 𝐶𝑥 ≤ 𝐶𝑦  

              Update the tabu list for S’ 

𝑖𝑓(𝐶𝑚𝑜𝑣𝑒  𝑆,   𝑆 ′  ) < 𝐵𝑐  then 

 Bs←S’ 

 𝐵𝐶 ← 𝐶𝑆′  

 𝑆 ← 𝑆′ 
Return Bs 
 

Aspiration Criteria: Different forms of aspiration criteria 
are used in the literature. The one we used in this work is to 
override the tabu status if the current solution associated 
with tabu status has a better objective function than the one 
obtained before, for the same move. 
 
Variable tabu list size: The basic role of the tabu list is to 
prevent cycling. The fixed length tabu cannot prevent 

cycling. We can observe that if the length of the list is too 
short, cycling cannot be prevented, and long-size tabu 
creates many restrictions so as to increase the mean value of 
the visited solutions. An effective way of removing this 
difficulty is to use a tabu list with variable size according to 
the current iteration number. The length of the tabu list is 
initially assigned according to the size of the problem and it 
will be decreased and increased during the construction of 

the solution so as to achieve better exploration of the search 
space. 
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4.3. SA implementation of the proposed 

algorithm 
Simulated annealing gives new chances to commence new 
valuable hill climbing processes in which the considered 
particular solution may have chances to change to better 
situation. Therefore, the more time to see a particular 
solution for SA, the better to reach global optimum. SA 
algorithm generates an initial solution randomly. A 
neighbor of this solution is then generated by a suitable 
mechanism and the change in the cost function is calculated. 
If a decrease in the cost function is obtained, the current 

solution is replaced by the generated neighbour. If the cost 
function fun of the neighbour is greater, the newly 
generated neighbour replaces the current solution with an 
acceptance probability function given in equation (6) 
 

𝑃 𝑑, 𝑇 = exp⁡(−
𝑑

𝑇
)          (6) 

    Where 𝑑 = 𝐶𝑆[𝑗 ] − 𝐶𝑆[𝑖] 

 

Procedure: SA(JSSP) 
Input: 
T: Temperature; Ts : Starting temperature; Te : Ending 
temperature; N :Number of iteration. 

Begin 
generate initial schedule S[i] . 
compute the cost CS[i] of initial schedule S[i]. 
  n=1, T=Ts. 
while T<Te 
 while n<N 
select neighbourhood S[j] of S[i]. 
 compute the cost CS[j] of the new schedule S[j]. 

 compute = 𝐶𝑆[𝑗 ] − 𝐶𝑆[𝑖] . 

 if𝑑 ≤ 0 then 

 S[i]=S[j]. 
        CS[i]=CS[j]. 
 else 
generate a random variable R~(0,1). 

ifexp⁡(−𝑑/𝑇) > 𝑅 

  S[i]=S[j]. 
   CS[i]=CS[j]. 
end if 
 end if  

n=n+1. 
end while  
            T= T*0.995. 
end while 
if CS[i]<Bc 
Bc=CS[i]. 
Bs=S[i]. 
end if 

 End             
 

5. RESULTS AND DISCUSSIONS 
The efficiency of the proposed algorithm is tested with 
standard bench marks problems of Lawrence instances from 

LA30 to LA40 ,Storer et al. instances SWV11-SWV20 and 
Yamada and Nakano instances from YN01-YN04. The 

output of this algorithm is compared against the Genetic 
Algoritm, parallel simulated annealing and hybrid algorithm 
of Genetic algorithm with parallel simulated annealing. 
Twenty five bench mark problems were tested with 
proposed algorithm and other algorithms. Table 2 shows 

that the proposed algorithm produces better results than the 
other algorithm. Several measures, which gain some 
statistics relating to implementation of these methods, are 
created. They are the mean relative improvement (MRI%), 
the mean relative error  (MRE%) shown in equation (7) and 
(8) respectively. 

𝑀𝑅𝐼% =
(𝑀𝑆𝐶−𝑀𝑆𝐻𝐺𝐴𝑇𝑆𝑆𝐴 )

(𝑀𝑆𝐶)
𝑋100  (7) 

 

𝑀𝑅𝐸% =
(𝑀𝑆𝐶−𝑀𝑆𝑂)

(𝑀𝑆𝑂)
𝑋100   (8) 

Where MSC is the makespan of the algorithm being 
compared to, MSHGATSSA is the makespan of the proposed 

algorithm, MSO is the optimal makespan of the given 
problem. 
 

 

Table 2. Makespan value comparison 

Algorithm 
No. of Problems reached optimal 

makespan 

GA 3 

PSA 3 

HGAPSA 12 

HGATSSA 23 

Table 3 shows comparison of makespan value produced 
from different algorithms for problem instances LA30-
LA40 (Lawrence, 1984) Column 1 specifies the problem 
instances, Column 2 specifies the number of jobs, Column 3 
shows the number of machines, Column 4 specify the 
optimal value for each problem. Column 5, 6, 7 and 8 
specify results from GA, PSA, HGATSSA and HGAPSA 

respectively. It shows that the proposed hybrid algorithm 
has succeeded in getting the optimal solutions for all the 
problems. The average makespan value of the proposed 
algorithm is comparetively lower than the other algorithms. 
 
Table 4 shows comparison of relative error and relative 
improvement of different algorithms for problem instances 
LA30-LA40 (Lawrence, 1984). The relative error for all the 

problem instances becomes 0 for the proposed algorithm, 
but other algirhtms there is a relative error value that shows 
that the problem does not reach the optimal makespan. The 
comparision average markspan and relative error are also 
shown in Figure 3 and 4 respectively. The relative 
improvement is also compared with other algorithms. There 
is a 0.13% improvement compared to HGAPSA, 0.95% 
imporvement compare to PSA and 2.09% improvement 
compare to genetic algorithm.
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Table 3. Results for instances by Lawrence (1984) 

Problem 
Name 

Problem Size Makespan 

Jobs (n) 
Machines 

(m) 
Optimal GA PSA HGATSSA HGAPSA 

LA30 20 10 1355 1398 1360 1355 1355 

LA31 30 10 1784 1829 1800 1784 1790 

LA32 30 10 1850 1877 1875 1850 1860 

LA33 30 10 1719 1820 1740 1719 1719 

LA34 30 10 1721 1810 1742 1721 1725 

LA35 30 10 1888 1950 1953 1888 1895 

LA36 15 15 1279 1279 1285 1279 1279 

LA37 15 15 1408 1441 1423 1408 1408 

LA38 15 15 1219 1220 1219 1219 1219 

LA39 15 15 1246 1246 1250 1246 1246 

LA40 15 15 1241 1241 1245 1241 1241 

Average 1519.09 1555.55 1535.64 1519.09 1521.55 

Table 4. Results for instances by Lawrence (1984) 

Problem 
Name 

Problem Size Relative Error Relative Improvement (%) 

Jobs (n) 
Machines 

(m) 
GA PSA HGATSSA HGAPSA 

With 
GA 

With 
PSA 

With 
HGAPSA 

LA30 20 10 3.17 0.37 0.00 0.00 3.08 0.37 0.00 

LA31 30 10 2.52 0.90 0.00 0.34 2.46 0.89 0.34 

LA32 30 10 1.46 1.35 0.00 0.54 1.44 1.33 0.54 

LA33 30 10 5.88 1.22 0.00 0.00 5.55 1.21 0.00 

LA34 30 10 5.17 1.22 0.00 0.23 4.92 1.21 0.23 

LA35 30 10 3.28 3.44 0.00 0.37 3.18 3.33 0.37 

LA36 15 15 0.00 0.47 0.00 0.00 0.00 0.47 0.00 

LA37 15 15 2.34 1.07 0.00 0.00 2.29 1.05 0.00 

LA38 15 15 0.08 0.00 0.00 0.00 0.08 0.00 0.00 

LA39 15 15 0.00 0.32 0.00 0.00 0.00 0.32 0.00 

LA40 15 15 0.00 0.32 0.00 0.00 0.00 0.32 0.00 

Average 2.17 0.97 0.00 0.13 2.09 0.95 0.13 

 

 

 
 

Figure 3. Average Makespan values obtained by Different algorithms for LA30-LA40 
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Figure 4. Average Relative Error obtained by Different algorithms for LA30-LA40 

 

Table 5. Results for instances by Storer, Wu and Vaccari (1992) 

Problem 
Name 

Problem Size Makespan 

Jobs (n) 
Machines 

(m) 

Optimal 
GA PSA HGATSSA HGAPSA 

UB LB 

SWV11 50 10 2991 2983 3200 3012 2983 3048 

SWV12 50 10 3003 2972 3250 3120 2972 3012 

SWV13 50 10 3104   3754 3250 3104 3108 

SWV14 50 10 2968   3487 3212 2968 2968 

SWV15 50 10 2904 2885 4235 3225 2885 2904 

SWV16 50 10 2924   3547 3332 2950 3025 

SWV17 50 10 2794   3269 3002 2794 2800 

SWV18 50 10 2852   3156 2962 2860 2875 

SWV19 50 10 2843   3169 2930 2843 2850 

SWV20 50 10 2823   3231 2963 2823 2823 

Average 2920.60 2946.67 3429.80 3100.80 2918.20 2941.30 

 

Table 5 and Table 7 shows comparison of makespan value 
produced from different algorithms for problem instances 
SWV11-SWV20 and YN01-YN04  respectively. Column 1 
specifies the problem instances, Column 2 specifies the 
number of jobs, Column 3 shows the number of machines, 
Column 4 specify the optimal value for each problem. 
Column 5, 6, 7 and 8 specify results from GA, PSA, 

HGATSSA and HGAPSA respectively. It shows that the 
proposed hybrid algorithm has succeeded in getting the 
optimal solutions for all the problems. The average 
makespan value of the proposed algorithm is comparetively 
lower than the other algorithms. 

Table 6 shows comparison of relative error and relative 
improvement of different algorithms for problem instances 
SWV11-SWV20. There are 10 bench mark problems were 

testing and 9 problems reached the optimal makespan using 
proposed algorithm. The average relative error is also very 
less for the proposed algorithm. The comparision average 
markspan and relative error are also shown in Figure 5 and 
6 respectively. The relative improvement is also compared 
with other algorithms. There is a 0.77% improvement 
compared to HGAPSA, 5.79% imporvement compare to 
PSA and 14.31% improvement compare to genetic 

algorithm. 
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Table 6. Results for instances by Storer, Wu and Vaccari (1992) 

Problem 
Name 

Problem Size Makespan Relative Error Relative Improvement (%) 

Jobs 
(n) 

Machines 
(m) 

Optimal 
GA PSA HGATSSA HGAPSA 

With 
GA 

With 
PSA 

With 
HGAPSA UB LB 

SWV11 50 10 2991 2983 6.99 0.70 0.00 1.91 6.78 0.96 2.13 

SWV12 50 10 3003 2972 8.23 3.90 0.00 0.30 8.55 4.74 1.33 

SWV13 50 10 3104   20.94 4.70 0.00 0.13 17.31 4.49 0.13 

SWV14 50 10 2968   17.49 8.22 0.00 0.00 14.88 7.60 0.00 

SWV15 50 10 2904 2885 45.83 11.05 0.00 0.65 31.88 10.54 0.65 

SWV16 50 10 2924   21.31 13.95 0.89 3.45 16.83 11.46 2.48 

SWV17 50 10 2794   17.00 7.44 0.00 0.21 14.53 6.93 0.21 

SWV18 50 10 2852   10.66 3.86 0.28 0.81 9.38 3.44 0.52 

SWV19 50 10 2843   11.47 3.06 0.00 0.25 10.29 2.97 0.25 

SWV20 50 10 2823   14.45 4.96 0.00 0.00 12.63 4.72 0.00 

Average 2920.60 2946.67 17.44 6.19 0.12 0.77 14.31 5.79 0.77 

 

 
 

Figure  5. Average Makespan values obtaind by Different algorithms for SWV11-SWV20 

 

 

Figure 6. Average Relative error obtained by Different algorithms for SWV11-SWV20 
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Table 7. Results for instances by Yamada and Nakano (1992) 

Problem 
Name 

Problem Size Makespan 

Jobs (n) 
Machines 

(m) 

Optimal 
GA PSA HGAPSA HGATSSA 

UB LB 

YN01 20 20 888 826 890 888 888 826 

YN02 20 20 909 861 910 909 909 861 

YN03 20 20 893 827 924 900 893 827 

YN04 20 20 968 918 1098 1012 942 918 

Average 914.50 858.00 955.50 927.25 908.00 858.00 

 

Table 8. Results for instances by Yamada and Nakano (1992) 

Problem 
Name 

Problem Size 
Optimal 

Relative Error Relative Improvement 

Jobs 
(n) 

Machines 
(m) 

GA PSA HGAPSA HGATSSA 
With 
GA 

With 
PSA 

With 
HGAPSA UB LB 

YN01 20 20 888 826 0.23 0.00 0.00 0.00 7.19 6.98 6.98 

YN02 20 20 909 861 0.11 0.00 0.00 0.00 5.38 5.28 5.28 

YN03 20 20 893 827 3.47 0.78 0.00 0.00 10.50 8.11 7.39 

YN04 20 20 968 918 13.43 4.55 2.48 0.00 16.39 9.29 2.55 

Average 914.50 858.00 4.31 1.33 0.62 0.00 9.87 7.42 5.55 

 
Table 8 shows comparison of relative error and relative 
improvement of different algorithms for problem instances 
YN01-YN04. The result in the table shows that the 

proposed algorithm produced better result compare to the 
other algorithms. The average relative error is also very less 
for the proposed algorithm. The comparision average 
markspan and relative error are also shown in Figure 7 and 
8 respectively. The relative improvement is also compared 
with other algorithms. There is a 5.55% improvement 
compared to HGAPSA, 7.42% imporvement compare to  
 
PSA and 9.87% improvement compare to genetic algorithm. 

Typical runs of problem instances LA30  and SWV15  are 
illustrated in Figure 9 and 10 respectively  by the GA, PSA, 
HGAPSA and HGATSSA. The graph shows that the 

proposed HGATSSA reach the optimal solution faster than 
other two methods. In the graph x axis represnt the number 
of iterations and y axis represent the makespan value. For 
both the problems, proposed algorithm takes less number of 
iterations to reach the optimal value. 
 
 
 
 

 

 
 

Figure. 7. Average Makespan values obtained by Different algorithms for YN01-YN04 
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Figure 8. Average Relative error obtained by Different algorithms for YN01-YN04 
 

 

 
 

Figure 9. The time evolutions of makespans for the LA30 (20 jobs and 10 machines) 
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Figure 10. The time evolutions of makespans for the SWV15 (50 jobs and 10 machines) 
 

 

6. CONCLUSIONS 
In this paper we have proposed a new hybrid algorithm for 
job shop scheduling. The algorithm incorporates the main 
features of the meta-heuristic algorithm GA, TS and SA. 
The algorithm is based mainly on the GA, while the TS 
method is used to generate new members in the GA 
population. The SA algorithm is used to accelerate the 

convergence of the GA by testing all the GA members after 
each reproduction of a new population. This algorithm is 
implemented in a group of machine. GA is working on the 
coordinator node and other two algorithms are working in 
the client nodes. A TS implement of the proposed algorithm 
is used to generate a neighbor schedule and the SA part is 
used to simplify and speed up the calculations. The main 
advantage of the proposed algorithm is speed up the 

convergence of the optimal schedule of job shop scheduling 
compare to GA, PSA and HGAPSA.   
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