
International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

6

Performance Evaluation of AQM Techniques in PIM-DM

Multicast Network for SRM Protocol

Shaveta

Dr. B R Ambedkar National
Institute of Technology

Jalandhar
Punjab, India

Harsh K Verma
Dr. B R Ambedkar National

Institute of Technology
Jalandhar

Punjab, India

Ashish Kumar
Dr. B R Ambedkar National

Institute of Technology
Jalandhar

Punjab, India

ABSTRACT

The focus of this work is to study the behavior of various

queue management algorithms, including RED (Random

Early Detection), RIO (RED IN/OUT), SRR, SFB (Stochastic

Fair Blue) and BLUE. The performance metrics of the

comparison are Throughput (Quantity of Service), end–to–end

delay (Quality of Service) and drop of packets. The simulation

is done using NS-2. In this paper we have illustrated the

different behavior of RED, RIO, SFB, SRR and BLUE, which

use the queue length as the indicator of the grimness of

congestion. Thus SFB achieve significant better performance

in terms of packet loss rates and throughput in the Network.

Keywords

Congestion Control, SRR, RED, RIO, BLUE, SFB, packet

loss rates, buffer size, throughput.

1. INTRODUCTION
As the usage of Internet increases, number of users increasing.

It is important to adapt mechanisms which decrease packet

loss. As a result, TCP (Transmission Control Protocol)

congestion control has been used to control the rates of

individual network links over the last decade. A solution for

queue management is use of Drop Tail. However, current

TCP still experiences high packet loss, even though it also

uses other techniques such as congestion avoidance, slow

start, fast retransmit and fast recovery mechanism. This leads

the use of dynamic queue managements. A typical dynamic

queue management is RED (Random Early Detection), which

was recommended by the IETF for deployment in IP

routers/networks and is supported by many routers. It is now

widely believed that a RED-controlled queue performs better

than a drop-tail queue. The probability is changed according

the utilization ratio of the link. The simulation results show

better performances on packet loss rate, delay and throughput.
[1]

Multicasting is a widely used service in today’s computer

networking system; it is mostly used in Streaming media,

Internet television, video conferencing and net meeting etc.

Routers involved in multicasting packets need a better

management over stacking system of packets to be multicast

[2].The paper is organized as follows. Section 2 describes

system topology, multicasting, CM, DM, DVMRP and the

descriptions of the different queue management algorithms

like SRR, RED, RIO, SFB, and BLUE. Section 3 describes

Simulation results.

2. SYSTEM DESCRIPTION

2.1 Topology
A network of thirteen nodes is created with two senders and

eight receivers. PGM and UDP are used as Transport layer

protocols. PGM uses constant bit rate (CBR) traffic and UDP

uses Pareto traffic. There are two sources i.e. senders; Node 1

and Node 2 in the network. Node 5, 6, 7, 8, 9, 10, 11 and 12

are the receiver nodes in the group communication. Node 5, 6,

9 and 10 are PGM receivers and node 7, 8, 11 and 12 are UDP

receivers. Bandwidth is 1.544Mbps between node (3 – 4), 1

Mbps between node (2 – 3) and node (1 – 3), and all other

links have a bandwidth of 2Mbps. The delay of link between

nodes (3 – 4) is 20ms and 10ms for all the other links. Node 1

and node 2 starts transmission at 0.4s and 0.0s respectively;

receiver nodes 5, 6, 9 and 10 will be effective at 0.5s, 0.9s,

0.0s, and 2.0s respectively; node 7, 8, 11 and 12 will be

effective at 0.3s, 0.5s, 1.0s, and 0.0s respectively.

Fig 1: Topology Design

#Topology

$ns duplex-link $n0 $n1 2Mb 10ms DropTail

$ns duplex-link $n0 $n2 2Mb 10ms DropTail

$ns duplex-link $n0 $n3 2Mb 10ms DropTail

$ns duplex-link $n3 $n1 1Mb 10ms DropTail

$ns duplex-link $n3 $n2 1Mb 10ms DropTail

$ns duplex-link $n3 $n4 1.544Mb 20ms Blue

$ns duplex-link $n4 $n5 2Mb 10ms DropTail

$ns duplex-link $n5 $n6 2Mb 10ms DropTail

$ns duplex-link $n5 $n8 2Mb 10ms DropTail

$ns duplex-link $n6 $n7 2Mb 10ms DropTail

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

7

$ns duplex-link $n7 $n8 2Mb 10ms DropTail

$ns duplex-link $n7 $n10 2Mb 10ms DropTail

$ns duplex-link $n8 $n9 2Mb 10ms DropTail

$ns duplex-link $n9 $n10 2Mb 10ms DropTail

$ns duplex-link $n11 $n8 2Mb 10ms DropTail

$ns duplex-link $n11 $n12 2Mb 10ms DropTail

$ns duplex-link $n12 $n9 2Mb 10ms DropTail

$ns duplex-link $n12 $n4 2Mb 10ms DropTail

Group Events

$ns at 0.5 "$n5 join-group $srm1 $group1"

$ns at 0.9 "$n6 join-group $srm2 $group1"

$ns at 2.0 "$n10 join-group $srm3 $group1"

$ns at 9.0 "$n5 leave-group $srm1 $group1"

$ns at 8.7 "$n6 leave-group $srm2 $group1"

$ns at 9.5 "$n10 leave-group $srm3 $group1"

$ns at 9.6 "$n9 leave-group $srmsink0 $group1"

$ns at 0.3 "$n7 join-group $udp1 $group2"

$ns at 0.5 "$n8 join-group $udp2 $group2"

$ns at 1.0 "$n11 join-group $udp3 $group2"

$ns at 8.0 "$n7 leave-group $udp1 $group2"

$ns at 8.0 "$n8 leave-group $udp2 $group2"

$ns at 9.5 "$n11 leave-group $udp3 $group2"

$ns at 0.0 "$n12 join-group $udpsink0 $group2"

 $ns at 9.7 "$n12 leave-group $udpsink0 $group2"

Node 5, 6 and 10 will leave the group communication at 9.0s,

8.7s and 9.5s respectively whereas node 9 stays active

throughout the communication period as PGM receiver. Node

7, 8 and 11 will leave the group communication at 8.0s, 8.0s

and 9.5s respectively but node 12 stays active throughout the

communication period as UDP receiver. Data rate for both

senders is 832Kb. Queuing technique used on all the link

except (3 – 4) is Drop Tail. The network is simulated for 10s.

2.2 PIM-DM (Dense Mode)
The Dense Mode protocol is an implementation of a dense-

mode-like protocol. Depending on the value of DM class

variable CacheMissMode it can run in one of two modes [3].

If CacheMissMode is set to PIM-DM (default), PIM-DM

forwarding rules will be used. It assumes that when a source

starts sending datagrams, members in the network want to

receive multicast datagram’s. At the beginning multicast

datagram’s are flooded to whole network. PIM-DM uses RPF

(Reverse path forwarding) to prevent looping of multicast

datagram’s while flooding and if some areas of the network

do not have group members, PIM-DM will prune off the

forwarding branch by detecting prune state.

The prune message has a life time set with it. Once the

lifetime expires, multicast datagram will be forwarded again

to the previously removed/pruned branches. Graft messages

are used when a new member for a group appears in a pruned

area. The router sends a graft message towards the source for

the group to turn the pruned branch back into a forwarding

branch for broadcast messages.

The method of enabling centralized multicast routing in a

simulation is:

set mproto DM

set mrthandle [$ns mrtproto $mproto {}]

set group1 [Node allocaddr]

set group2 [Node allocaddr]

2.3 SRM (Scalable Reliable Multicast)
Scalable Reliable Multicast [4] protocol which solves the

buffer management problem, by spreading the required

packets between the repair node and some selected receivers

which already received these packets. This spreading

decreases the number of packets saved in the buffer of the

repair node, thereby solves the congestion problem and

increases the network throughput, the suggested method

reduces the overhead in repair node by easing the burden of

retransmit lost packets among the selective receivers, thereby

increases the number of receivers that can be served by the

repair node, which increases the scalability.

SRM Agent

set srm0 [new Agent/SRM]

$srm0 set dst_addr_ $group1

$srm0 set fid_ 1

$ns attach-agent $n1 $srm0

Create a CBR traffic source

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $srm0

$cbr0 set fid_ 1

set packetSize 210

$cbr0 set packetSize_ $packetSize

$cbr0 set burst_time_ 500ms

$cbr0 set idle_time_ 500ms

$cbr0 set rate_ 832kb

$srm0 set tg_ $cbr0

$srm0 set app_fid_ 0

$srm0 set packetSize_ $packetSize

3. QUEUE MANAGEMENT

ALGORITHMS
In this section, we focus on SRR, RED, RIO, BLUE and SFB,

and briefly explain them in each of the sub section. The main

idea of this work is to compare these typical dynamic queuing

algorithms instead of exhaustively reviewing the existing

ones. This will be used in performance comparison.

3.1 RED
The RED algorithm [5] detects congestion in the buffer and

measures the traffic load in the queue using the average queue

size avg. This is calculated by using an exponentially

weighted moving average filter and can be expressed as

avg ¨ (1 – wq) ◊ avg + wq ◊ q,

where wq is filter weight. When the average queue size is

smaller than a minimum threshold minth, zero packets are

dropped. When the average queue size transcend the

minimum threshold, the router randomly drops arriving

packets with a given drop probability. The probability that a

packet arriving at the queue is dropped depends on the

average queue length, the time elapsed since the last packet

was dropped, and the maximum drop probability parameter

maxp. If the average queue size is larger than a maximum

threshold maxth, all arriving packets are dropped. It is shown

in [6] that the average queue length avg increases with the

number of active connections N (actually proportional to

N2/3) in the system until maxth is reached when all incoming

packets are dropped. We also observe that there is always an

N where maxth will be transcended. Since most existing

routers operate with limited amounts of buffering, maxth is

small and can easily be transcended even with small N.

Dropping of all incoming packets may turn out in global

synchronization, which is usually followed by a sustained

period of low link utilization.

3.2 RIO
The RIO algorithm [7] allows two traffic classes within the

same queue to be treated differently by applying a drop

preference to one of the classes. RIO is an extension of RED,

"RED with In and Out". RIO can be viewed as the

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

8

combination of two RED algorithms for in and out with

different dropping frequencies, which is given to one group of

packets according to preference. For OUT packets, if average

queue size is less than minth_out zero packets will be

dropped. If the average queue size exceeds this, arriving

packets are dropped with a probability that increases it

linearly from 0 to maxp_out. If the average queue size

exceeds maxth_out, all OUT packets are dropped. Note that

the average queue size is based on the total number of packets

in the queue, regardless of their marking. For IN packets, the

average queue size is based on the number of IN packets

present in the queue and the parameters are set differently in

orders to start dropping OUTs well before any INs are

discarded. If we choose proper parameters for IN and OUT,

traffic can be controlled before the queue reaches to the point

that any "in" traffic is dropped.

3.3 SFB
Based on BLUE, Stochastic Fair Blue (SFB) [8] is a new

technique that shields TCP flows against non-responsive

flows. SFB is a FIFO queuing algorithm that identifies and

rate-limits non-responsive flows based on accounting

mechanisms similar to those used with BLUE. SFB maintains

accounting bins. The bins are organized in L levels with N

bins in each level. In addition, SFB maintains L independent

hash functions, each associated with one level of the

accounting bins. Each hash function maps a flow into one of

the accounting bins in that level. The accounting bins are used

to keep track of queue occupancy statistics of packets

belonging to a particular bin. As a packet arrives at the queue,

it is hashed into one of the N bins in each of the L levels. If

the number of packets mapped to a bin goes above a certain

threshold (i.e., the size of the bin), the packet dropping

probability Pm for that bin is increased. If the number of

packets in that bin drops to zero, Pm is decreased. The

observation is that a non-responsive flow quickly drives Pm to

1 in all of the L bins it is hashed into. Responsive flows may

share one or two bins with non-responsive flows, however,

unless the number of non-responsive flows is extremely large

compared to the number of bins, a responsive flow is likely to

be hashed into at least one bin that is not polluted with non-

responsive flows and thus has a normal value. The decision to

mark a packet is based on Pmin the minimum Pm value of all

bins to which the flow is mapped into. If Pmin is 1, the packet

is identified as belonging to a non-responsive flow and is then

rate-limited.

B[l][n]: L  N array of bins(L levels, N bins per

level)

Enque()

Calculate hash function values h0,h1,…,hL-1;

Update bins at each level

For i =0 to L-1

If(B[i][hi].QLen> bin_size) B[i][hi].Pm += delta;

Drop packet;

Else if (B[i][hi].Qlen ==0) B[i][hi].Pm - = delta;

Pmin = min(B[0][h0].Pm…B[L][hL].Pm);

 If(Pmin==1) Ratelimit();

 Else Mark/drop with probability

Pmin;

Fig 2: SFB Algorithm

The typical parameters of SFB algorithm are QLen, Bin_Size,

d1, d2, freeze_time, N, L, Boxtime, Hinterval. Bin_Size is the

buffer space of each bin. Qlen is the actual queue length of

each bin. For each bin, d1, d2 and freeze_time have the same

meaning as that in BLUE. Besides, N and L are related to the

size of the accounting bins, for the bins are organized in L

levels with N bins in each level. Boxtime is used by penalty

box of SFB as a time interval used to control how much

bandwidth those non-responsive flows could take from

bottleneck links. Hinterval is the time interval used to change

hashing functions in our implementation for the double

buffered moving hashing. Based on those parameters, the

basic SFB queue management algorithm is shown in the

above table.

3.4 BLUE
BLUE is an active queue management algorithm control by

packet loss and link utilization history instead of queue

occupancy. BLUE maintains a single probability, Pm, to mark

(or drop) packets. If the queue is continually dropping packets

due to buffer overflow, BLUE increases Pm, thus increasing

the rate at which it sends back congestion notification or

dropping packets. Conversely, if the queue becomes empty or

if the link is idle, BLUE decreases its marking probability.

This effectively allows BLUE to “learn” the correct rate it

needs to send back congestion notification or dropping

packets.

The typical parameters of BLUE are d1, d2, and freeze_time.

d1determines the amount by which Pm is increased when the

queue overflows, while d2 determines the amount by which

Pm is decreased when the link is idle. freeze_time is an

important parameter that determines the minimum time

interval between two successive updates of Pm. This allows

the changes in the marking probability to take effect before

the value is updated again. Based on those parameters. The

basic blue algorithms can be summarized as following: [9]

Upon link idle event:

if ((now-

last_update)>freeze_time)

Pm = Pm-d2;

Last_update = now;

Upon packet loss event:

if ((now–

last_updatte)>freeze_time)

Pm = Pm+d1;

last_update = now;

Fig 3: BLUE Algorithm

3.5 SRR
Smoothed Round Robin, or SRR, is a work-conserving packet

scheduling algorithm that attempts to provide maximum

fairness while maintaining only O (1) time complexity [10].

In SRR two novel data structures, the weightmatrix (WM) and

the weight spread sequence (WSS) are introduced to lessen

the problems of packet burstiness and fairness associated to

ordinary RR-based schedulers with large number of sessions.

The WM stores the bitwise weight representation associated

to each backlogged session while the WSS provides the

sequence order of sessions to service. For each x in the WSS

visit the xth column of WM in a top-to-bottom manner and

service the session containing the element 1. At the

termination of WSS, repeat the servicing procedure by

beginning with the first element of WSS. Since the WSS is

predefined before any packet selection is made, only a

constant time operation is required to obtain the next value

from WSS. This gives SRR its O (1) time complexity [11].

4. SIMULATION RESULTS
The bottle neck link (3 – 4) is configured with one of the five

queuing protocols discussed above each time. There are three

parameters used for comparison; Throughput, Drop of Packets

and End to End Delay.

4.1 Throughput
Figure 4 show the throughput graph for CBR traffic of link (3

– 4). RED provides average maximum throughput of

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

9

728.952Kb/s whereas maximum throughput in case of RED

queuing technique is 774.48Kb/s. RIO queuing algorithm

provides minimum average throughput of 485.184K/s.

781.2Kb/s is the maximum throughput value in case of Blue

algorithm, 737.52Kb/s in case of RIO and 759.36Kb/s in case

of SFB, and 757.68Kb/s in SRR queuing algorithm. We can

analyze from that all the algorithms initially start with lesser

throughput of about 350Kb/s. The required throughput is

832Kb/s which is closely achieved in case of RED queuing

algorithm.

Fig 4: Throughput of bottleneck link (3–4) for CBR

Traffic

Figure 5 show the throughput graph for Pareto traffic of link

(3 – 4). SRR provides average maximum throughput of

765.912Kb/s whereas maximum throughput in case of SRR

queuing technique is 811.44Kb/s. RIO queuing algorithm

provides minimum average throughput of 477.792K/s.

796.32Kb/s is the maximum throughput value in case of Blue

algorithm, 641.76Kb/s in case of RIO and 804.72Kb/s in case

of SFB, and 781.2Kb/s in RED queuing algorithm. We can

analyze from that all the algorithms initially start with lesser

throughput of about 450Kb/s. The required throughput is

832Kb/s which can be closely achieved by SRR queuing

algorithm.

Fig 5: Throughput of bottleneck link (3–4) for Pareto

Traffic

4.2 Drop of Packets
Figure 6 shows For CBR Traffic Maximum Drop of packets is

482 given by SFB queuing algorithm while Minimum Drop of

packets is 337 by RED. For Pareto Traffic Maximum Drop of

Packets is 305 for BLUE while Minimum Drop of Packets is

179 for RIO and SRR. RED and BLUE drops significantly

same amount of Packets for CBR and Pareto Traffic.

Fig 6: Number of Dropped packets at Node 3

4.3 End to End Delay
Figure 7 shows the end to end delay graph for CBR and

Pareto Traffic. Graph has been plotted against Type of Traffic

on x-axis and average end to end Delay on y-axis.RIO shows

maximum average end to end delay for CBR and Pareto i.e.

0.108456s and 0.095924s respectively. SFB shows minimum

average end to end delay for CBR and Pareto Traffic i.e.

0.062226s and 0.050322s respectively.

Fig 7: Average end-to-end delay for PGM and Pareto

traffic

Table 1 shows the average end to end delay for BLUE, RED,

RIO, SFB and SRR queuing algorithms.

Table 1. Average end-to-end delay for PGM and Pareto

AQM
Delay(s)

CBR(Node 9) PARETO(Node 12)

BLUE 0.103248 0.090909

RED 0.070354 0.058474

RIO 0.108456 0.095924

SFB 0.062226 0.050322

SRR 0.107446 0.094923

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

10

5. CONCLUSIONS
We have compared the performance of BLUE, RED, RIO,

SFB and SRR with a standard parameter setting such as

bandwidth for source to receiver link is 1.544 Mb/s.

Performance metrics are Throughput, average queuing delay

and the Packet Drop.

Our main findings are:

RED provides maximum throughput for CBR traffic while

SRR provides maximum traffic for Pareto Traffic.

RIO and SRR shows significantly lesser number of Drop of

Packets for Pareto Traffic while RED shows minimum Drop

of Packets for CBR Traffic. These AQM techniques are best

suited because users are sensitive for delay.

SFB shows minimum average end to end Delay for CBR and

Pareto Traffic.

SRR shows maximum throughput and minimum number of

packet drops for Pareto Traffic and RED shows maximum

throughput and minimum number of drops for Pareto Traffic.

SRR and RED show significantly better performance above

all other AQM techniques in case of DM-SRM multicast

network.

6. REFERENCES
[1] Mengke Li, Huili Wang, Computer Science and

Engineering, “Study of Active Queue Management

Algorithms----Towards stabilize and high link

utilization” in Communications Magazine, IEEE, June

2002.

[2] Ashish Kumar, Ajay K Sharma, Arun Singh,

“Performance Evaluation of Centralized Multicasting

Network over ICMP Ping Flood for DDoS,”

International Journal of Computer Applications (0975 –

8887) Volume 37– No.10, January 2011.

[3] Ashish Kumar, Ajay K Sharma, Arun Singh

“Comparison and Analysis of PIM-DM and BST

Multicasting Network over Drop Tail Queuing

Technology”, International Journal of Computer

Applications (0975 – 8887) Volume 22– No.6, May

2011.

[4] Adznan b. Jantan, Sakher A. Hatem, Ali Alsayh, Sabira

Khatun, Mohd. Fadlee, A.Rasid “A New Scalable

Reliable Multicast Transport Protocol Using Perfect

Buffer Management” Department of Computer and

Communication Engineering, UPM, Malaysia Faculty of

Computer Science, Sana’a University.

[5] S. Floyd and V. Jacobson, “Random Early Detection

Gateways for Congestion Avoidance,” IEEE/ACM

Trans. Net., vol. 1, no. 4, Aug. 1993, pp. 397–413.

[6] R. Morris, “Scalable TCP Congestion Control,” Proc.

IEEE INFOCOM 2000, Tel Aviv, Israel, Mar. 26–30,

2000, pp.1176–83.

[7] “Recommendations on Queue Management and

Congestion Avoidance in the Internet”

http://tools.ietf.org/html/draft-ibanez-diffserv-assured-

eval-00.

[8] Wu-chang Feng Dilip D. Kandlur Debanjan Saha Kang

G. Shin “Stochastic Fair Blue: A Queue Management

Algorithm for Enforcing Fairness”.

[9] “The BLUE Active Queue Management Algorithms”

Wu-chang Feng, Kang G. Shin, Fellow, IEEE, Dilip D.

Kandlur, Member, IEEE, and Debanjan Saha, Member,

IEEE

[10] “The Smoothed Round-Robin Scheduler Paul”

Southerington, Member, IEEE.

[11] “Hierarchical smoothed round robin scheduling in high-

speed networks” A.P. Boedihardjo, Y. Liang,

Department of Computer Science, Virginia Tech, VA

22043, USA, Department of Computer and Information

Science, Purdue School of Science, Indiana University

Purdue University Indianapolis, IN 46202, USA .

