
International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

1

Real-Time Feature based Face Detection and Tracking I-

Cursor

Shashank Gupta
Dept. Of Computer

Engineering
Maharashtra Academy Of

Engineering, Alandi(D)
Pune, India

Dhaval Dholakiya

Dept. Of Computer
Engineering

Maharashtra Academy Of
Engineering, Alandi(D)

Pune, India

Sunita Barve

Master Of Engineering
Maharashtra Academy Of

Engineering, Alandi(D)
Pune, India

ABSTRACT

This project aims to present an application that is able of

replacing the traditional mouse with the human face as a new

way to interact with the computer. Facial features (nose tip

and eyes) are detected and tracked in real-time to use their

actions as mouse events. In our work we were trying to

compensate people who have hands disabilities that prevent

them from using the mouse by designing an application that

uses facial features (nose tip and eyes) to interact with the

computer. It can be applied to a wide range of face scales. Our

basic strategy for detection is fast extraction of face

candidates with a Six-Segmented Rectangular (SSR) filter and

face verification by a support vector machine. A motion cue is

used in a simple way to avoid picking up false candidates in

the background. In face tracking, the patterns of between-the

eyes are tracked with updating template matching.

1. INTRODUCTION
In the past few years high technology has become more

progressed, and less expensive. With the availability of high

speed processors and inexpensive webcams, more and more

people have become interested in real-time applications that

involve image processing. One of the promising fields in

artificial intelligence is Human Computer Interface which

aims to use human features (e.g. face, hands) to interact with

the computer. One way to achieve that is to capture the

desired feature with a webcam and monitor its action in order

to translate it to some events that communicate with the

computer. In our work we were trying to compensate people

who have hands disabilities that prevent them from using the

mouse by designing an application that uses facial features

(nose tip and eyes) to interact with the computer.

The nose tip was selected as the pointing device; the reason

behind that decision is the location and shape of the nose; as it

is located in the middle of the face it is more comfortable to

use it as the feature that moves the mouse pointer and defines

its coordinates, not to mention that it is located on the axis

that the face rotates about, so it basically does not change its

distinctive convex shape which makes it easier to track as the

face moves. Eyes were used to simulate mouse clicks, so the

user can fire their events as he blinks. While different devices

were used in HCI (e.g. infrared cameras, sensors,

microphones) we used an off-the-shelf webcam that affords a

moderate resolution and frame rate as the capturing device in

order to make the ability of using the program affordable for

all individuals. We will try to present an algorithm that

distinguishes true eye blinks from involuntary ones, detects

and tracks the desired facial features precisely, and fast

enough to be applied in real-time.

We have aimed to design an application that uses facial

features (nose tip and eyes) to interact with the computer. In

this application, Facial features (nose tip and eyes) are

detected and tracked in real-time to use their actions as mouse

events. The coordinates and movement of the nose tip in the

live video feed are translated to become the coordinates and

movement of the mouse pointer on the user’s screen. The

left/right eye blinks fire left/right mouse click events. The

only external device that the user needs is a webcam that

feeds the program with the video stream.

In our work we are trying to compensate people who have

hand disabilities that prevent them from using the mouse.

2. RELATED WORK
Most previous approaches to facial feature tracking utilize

skin tone based segmentation from single camera exclusively

(Yang & Waibel, 1996; Wu et al., 1999; Hsu et al., 2002;

Terrillon & Akamatsu, 1999; Chai & Ngan, 1999). However,

color information is very sensitive to lighting conditions, and

it is very difficult to adapt the skin tone model to a

dynamically changing environment in real-time Kawato and

Tetsutani (2004) proposed a mono camera based eye tracking

technique based on six-segmented filter (SSR) which operates

on integral images (Viola & Jones, 2001)[1]. Each HCI

method that we read about had some drawbacks, some

methods used expensive equipments, some were not fast

enough to achieve real-time execution, and others were not

robust and precise enough to replace the mouse.

We tried to profit from the experience that other researchers

gained in the HCI field and added our own ideas to produce

an application that is fast, robust, and useable.

3. FEATURE BASED FACE

DETECTION METHOD
Face detection has always been a vast research field in the

computer vision world, considering that it is the backbone of

any application that deals with the human face (e.g.

surveillance systems, access control) Researchers did not

spare any effort or imagination in inventing and evolving

methods to localize, extract, and verify faces in images. Early

methods are dated back to 1970s [2], where simple heuristics

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

2

were applied to images taken with certain restrictions (e.g.

plain background, frontal view). These methods however have

improved over time and become more robust to lighting

conditions, face orientation, and scale. Despite the large

number of face detection methods, they can be organized in

two main categories: Feature-based methods, and image-

based methods [2].

1. The first involves finding facial features (e.g. nose trills,

eye brows, lips, eye pupils….) and in order to verify their

authenticity performs geometrical analysis of their locations,

areas, and distances from each other. This feature-based

analysis will eventually lead to the localization of the face and

the features that it contains. Some of the most famous

methods that are applied in this category are skin models, and

motion cues which are effective in image segmentation and

face extraction. On one hand feature-based analysis is known

for its pixel-accuracy features localization, and speed, on the

other hand its lack of robustness against head rotation and

scale has been a drawback of its application in computer

vision.

2. The second is based on scanning the image of interest with

a window that looks for faces at all scales and locations. This

category of face detection implies pattern recognition, and

achieves it with simple methods such as template matching or

with more advanced techniques such as neural networks and

support vector machines. Image-based detection methods are

popular because of their robustness against head rotation and

scale, despite the fact that the exhaustive window scanning

requires heavy computations. More and more new detection

methods are added to the arsenal of computer vision

researchers, which proves once again the importance of this

field and its ability of acquiring new ideas. Before over

viewing the face detection algorithm that was applied in this

work, here is an explanation of some of the idioms that are

related to it.

4. SSR FILTER FOR FACE CANDIDATE
SSR Filter stands for: Six Segmented Rectangular filter. Each

block represents a sector and the sum of the pixels of that

sector is represented by Si.

Figure 1: Six-Segmented Rectangular (SSR) Filter.

Average pixel values in each segment are computed and

compared with each other to find whether they satisfy

certain conditions

To find face candidates the SSR filter will be used in the

following way:

At first we calculate the integral image by making a one pass

over the video frame using these equations [3]:

 (1)

 (2)

Where s(x, y) is the cumulative row sum, s(x,-1) = 0, and ii(-

1, y) = 0.

Figure 2 shows an ideal location of the SSR filter, where its

centre is considered as a face candidate.

Figure 2: Ideal SSR filter location for a face candidate.

(x, y) is the location of the filter (upper left corner).

The plus sign is the centre of the filter which is the face

candidate.

We can notice that in this ideal position the eyes fall in sectors

S1 and S3, while the nose falls in sector S5. Since the eyes

and eye brows are darker than the BTE and the cheek bones,

we deduce that [4]:

 (3)

 (4)

So in order to find face candidates we place the upper left

corner (see Figure 01) of the SSR filter on each pixel of the

image (only on pixels where the filter falls entirely inside the

bounds of the image) . For each location (x, y) we check

equations (3,4); if the conditions are fulfilled then the center

of the filter will be considered as a face candidate. Eventually

the candidates will group in clusters (see Figure 3).

Figure 3: Groups of face candidates. Each dot of each

group is a face candidate discovered by the SSR filter and

the skin colour model.

 S1 S2 S3

 S4 S5 S6

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

3

The human face is governed by proportions that define the

different sizes and distances between facial features (see

Figure 4). We will be using these proportions in our heuristics

to improve facial features detection and tracking.

Figure 4: A human face with different lines that define the

facial features proportions.

5. FACE CANDIDATE AND ROI

SELECTION
Checking all face candidates will be computationally heavy

and unnecessary. What we are going to do is to find the

clusters of face candidates and consider the centre of each

cluster as the final candidate [4].

The clustering algorithm that was used is the following:

Passing the image from the upper left corner to the lower right

one; for each face candidate fc:

 If all neighbours are not face candidates assign a

new label to fc.

 If one of the neighbours is a face candidate assign

its label to fc.

 If several neighbours are face candidates assign the

label of one of them to fc and make a note that the

labels are equal.

After making the first pass we will do another one to assign to

each group of equal labels a unique label, so the final labels

will become the clusters’ labels. We will be using a threshold

that is relevant to the size of the currently used SSR filter, to

eliminate clusters that are small. The centre of each cluster

that is big enough is set with the following equations:

 (5)

 (6)

i is the pixel from the cluster, n is the cluster’s area.

The final results are illustrated in figure 5 where the centres of

the clusters that passed the threshold, are marked as white

dots.

Figure 5: Clusters of face candidates and their centres.

5.1 Eye Tracking
Eyes are tracked in a bit different way from tracking the nose

tip and the BTE(Between The Eyes), because theses features

have a steady state while the eyes are not (e.g. opening,

closing, and blinking) [4]. To achieve better eyes tracking

results we will be using the BTE (a steady feature that is well

tracked) as our reference point [4]; at each frame after

locating the BTE and the eyes, we calculate the relative

positions of the eyes to the BTE; in the next frame after

locating the BTE we assume that the eyes have kept their

relative locations to it, so we place the eyes’ ROIs at the same

relative positions to the new BTE (of the current frame) (see

Figure 6). To find the eye’s new template in the ROI we

combined two method s: the first used template matching, the

second searched in the ROI for the darkest 5*5 region

(because the eye pupil is black), then we used the mean

between the two found coordinates as the eye’s new location.

The problem with the darkest region method was that it

picked the eyebrow sometimes as the eye (see fig. 7); here

comes the eyebrow detection role where the eye’s ROI is

placed under the detected eyebrow line to avoid picking it as

the eye .

Figure 6: Placing the eyes’ ROIs relatively to the BTE.

Figure 7: Darkest region method lead to false eye

tracking.The right eyebrow was selected as the new eye.

 Right Eye

Left Eye BTE

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

4

Figure 8: Placing the eyes’ ROIs under the detected

eyebrow lines has lead to correct eyes tracking.

5.2 Nose Bridge And Nose Tip Tracking
Now that we located the eyes, the final step is to find the nose

tip. So the first step is to extract the ROI; in case the face was

rotated we need to rotate the ROI back to a horizontal

alignment of the eyes.

Figure 9: The square that forms the ROI, and the ROI

after extraction.

The nose tip has a convex shape so it collects more light than

other features in the ROI because it is closer to the light

source. Using the previous idea we tried to locate the nose tip

with intensity profiles [5] .

We will be applying the following method.

At first we need to locate the nose bridge and then we will

find the nose tip on that bridge.

As earlier mentioned the nose bridge is brighter than

surrounding features, so we will use this criterion to locate the

nose-bridge-point (NBP) on each line of the ROI. We will be

using an SSR filter to locate the NBP candidates in each ROI

line [5] (see Figure 10). The width of the filter is set to the

half of the distance between the eyes, because from figure 5

we can notice that the yellow line (nose width) is equal to the

half of the blue line (distance between the eyes).

Figure 10: SSR filter to locate nose bridge candidates.

After calculating the integral image of the ROI, each line of it

will be scanned with this filter; we remember that the nose

bridge is brighter than the regions to the left and right of it; in

other words the centre of the SSR filter is considered as an

NBP candidate if the centre sector is brighter than the side

sectors:

 (7)

 (8)

In each line we might get several NBP candidates, so the final

NBP will be the candidate that has the brightest S2 sector. In

order to avoid picking some bright video noise as the NBP we

will be using the horizontal intensity profile; so instead of

applying the SSR filter to a line of the ROI we will be

applying it to the horizontal profile calculated from the first

line to the line that we are dealing with, because as already

mentioned the values will accumulate faster at the nose bridge

location, so by using the horizontal profile we are sure that we

are picking the right NBP candidate not some bright point

caused by noise; of course the results will get more accurate

as we reach the last line of the ROI because the accumulation

at the nose bridge location will get more obvious.

Figure 11: Nose bridge detection with the SSR filter and

the horizontal profile.

Now that we located the nose bridge we need to find the nose

tip on that bridge. Since each NBP represents the brightest S2

sector on the line it belongs to, and that S2 sector contains the

accumulated vertical sum of the intensities in that sector from

the first line to the line it belongs to, we will be using this

information to locate the nose tip.

Figure 12: Nose tip detection result using nose bridge

detection and first derivate calculation

6. IMPLEMENTATION

6.1 Java Media Framework
The Java Media Framework (JMF) is a recent API for Java

JMF is a framework for handling streaming media in Java

programs. JMF is an optional package of Java 2 standard

platform. JMF provides a unified architecture and messaging

protocol for managing the acquisition, processing and delivery

of time-based media. JMF enables Java programs to

I. Present (playback) multimedia contents,

II. capture audio through microphone and video

through Camera,

 S1 S2 S3

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.24, June 2012

5

III. do real-time streaming of media over the Internet,

IV. process media (such as changing media format,

adding special effects),

V. store media into a file.

6.2 Features of JMF
JMF supports many popular media formats such as JPEG,

MPEG-1, MPEG-2, QuickTime, AVI, WAV, MP3, GSM,

G723, H263, and MIDI. JMF supports popular media access

protocols such as file, HTTP, HTTPS, FTP, RTP, and RTSP.

JMF uses a well-defined event reporting mechanism that

follows the “Observer” design pattern. JMF uses the

“Factory” design pattern that simplifies the creation of JMF

objects. The JMF support the reception and transmission of

media streams using Real-time Transport Protocol (RTP) and

JMF supports management of RTP sessions.

JMF scales across different media data types, protocols and

delivery mechanisms. JMF provides a plug-in architecture that

allows JMF to be customized and extended. Technology

providers can extend JMF to support additional media

formats. High performance custom implementation of media

players, or codecs possibly using hardware accelerators can be

defined and integrated with the JMF.

7. FUTURE WORKS
Feature works may include improving the tracking robustness

against lighting conditions; perhaps by using more

sophisticated and expensive capturing devices such as infrared

cameras that can operate in absence of light and give more

accurate tracking results. Adding the double left click

(detecting the double left eye blink) and the drag mode

(enabling/disabling with the right double eye blink)

functionalities. Adding voice commands to launch the

program, start the detection process, and to enable/disable

controlling the mouse with the face.

8. CONCLUSION
We are aimed to implement scale-adaptive face detection and

tracking system using JAVA (J2ME) for face candidate

detection, a six-segmented rectangle. (SSR) filter is scanned

over the entire input image. This approach is similar to the

window-scanning technique often used in the image-based

approach. However, once the bright-dark relations between

the six segments indicate a face candidate, eye candidate and

nose tip regions are searched in the manner of the feature-

based approach. Then, based on the locations of a pair of eye

candidates and nose tip, the scale, orientation and gray levels

are normalized.The use of Java Millennium Edition helps it to

be compatible even with pocket devices so, hopefully every

new gadget or electrical appliance could be used by handicaps

in future.

9. REFERENCES
[1] P.Viola and M.Jones, “Rapid object Detection using a

Boosted Cascade of Simple Features,” Proc. Of IEEE

Conf.CVRP,1, pp.511-518,2001.

[2] Chiang, C. C., Tai, W. K., Yang, M. T., Huang, Y. T. &

Huang, C. J., (2003). A novel method for detecting lips,

eyes and faces in real-time. Real-Time Imaging 9, 277-

287.

[3] Paul Viola, Michael J.Jones, “Robust Real-Time Face

Detection”. International Journal of Computer Vision

57(2), 137–154, 2004.

[4] Shinjiro Kawato and Nobuji Tetsutani, “Scale Adaptive

Face Detection and Tracking in Real Time with SSR

filter and Support Vector Machine”.

[5] Oraya Sawettanusorn, Yasutaka Senda, Shinjiro Kawato,

Nobuji Tetsutani, and Hironori Yamauchi, “Detection of

Face Representative Using Newly Proposed Filter”.

