
International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

42

A New Approach to Grid Scheduling using Random

Weighted Genetic Algorithm with Fault Tolerance

Strategy

Chinmoy Kar

West Bengal University of
Technology

BF-142, Bidhan Nagar,
Kolkata-700064, India

Vineet Kumar Rakesh
Variable Energy Cyclotron

Centre
1/AF, Bidhan Nagar,

Kolkata-700064, India

Tapas Samanta
Variable Energy Cyclotron

Centre
1/AF, Bidhan Nagar,

Kolkata-700064, India

Sreeparna Banerjee
West Bengal University of

Technology
BF-142, Bidhan Nagar,
Kolkata-700064, India

ABSTRACT

Grid provides us a huge amount of computational resources in

a distributed manner, using which we can perform our tasks

over these grid environments. These resources are

geographically distributed around the globe and are

dynamically available. Hence, to schedule them for actual use

we need to consider various points like, availability, fault

tolerance, and response time etc. In this paper we consider a

grid scheduling strategy with respect to multiple objectives.

We have followed a multi objective genetic algorithm which

is basically a Random Weighted Genetic Algorithm (RWGA)

considering the checkpoint based fault tolerance mechanism

to prevent resource failure.

General Terms

Distributed systems

Keywords

Genetic Algorithm (GA), Multi objective Genetic Algorithm

(MOGA), weighted sum approach, Grid scheduling,

Checkpoint, Fault Tolerance.

1. INTRODUCTION
Multi objective evolutionary algorithms (MOEA) are the

efficient algorithm to solve the multi objective optimization

problem [1]. In real world there are many problems with

several objectives having no single optimal solution [2][14].

Therefore, the decision maker is required to select a solution

from a finite set of solution. One of best approach of MOEA

is Multi objective genetic algorithm (MOGA) [3][13]. GA is

inspired by the evolutionist theory explaining the origin of

species. In GA terminology, Chromosomes are made of

discrete units called genes. Each gene controls one or more

features of the chromosome [4]. GA uses two operators to

generate new solutions from existing population: crossover

and mutation. The crossover operator is the most important

operator of GA. In crossover, generally two chromosomes,

called parents, are combined together to form new

chromosomes, called offspring, by iteratively applying the

crossover operator, genes of good chromosomes are expected

to appear more frequently in the population, eventually

leading to convergence to an overall good solution. Mutation

is generally applied at the gene level. In typical GA

implementations, the mutation rate (probability of changing

the properties of a gene) is very small and depends on the

length of the chromosome.

In our proposed scheduling approach using Random Weight

Genetic Algorithm we have implemented the same genetic

approach for job scheduling. We also consider fault tolerance

mechanism by introducing checkpoint strategy. We have

implemented our check pointing strategy such a way that if a

job failed after certain time then we can start that job on

another resource from its last saved checkpoint value.

2. RELATED WORKS
In past few years many multi objective genetic algorithm

proposed by different researchers. In [7], the authors proposed

an algorithm called Multi-Objective Resource Scheduling

Approach - MORSA, which is a combination between NPGA

and NSGA Algorithms. They combine the sorting algorithm

of non dominated solutions with the process of Niche Sharing

to ensure diversity. Another interesting proposal is presented

in where the NSGA-II is used as base algorithm [8]. Some

authors are investigated workflow scheduling after optimize

three conflicting objectives simultaneously by NSGA-II [9],

to solve the workflow scheduling problem in grid.

Simultaneously fault tolerance mechanism is important

aspects of grid computing.

3. GRID SCHEDULING USING

RANDOM WEIGHTED GENETIC

(RWGA) ALGORITHM WITH FAULT

TOLERANCE STRATEGY
Resource discovery, resource selection, job pool construction,

scheduling and fault tolerance mechanism in case of resource

failures are our main objectives.

3.1 Resource Discovery
Resource discovery is a process by which a grid can select

resources by filtering a pool of available resources. The

filtering process is concerned with the fault index value of

resources, from which we get from fault index manager and

some characteristics of resources that do not change often

(static), such as the amount of physical memory of a

computing node or the processor type and speed. In our

proposed architecture, Grid information server (GIS) gives us

the information about various static resource requirements

which are given as an input to the resource discovery phase.

The output of this phase is a set of available resources, which

are sorted in terms of Fault index value and GIS information

(processing speed etc).

3.2 Resource Selection
Resource selection determines the set of resources which are

selected to be executed from the available resource set. In our

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

43

proposed architecture we select the first and last resource

from the set of available resource list.

3.3 Job pool construction Using Random

Weight Genetic Algorithm
RWGA based on a weighted sum of multiple objective

functions where a normalized weight vector randomly

generated for each solution during the selection phase at each

generation [5][6].
E = external archive to store non-dominated solutions found

during the search so far;

nE= number of elitist solutions immigrating from E to P in

each generation.

Step 1: Generate a random population.

Step 2: Assign a fitness value to each solution xЄ Pt by

performing the following steps:

Step 2.1: Generate a random number uk in [0,1] for

each objective k, k = 1,…,K.

Step 2.2: Calculate the random weight of each

objective k as wk =(1/uk) uk

 Step 2.3: Calculate the fitness of the solution as

Step 3: Calculate the selection probability of each solution x

ЄPt as follows

 P(x) = (f(x)-fmin)-1Σy Є Pt(f(y)- fmin)

Where fmin= min{f(x)|x Є Pt }

Step 4: Select parents using the selection probabilities

calculated in Step 3. Apply crossover on the selected parent

pairs to create N offspring. Mutate offspring with a predefined

mutation rate. Copy all offspring to Pt+1. Update E if

necessary.

Step 5: Randomly remove nE solutions from Pt+1and add the

same number of solutions from E to Pt+1.

Step 6: If the stopping condition is not satisfied, set t =t + 1

and go to Step 2. Otherwise, return to E.

In the below section equations (1) to (3) we shows multiple

objective functions. The grid resource broker is responsible

for resource discovery, deciding allocation of job to a

particular resource. To formulate the problem we consider Jn

independent user jobs n={1,2,….N} on Rm heterogeneous

resource m={1,2,….M} with an objective of minimizing the

completion time and utilize the resource effectively.

To formulate our objective define Cj as the completion time

of job J, the makespan of job define by Cmax=max {Cj,

J=1,2,…3}, and T=ΣCj is the flow time, Fi is the fault index

value of job i. The fundamental criterion is that minimize

makespan, flow time and fault index. The objective functions

are:

Minimize Cmax= max(Cj) (1)

Minimize T=ΣCj (2)

Minimize F=ΣFi (3)

Subject to Cmax<D and T<B

Where D is the deadline and B is the budget.

3.4 Mapping RWGA with grid scheduling
We create a population of chromosomes; basically the

chromosomes are collection of jobs. We have assigned some

randomly generated weight between 0 to 1 for above mention

three objectives. Calculate the selection probability of each

solution. Select the best two chromosomes depending on

selection probability. Apply crossover and mutation and form

another population. The above steps are performs until some

stopping criteria matched.

4. PROPOSED SYSTEM COMPONENTS
The major components of our proposed architecture are:

 1) GIS (Grid information server) contains

information about all available grid resources. It maintains

details of the resource such as process speed, memory

available, load and so on. All grid resources that joined and

leave are monitored by GIS.

 2) Fault Index Manager maintains the fault index

value of each resource which indicates the failure rate of the

resource. The fault index of a grid resource is incremented

every time the resource does not complete the assigned job

within the deadline and also on resource failure. The fault

index of a resource is decremented whenever the resource

completes the assigned job within the deadline. Fault index

manager updates the fault index of a grid resource using fault

index update algorithm.

3) Grid Scheduler plays the role of an important

component in this architecture; it is basically considered to be

the main function that maps the job in resources and schedules

them in resources depending on the chromosome which we

get by RWGA.

4) Checkpoint Manager receives the scheduled job

from the scheduler and sets checkpoints based on the failure

rate of the resources on which it was scheduled. Then it

submits the job to the resource. Checkpoint manager receives

the job completion message or job failure message from the

grid resource and responds to that accordingly. If a failure

occurs during execution, the job is rescheduled from the last

checkpoint instead of running from the scratch. Checkpoint

manager implements checkpoint setter algorithm to set

checkpoints of the jobs.

5) Resource pool is a table of information of actual

location of all resources.

The logical architecture of grid scheduling is described in fig.

1.

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

44

Fig 1: Grid Scheduling Architecture with RWGA and Check-pointing

4.1 System Flow

1) The priority of the resources has been set depending

upon fault index value. Less fault index value has

higher priority and high fault index value has less

priority.

2) If the two resources have the same priority then the

priority setter checks GIS information of those

resources. The resource having high load and low

processing speed has less priority and a resource

with high speed and low load has high priority.

3) Scheduler selects highest and lowest priority

resource from the priority list for job execution.

These two selected resources execute the job

concurrently.

4) Using RWGA we have created a job string which

returns best result after scheduling. RWGA consider

multiple objectives and assign a fixed random value

to all other objectives. We have to select two

possible solution strings then perform crossover and

mutation operation. If the resultant string satisfies

the stopping criterion then algorithm stop otherwise

we have to generate new population.

5) If a high priority resource fails then the job restarts

with last saved checkpoint value in another low

priority resource, if and only if the last saved check

point value for that resource is less than low priority

resource.

6) If the low priority resource fails then the job restarts

with last saved checkpoint value in the other high

priority resource, if and only if the last saved check

point value for that resource is less than the high

priority resource.

7) After failure, if the resource is a high priority

resource then next resource is placed immediately

next of that resource form the priority list.

8) After failure if the resource is low priority resource

then next resource is immediately prior to of that

resource form the priority list.

5. PROPOSED AND IMPLEMENTED

ALGORITHMS

5.1 Resource Discovery and Selection:
1) Set the priority for each and every resource using

PrioritySet() function.

2) The above function returns the highest priority resource

that includes lowest fault index value and highest GIS

information among the resources which have same fault

index value.

3) Select MAX, MIN from that sorted array of resources

where MAX represents the highest priority resource and

MIN is the lowest priority resource.

4) Select a job from job pool and assign a job concurrently

on these two resources.

5) If a resource fails then

a) If the value of the FailedResource(MAX,MIN)

function return MAX then

i) If last saved checkpoint value from

CheckpointValue(MAX,MIN) returns

MAX.CheckpointValue then

(1) Set the update the checkpoint value

MIN.CheckpointValue by

MAX.CheckpointValue.

(2) Select the available maximum priority

resource using SelectMax()

(3) Restart the job with new checkpoint

value.

ii) Else

 Do nothing.

GIS Fault

Index

Manager
Grid

Scheduler

with RWGA

scheduling

Strategy

Resource

Pool

Job Pool

Checkpoint

Value of

Resources

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

45

b) If the value of the FailedResource(MAX,MIN)

function returns MIN then

i) If last saved checkpoint value from

CheckpointValue(MAX,MIN) return

MIN.CheckpointValue then

(1) Set the update the checkpoint value

MAX.CheckpointValue by

MIN.CheckpointValue.

(2) Select the available minimum priority

resource using SelectMin()

(3) Restart the job with new checkpoint

value.

ii) Else

Do nothing.

6) If no resource fails then

a) Send the process completion signal.

b) Continuing the same algorithm for another job.

5.2 PrioritySet() Function
1) Sort the resources based on fault index value.

2) If the fault index values the of resources are same then

priority is assigned depending on load information and

processing speed.

3) Return the resource list with their priorities.

5.3 FailedResource(MAX,MIN)
If the resource which fails is MAX then return MAX

Else

Return MIN

5.4 CheckpointValue(MAX,MIN)
If(MAX.CheckpointValue > MIN.CheckpointValue)

Return (MAX.CheckpointValue)

Else

Return (MIN.CheckpointValue)

5.5 SelectMax()
Index = MAX.Index

/* MAX.Index is an array index of the resource*/

While ((Index + 1) < N) //N is number of resources

Index = Index + 1

If (Resource with this Index is free)

Return Resource which index is Index.

Else

Return no Resource available

5.6 SelectMin()
Index = MIN.Index

/* MIX.Index is an array index of the resource*/

While ((Index-1) < N) //N is number of resources

Index = Index-1

If (Resource with this Index is free)

Return Resource which index is Index.

Else

Return no Resource available

6. EXPERIMENTAL RESULT
1) We have created ten jobs and put the references of

each job (We called each job gridlet) in a array

called chromosome.

2) We have created another chromosome with same

jobs.

3) We have sorted resources depending on speed,

means high speed resource come first then second

and then third.

4) After that we have generated a solution string which

consists of ten job depending on RWGA.

5) We have also implemented the functions in case of

resource failure.

6) We have performed this algorithm ten times, each a

every time algorithm returned a chromosome of ten

gridlets after that we submitted those jobs on three

resources.

7) We use Gridsim[11] [12] for our simulation.

Table 1.Total Time taken for a solution chromosome in 10

different Run

Run Iteration

 Sequence of Job

Total

Time

1 52 0/1/2/3/4/5/6/7/8/9
3462.48

2 6
 5/6/7/8/9/0/1/2/3/4

5678.48

3 13
 2/3/4/5/6/7/8/9/0/1

4758.48

4 31
 3/4/5/6/7/8/9/0/1/2

5038.48

5 8
 4/5/6/7/8/9/0/1/2/3

5606.48

6 22
 6/7/8/9/0/1/2/3/4/5

6178.32

7 35
 6/7/8/9/0/1/2/3/4/5

5238.48

8 54
 0/1/2/3/4/5/6/7/8/9

3462.48

9 26
 3/4/5/6/7/8/9/0/1/2

 5038.48

10 12
 7/8/9/0/1/2/3/4/5/6

5614.48

6.1 Discussion on Results
In above table we can see that when numbers of iteration

increased we get a sequence of job or chromosome which

gives minimum execution time, so from Table 1 we can easily

say that maximum iteration gives better result.

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

46

7. ASSUMPTIONS
We have assumed some important characteristics to get the

result successfully. Like we have take only ten job which is

called gridlets[12] and run them depending on processing

speed of lower priority resource is grater than high priority

resource. In traditional resource allocation mechanisms

scheduler assigns a job in that resource which has low fault

index value. They are not considering the speed of that

resource at all, which gives an unnecessary delay in

completion of job. Our proposed architecture considers this as

the main issue and tries to solve this problem. In our

assumption we consider that if the high fault index value

comes up with the higher processing speed then the check

point value becomes larger than the other low fault index

value resource at any time, when a failure occurs, and hence

we get a substantial amount of benefits by completion time.

8. CONCLUSION
In this paper, our focus has been on finding a scheduling

algorithm which is easy to implement and which also satisfy

the multiple objectives related to grid scheduling and we also

try to implement a checkpoint mechanism which can handle

the situation like resource failure. In Table 1 we have mention

the total time to schedule a set of jobs which does not include

the iteration time and restart time from its last saved

checkpoint value(in case of job failure). If we say that total

time taken by a scheduler for schedule a job is Ttotal, iteration

time is Titr and restart time for a set of job is Trestart then total

time for scheduling is T:

T= Ttotal + Titr + Trestart

If we assume that Ttotal >>Titr and if number of failure is zero

then Trestart =0 or if number of failure is less then Ttotal >>

Trestart, then

 T= Ttotal

9. FUTURE WORK
In this paper we try to map between a RWGA and checkpoint

mechanism with grid scheduling. After we implement RWGA

on grid architecture we also try to implement a checkpoint

mechanism. This checkpoint mechanism approach is a

straightforward and implementation friendly, it need much

more complex environment for getting best result. In our

future we will enhance and implement this algorithm on many

jobs with sufficient resources with different characteristics.

We also concentrate on this checkpoint mechanism with

flexible environment for enhancing this approach. We also try

to compare this algorithm with other MOGA which are used

for grid scheduling in a generalize test environment.

10. ACKNOWLEDGMENTS
Our special thanks to Director, Variable Energy Cyclotron

Center, Kolkata and Head, Computer and Informatics Group,

VECC for granting permission to use the infrastructural

facility. Without which, the project could not be materialized.

11. REFERENCES
[1] Zitzler, E., Thiele, L. 1999. Multiobjective evolutionary

algorithms: a comparative case study and the strength

Pareto approach. IEEE. 3(4):257–71.

 [2] Srinivas, N., Deb, K. 1994. Multi-objective optimization

using non-dominated sorting in genetic algorithms. J

Evol Comput. 2(3):221 48.

 [3] Murata, T., Ishibuchi H. 1995. MOGA: multi-objective

genetic algorithms. In: Proceedings of the 1995 IEEE

international conference on evolutionary computation, 29

November–1 December, 1995. Perth, WA, Australia:

IEEE 1995.

 [4] Holland, JH. 1975. Adaptation in natural and artificial

systems. Ann Arbor: University of Michigan Press.

 [5] Jones, DF., Mirrazavi, SK. Tamiz, M. 2002.

Multiobjective meta heuristics: an overview of the

current state-of-the-art. Eur J Oper Res. 137(1):1–9.

 [6] Murata, T., Ishibuchi, H. 1996. Tanaka H. Multi-

objective genetic algorithm and its applications to

flowshop scheduling. ComputInd Eng. 30(4):957–68.

 [7] Guangchang, Ye., Ruonan, Rao. and Minglu Li, A

Multiobjective Resources Scheduling Approach Based

on Genetic Algorithms in Grid Environment. Hunan,

China: Fifth International Conference on Grid and

Cooperative Computing Workshops, 2006.

[8] Grimme, C., Lepping, J. and Papaspyrou, A. 2008.

"Discovering Performance Bounds for Grid Scheduling

by using Evolutionary Multiobjective Optimization," in

Proceedings of the 10th annual conference on Genetic

and evolutionary computation. Atlanta, GA, USA, ACM.

pp. 1491-1498.

[9] Garg, R, Singh, A.K. May, 2011. Multi-objective

optimization to workflow grid scheduling using refernce

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.23, June 2012

47

point based evolutionary algorithm, International Journal

of Computer Application (0975-8887), Vol. 2(6).

 [10] Nandagopal, M. & Dr. Uthariaraj, V.R. 2010. Fault

tolerant scheduling strategy for computational grid

environment.International Journal of Engineering

Science and Technology. Vol. 2(9), 4361-4372.

 [11] Buyya, R., Murshed, M., Abramson, D. 2002. A

deadline and budget constrained cost time optimization

algorithm for scheduling task farming applications on

global grids, In Proceedings of the international

conference on parallel and distributed processing

techniques and applications, Las Vegas, USA, pp. 24–27.

[12] Buyya, R. GridSim: A Toolkit for Modeling and

Simulation of Grid Resource Management and

Scheduling, http://www.buyya.com/gridsim.

 [13] Grosan, C., Abraham, A., Helvik, B. 2007.

Multiobjective Evolutionary Algorithms for Scheduling

Jobs on Computational Grids. In: International

Conference on Applied Computing, Spain. ISBN 978-

972-8924-30-0, 459-463.

 [14] Camelo, M., Donoso, Y., Castro, H. 2010. A Multi-

Objective Performance Evaluation in Grid Task

Scheduling using Evolutionary Algorithms. In: Applied

Mathematics and Informatics, ISBN: 978-960-474-260-

8.

