
International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

52

Classification Algorithm based on MS Apriori for Rare

Classes

Devashree Rai
Department of Electrical

Engineering
National Institute of
Technology, Raipur
Chhattisgarh, India

Kesari Verma
Department of Computer

Application
National Institute of
Technology, Raipur
Chhattisgarh, India

A. S. Thoke
Department of Electrical

Engineering
National Institute of
Technology, Raipur
Chhattisgarh, India

ABSTRACT

Most of the data mining algorithm focuses on frequent

patterns, few algorithm emphases on rare items, but rare items

[1] also have importance, for example, network intrusion

detection, where among various normal connections we need

to detect the rare malicious connections. Classification of such

a non-uniform data set is a challenging issue. Most classifiers

perform poorly in such a data set. Realizing the importance of

rare class classification, in this paper we propose a

classification algorithm (CBMR Algorithm) that is based on

association rules mined by MSApriori approach [2] and is

capable of classifying rare classes. The performance

evaluation of the proposed algorithm has been done for

different data sets [3] and in comparison with existing

technique like [4], it is found that algorithm has efficient and

superior performance for classifying rare cases.

General Terms

Rare classes, MSApriori Algorithm, Classification, Data

Mining.

1. INTRODUCTION
Data mining [5] is concerned with extracting useful

information from large databases. Association rule mining [6]

[7] and classification [4] [8] are two important data mining

techniques. Association rule mining aims to discover

associations among items in databases. This is done by first

identifying frequent item sets and then obtaining association

rules from these frequent item sets. Association rule mining is

an unsupervised learning since it extracts rule without any

prior target information whereas classification is supervised

learning where rule extraction is done on the basis of pre-

determined target (class). Classification rule mining extracts

classification rules by using data sets containing set of labeled

training examples and the objective is to build a classifier that

is capable of classifying “unseen” data records. The two

techniques, association rule mining and classification rule

mining has been integrated in [4] to build an efficient

classifier from association rules. This is done by considering

subset of association rules that has class attribute as its

consequent.

 Real world datasets contains frequent as well as rare items

The challenging issue of rare class classification arises in

various data mining applications like oil spills detection in

satellite radar images [9], identifying fraudulent credit card

transaction [10], predicting failures in telecommunication

equipments [11] and [12] [13] so on. All this applications has

common problem of having target class samples extremely

rare and other class samples sufficiently large. Most

classifiers perform poorly in such data sets.

Association based classification methods like [4] that employ

single minimum support criteria for association rule mining

fails to give satisfactory results in classifying rare class.

Single minimum support based approaches [6] [7] suffer from

“rare item problem” [14] dilemma. If high minimum support

value is used, rare item sets fails to satisfy minimum support

criteria and thus could not be extracted. If low value is used,

item sets explodes. Therefore, to extract frequent item sets

involving rare items, an improved approach known as

Multiple Support Apriori (MSApriori) has been proposed in

[2], that uses multiple supports instead of single. To extract

frequent item sets involving rare items, each item is assigned

with minimum item support (MIS) value. Then item sets has

to satisfy the lowest MIS value among the respective items.

The rules generated are then pruned based on confidence

value. Efforts are being made in researches to develop

improved algorithms based on multiple supports [15] [16].

In this paper we propose a Classification algorithm that is

Based on MSApriori algorithm for mining association rules

and is capable of classifying Rare classes (CBMR). In this

approach each target class is assigned with user specified MIS

value and therefore allows giving special importance to rare

class. Frequent class will be assigned with relatively higher

MIS value and rare class with lower value. This approach is

efficient in classifying rare class as well as frequent class.

Experimental evaluation of algorithm has been done for

different data sets [3] containing rare class and is giving better

results in all the cases in comparison with approach like [4].

2. CBMR ALGORITHM

2.1 Overall System
The proposed algorithm (CBMR) works in two phases. In first

phase class association rules (CARs) are generated using

MSApriori algorithm [2] and in second phase classifier is

build up using these class association rules. The two phases of

CBMR algorithm are presented below.

2.2 CARs Generation

2.2.1 Basic Concepts
This phase generates rules of the form YX , where X is a

set of items and Y is a class label. Support of rule is calculated

as follows:

%100
||

D

ruleCount
Support

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

53

Where ruleCount is number of cases in data set D that

contains X and are labeled with class Y, |D| is size of data set.

Confidence of rule is calculated as:

%100
.

CountX

ruleCount
Confidence

Where, X.Count is the number of cases in D that contains X.

2.2.2 Rule Generation Phase
This phase begins with assigning MIS value to each item in a

data set. Target classes are assigned with user specified MIS

values and for every other items ij,
j

iMIS is calculated as per

equation 1.

jj

iSiMIS , if LSiS
j
 (1)

 = LS else

Where, LS corresponds to user-specified least support value. β

is user specified proportional value that can vary between 0

and 1. S(ij) refers to support of an item equal to (ij .Count)/|D|.

After assignment of MIS values to class and all other items,

CARs generation process proceeds with following steps:

Let LK denote set of large K-item sets, Ck denote set of

candidates K-item sets. (For simplicity, we will

interchangeably use the terms support and count).

1) Sort all items in ascending order of their MIS values
and insert into Q.

2) G= initial-pass(Q,D)

3))}(.,|{1 gMISCountgGggL

4) CAR1= generate-CRs(L1)

5));;2(1 kLkfor k

6) If k=2 then C2= level2CandidateGen(G)
7) Else Ck=Candidate-Gen(Lk-1)
8) End
9) For each record dϵ D do
10) Cd = Subset(Ck ,d)
11) For each candidate c ϵ Cd do
12) c. Count++;
13) If d.class == c.class then c.ruleCount++
14) End
15) End
16) Lk={c ϵ Ck| c.Count ≥ MIS(c*1+)}
17) CARk = generate-CRs(Lk)
18) End

19) kkk CARCAR

Line 1 sort the items in ascending order of their MIS values

and insert sorted items in Q. Line 2 calls the function initial

pass which performs following function:

a) Finds actual count of each item in Q.

b) Finds first item i in Q, such that i.Count ≤ MIS (i), i

is inserted into G.

c) For each subsequent item j after I, if j.Count ≥ MIS

(i), j is inserted into G.

Line 3 generates frequent 1-item set L1. Function generate-

CRs() is called in line 4 that generates rules if the rule’s

confidence is greater than or equal to user specified

confidence value. Loop starts at line 5 which iteratively

generate candidates [2] line 6, 7, then each record in the

dataset D is checked to contain candidate items by calling

subset () in line 10. For each candidate that is a subset its

count value is incremented in line 12. If the candidate’s class

and record class matches its corresponding rule count is

incremented in line 13. Line 16 finds large k-item sets if

candidate’s count value is greater than lowest MIS value

amongst its items, which in this case will be the first item

since items are sorted in ascending order of their MIS values.

In line 17 generate-CRs is called to generate CARs for all

large k-items. The algorithm finally returns CARs that will be

processed in next phase to generate classifier.

2.3 Building a classifier
To build a classifier from the generated CARs we follow same

approach as in [4]. First step is to impose ordering on

generated rules, ordering is done according to following

criteria:

For any two rules, r1 and r2, r1>r2 that is, r1 has higher

precedence than r2, if,

a) Confidence (r1) > confidence (r2).

b) Confidence (r1) == confidence (r2) and support (r1)

> support (r2).

c) Confidence (r1) == confidence (r2), support (r1) ==

support (r2) and r1 is generated earlier than r2.

The classifier is build up in four stages that we discuss in

sections below:

2.3.1 Stage 1: C and W rule identification.

For each record in the data set D, identify first rule in the

ordered list that correctly classifies the record (cRule) and the

first rule that wrongly classifies the record (wRule). The

identified C and W rule are than compared.

a) If no cRule found, do nothing.

b) If cRule exists but no wRule exist, then mark cRule

as “Strong” cRule to indicate that it classifies a

record correctly.

c) If both cRule and wRule exists, and cRule has

greater precedence than wRule, then mark cRule as

“strong” cRule.

d) If both cRule and wRule exists, and wRule has

greater precedence than cRule, create a structure say

A of the form <ID, Y, cRule, wRule>, where ID is

unique identification number of particular record in

D, Y is the class of record with the given ID, cRule

and wRule are associated cRule and wRule.

On completion of this stage all records that are wrongly

classified but for which there exists corresponding cRule are

stored as structure A ready for further consideration and all

cRule that are “strong” with respect to at least one record will

be identified. For each cRule, we also keep track of number of

cases it covers of each class in the field classCasesCovered.

2.3.2 Stage 2: Process wrongly classified records.
Process the list of records that has been wrongly classified. If

wRule associated with record correctly classifies at least one

other record, update claassCasesCovered for both wRule and

corresponding cRule. If wRule is not a cRule for any record,

than find all the rules that wrongly classify record and have

higher precedence than its corresponding cRule (For this we

only have to consider rules that are cRule for any record), and

place the result in rules “Replace” list. These rules are all

those rules that we would like to remove, if possible, so that

the corresponding record will be correctly classified.

2.3.3 Stage 3: Process rule list
In this stage rule list is processed to identify, for each “strong”

cRule, the default class and total error count. We find the

number of records in training data set that corresponds to

individual classes. Next for each “strong” cRule replace list is

processed. If the ID case in the training data set has been

wrongly classified by a strong cRule with higher precedence

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

54

Algorithm: CBA

Accuracy: 80.79

Rules generated:

<7> → <22>

<1> → <22>

<14>→ <22>

<10> → <22>

Default → <23>

Algorithm: CBMR

Accuracy: 81.59

Rules generated:

<19> → <22>

<13> →<22>

<4 18 21 15> → <25>

<3 18 20 15> → <23>

<8 3 14 21> → <25>

<3 18 21 15> → <25>

<5> → <22>

<1> → <22>

Default → <23>

Algorithm: CBA

Accuracy: 57.94

Rules generated:

<16 24> → <48>

<8 24> → <48>

<3 5 25>→ <42>

<3 6 25> → <42>

<9 10 13> → <43>

<15 25> → <42>

<3 7 15> → <42>

<14 24> → <48>

<2 7 12> → <43>

<4 7 12> → <43>

<4 9 13> → <43>

<6 23> → <42>

<3 6 21> → <42>

<2 5 12> → <43>

<7 10 12> → <43>

<4 12 13> → <43>

<27 31> → <43>

<4 7 15> → <43>

Default → <42>

Algorithm: CBMR

Accuracy: 63.55

Rules generated:

<36 9> → <48>

<6 30 3> →<42>

<6 16 3> → <42>

<33 17> → <46>

<24 17> → <47>

<9 7 38> → <46>

<2 30 28 12> → <44>

<36 8> → <48>

<29 2 12 38> → <43>

<32 16> → <42>

<19 16 3> → <42>

<21 3 12 38> → <42>

<29 28 38 34> → <43>

<17 29 7> → <43>

<17 2 28> → <43>

<17 12 38> → <43>

<2 30 12> → <44>

<30 28 3 12 38> → <42>

Default → <43>

than cRule will not replace rule in rule list otherwise it is

replaced to cover the case. ClassCasesCovered field is

updated accordingly (for more details refer [4]).

Then the default class is identified and the total error count is

calculated.

2.3.4 Stage 4: Generate classifier
The classifier is generated by identifying first “strong” cRule

that is, the rule that satisfies at least one record, with the

lowest total error that is the cutoff rule. The final classifier

will consist of all the rules up to and including the identified

rule. As all the rules after this rule only produce more error

they can be discarded. The final classifier will also consist of

default rule that produces the default class associated with the

identified rule.

3. EXPERIMENTAL EVALUATION
The proposed algorithm is implemented in java 1.7.0,

windows 7 operating system and i5 core processor. Below we

present the comparative classification result of CBMR

(proposed algorithm) and LUCS KDD [17] implementation of

CBA algorithm. These results are obtained by experimenting

with different data set from [3].

3.1 Data set: Car
 Number of records: 1728

 Classes: 4 (<22>,<23>,<24>,<25>)

 Minimum support of CBA (corresponding LS of

CBMR): 172 records. (For simplicity considering

count as support).

 MIS (<22>, <23>, <24>, <25>): (172, 10, 5, 5).

Fig 1: Output of CBA Algorithm for Car data set.

Fig 2: Output of CBMR Algorithm for Car data set.

3.2 Data set: Glass
 Number of records: 214

 Classes:7(<42>,<43>,<44>,<45>,<46>,<47>, 48>)

 Minimum support of CBA (corresponding LS of

CBMR): 10 records (for simplicity considering

count as support).

 MIS (<42><43><44> <45> <46> <47> <48>): (7,

12, 3, 3, 3, 3, 12).

Fig 3: Output of CBA Algorithm for Glass data set.

Fig 4: Output of CBMR Algorithm for Glass data set.

3.3 Data set: Heart
 Number of records: 303

 Classes:5(<48>,<49>,<50>,<51>,<52>)

 Minimum support of CBA (corresponding LS of

CBMR): 45 records (for simplicity considering

count as support).

 MIS (<48>, <49>, <50>, <51>, <52>): (45, 30, 25,

3, 26).

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

55

Algorithm: CBA

Accuracy: 58.94

Rules generated:

<7 8 18> → <48>

<7 10 18> → <48>

<8 10 11>→ <48>

<8 10 18> → <48>

<1 11 19> → <48>

<5 10 18> → <48>

<9 10 14> → <48>

<8 10 19> → <48>

<7 11 14> → <48>

<7 9 10> → <48>

<9 19> → <48>

<7 9 14> → <48>

<5 9 14> → <48>

<7 9 11> → <48>

<7 8 9> → <48>

<1 7 9> → <48>

Default → <49>

 Algorithm: CBMR

Accuracy: 58.27

Rules generated:

<5 47 10 16> → <51>

<47 10 39 41 6> →<51>

<45 41 31 30> → <48>

<45 31 16 30> → <48>

<45 41 31> → <48>

<45 41 33 30> → <48>

<45 1 11> → <48>

<45 31 21 30> → <48>

<41 31 16 30> → <48>

<45 16 33 30> → <48>

<41 31 30> → <48>

<38 31> → <48>

Default → <49>

Fig 5: Output of CBA Algorithm for Heart data set.

Fig 6: Output of CBMR Algorithm for Heart data set.

3.4 Analysis
By observing the above results it is clear that, CBMR

algorithm gives better performance in classifying the rare

classes in comparison to CBA algorithm. In figure 1, where

CBA algorithm only produces rules pertaining to class 22, the

proposed algorithm produces rules for the classes 23 25 as

well (figure 2). The CBMR algorithm also gives better

accuracy in this case. (Accuracy can increase or decrease

depending on the MIS values provided by the user for the

classes). For the data set glass (figure 3), CBA algorithm fails

to produce any rules corresponding to classes 44, 45, 46, 47.

We assigned lower MIS values to these classes in comparison

to more frequent classes and we found better results both in

rules produced as well as in accuracy (figure 4). Similarly for

data set heart, CBA (figure 5) only produces rules

corresponding to class 48; in this case if we are particularly

interested in the class 51 we can get the desired result by

CBMR algorithm (figure 6). The algorithm not only produces

rules for frequent classes or rules only for rare classes but for

both of them together balanced on the basis of MIS value

provided.

4. CONCLUSION
Our work mainly focuses on rare class classification. Since

most of the classifier gives poor performance in the case.

Realizing the importance of rare classes in many applications

we proposed an algorithm CBMR which is capable of

classifying rare classes efficiently. We have tested

performance of CBMR by experimenting with different data

sets [3] and found the desired results. In future the idea can be

used to enhance other existing classification algorithms to

make them efficient in classifying both frequent and rare

classes.

5. REFERENCES
[1] Weiss, G. M. “Mining With Rarity: A Unifying

Framework.” SIGKDD Explorations, 2004, Vol. 6, Issue

1, pp. 7 – 19.

[2] Liu, B., Hsu, W., and Ma, Y. “Mining Association Rules

with Multiple Minimum Supports.” SIGKDD

Explorations, 1999wman, M., Debray, S. K., and

Peterson, L. L. 1993. Reasoning about naming systems. .

[3] Coenen, F. (2003), The LUCS-KDD

Discretized/normalised ARM and CARM data library

http://www.csc.liv.ac.uk/~frans /KDD/Software

/LUCS_KDD_DN/, Department of Computer Science,

The University of Liverpool, UK.

[4] B. Liu, W. Hsu and Y. Ma, “Integrating classification

and association rule mining”, proceedings of the fourth

international conference on knowledge discovery and

data mining, 1998, pp. 80-86.

[5] M.S. Chen, J. Han, P.S. Yu, “Data mining: an overview

from a database perspective”, IEEE Transactions on

Knowledge and Data Engineering, 1996, 8, pp. 866-883.

[6] Agrawal, R., Imielinski, T., and Swami, A. “Mining

association rules between sets of items in large

databases.” SIGMOD, 1993, pp. 207-216.

[7] Agrawal, R., and Srikanth, R. “Fast algorithms for

mining association rules.” VLDB, 1994.

[8] W. Li, J. Han and J. Pei, “CMAR: Accurate and efficient

classification based on multiple class-association Rules”,

In ICDM'01, San Jose, CA, Nov.2001, pp. 369-376.

[9] M. Kubat, R. C. Holte, and S. Matwin. Machine learning

for the detection of oil spills in satellite radar images.

Machine Learning, 30(2):195-215, 1998.

[10] P. K. Chan, and S. J. Stolfo. Toward scalable learning

with non-uniform class and cost distributions: a case

study in credit card fraud detection. In Proceedings of the

Fourth International Conference on Knowledge

Discovery and Data Mining, pages 164-168, 2001.

[11] G. M. Weiss, and H. Hirsh. Learning to predict rare

events in event sequences. In Proceedings of the Fourth

International Conference on Knowledge Discovery and

Data Mining, pages 359-363, 1998.

[12] G. Medioni, I. Cohen, F. Brémond, S. Hongeng, and R.

Nevatia.Event detection and analysis from video streams.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 23(8): 873-889, 2001.

[13] H. Zhong, J. Shi, and M. Visontai. Detecting unusual

activity in video. Proc. CVPR’04, Washington, DC,

2004, Vol.2, pp.819-826.

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

56

[14] Mannila, H. “Methods and Problems in Data Mining.”

ICDT, 1997.

[15] R. Kiran and P. Reddy “An Improved Multiple

Minimum Support Based Approach to Mine Rare

Association Rules” IEEE 2009.

[16] I. Kouris, C. Makris, A. Tsakalidis”An improved

algorithm for mining association rules using multiple

support values” FLAIRS 2003.

[17] Coenen, F. (2004). LUCS KDD implementation of CBA

(Classification Based on associations).

http://www.csc.liv.ac.uk/~frans/KDD/Software/CMAR/c

ba.html, Department of Computer Science, The

University of Liverpool, UK.

