
International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

6

Improved Fault Tolerant Job Scheduler for Optimal

Resource Utilization in Computational Grid

P. Latchoumy
Research Scholar, BSA University,

Vandalur, Chennai, Tamil Nadu, India.

P. Sheik Abdul Khader
Professor & Head, BSA University,

Vandalur, Chennai, Tamil Nadu, India.

ABSTRACT
Grid computing provides the ability to access, utilize and

control a variety of underutilized heterogeneous resources

distributed across multiple administrative domains while it is

an error prone environment. The failure of resources affects job

execution during runtime. We propose a new strategy named

Improved Fault Tolerant Job Scheduler (IFTJS) for Optimal

Resource Utilization in Computational Grid which effectively

schedules grid jobs tolerating faults gracefully and executes

more jobs successfully within the specified deadline. This

system maintains the history of fault occurrence of resources

with respect to Processor, Memory and Bandwidth. The usage

of this information causes the reduction of selecting chances of

the resources which have more failure probability and hence

improves the resource utilization. Also, the system guarantees

the efficient job execution using Reduced Recovery Time

(RRT) strategy. Whenever the scheduler has jobs to schedule,

the Improved Fault Tolerant (IFT) algorithm finds the optimal

resources based on their failure rate. The resources with lowest

failure rate will have highest priority for scheduling. The job

manager can monitor the execution of job and return the results

to the user after successful completion. If failure occurs it re-

executes the job with the same resource using the last saved

state when the Failure Rate of the resource is lesser than the

optimal value or with the backup resources when it exceeds an

optimal value with the last saved state using RRT strategy.

Otherwise it reschedules the failed job with the next available

optimal resource using the last saved state. Hence the recovery

time is getting reduced. Approach is effective in the sense that

the resource manager detects the occurrence of resource

failures and the job manager guarantees that the submitted jobs

executed with optimal resources with the specified deadline.

Keywords
Improved Fault-Tolerant Job Scheduler (IFTJS), Failure Rate,

Checkpointing Time, Reduced Recovery Time (RRT), Optimal

Resources, Job Manager, Resource Manager, Utilization Rate.

1. INTRODUCTION
The term grid computing is a way to make the computational

power of idle work stations available to remote grid users for

the execution of their computation hungry jobs [1]. Typically,

the probability of a failure is higher in the grid computing than

in a traditional parallel computing and the failure of resources

affects job execution fatally.

The emergence of grid computing will further increase the

importance of fault tolerance. Grid computing will impose a

number of unique new conceptual and technical challenges to

fault-tolerance researchers. Thus, the incorporation of fault

tolerance related features in a grid job scheduling strategy

should not be an optional feature, but a necessity.

In this paper, we advocate the need for a fault tolerant

job scheduling mechanism for grid environment and add

fault tolerant features using failure rate of resources with

respect to processor, memory and bandwidth. Here, we present

an improved fault tolerant algorithm to find the optimal

resources to execute the jobs successfully within the specified

deadline. If failure occurs it re-executes the job with the same

resource using the last saved state when the Failure Rate of the

resource is lesser than the optimal value or with the backup

resources when it exceeds an optimal value using the last saved

state. Otherwise it reschedules the failed job with the next

available optimal resource using the last saved state.

Rest of the paper is organized as follows: Section 2 contains

the description of the related work. In section 3, proposed

strategy is described. Section 4 discusses the experimental

results and finally section 5 concludes the paper.

2. RELATED WORK
Fault tolerance is an important property in grid computing,

since the resources are geographically distributed. Moreover

the probability of failure is much greater than in traditional

parallel systems. Therefore fault tolerance has become a crucial

area of interest. A large number of research efforts have already

been devoted to fault tolerance [2]. Various aspects that have

been explored include design and implementation of fault

detection services as well as the development of failure

prediction and recovery strategies.

The work on Grid fault tolerance can be divided into pro-active

and post-active mechanisms. In pro-active mechanisms, the

failure consideration for the Grid is made before the scheduling

of a job, and dispatched with hopes that the job does not fail

[3]. Whereas, post-active mechanisms handles the job failures

after it has occurred. Our proposed work use both pro-active

and post-active mechanisms for optimal resource utilization

and efficient job execution.

Leili Mohammad Khanli and Maryam discussed a strategy

named Reliable Job Scheduler using RFOH in Grid

Computing. This strategy maintains the history of fault

occurrence of resources. Whenever a resource broker has jobs

to schedule, it finds the optimal resources using fault

occurrence and response time [4]. It does not consider the

resource failure as different aspects like processor, memory and

BW. In our work we consider the different aspects of resource

failure and hence it leads to optimal resource utilization.

In [5], Amoon and his Co-workers addressed the problem of

how to schedule the user jobs in grids so that failures can be

avoided in the presence of resource faults. He used job

replication methodology to avoid failure of jobs. But

replication increases memory requirement and hence it leads to

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

7

lesser resource utilization. In our proposed work we find the

availability of resources with respect to speed, memory and

bandwidth before allocating the job for optimal utilization of

resources.

In [6], Babar Nazir , Kalim Qureshi, Paul Manuel proposed a

strategy called “Adaptive Checkpointing strategy to tolerate

faults in economy based grid”. He used only failure rate of

resource for calculating the number of checkpoints. But, we

have calculated the optimal number of checkpoints using

failure rate of resource and runtime conditions of the job and

hence it reduces the total job completion time is discussed in

the paper [7].

In [7], P. Latchoumy and P. Sheik Abdul Khader proposed a

strategy called “Fault-Tolerant Scheduler with Reduced

Checkpointing Time in Grid Computing”. We proposed an

algorithm to reduce the Checkpointing Time, but not

considered about the reduction in recovery time. Our proposed

algorithm Improved Fault Tolerant Job Scheduler is also

considered in reduction of recovery time of failed job.

In order to deal with the preceding limitations, the proposed

model Improved Fault Tolerant Job Scheduler (IFTJS) for

Optimal Resource Utilization is based on the failure rate of the

Resources with respect to processor, memory and BW. This

system schedules job to resources with lowest failure rate for

successful execution of jobs. After submitting the job to the

selected optimal resources, job manager monitors the job

execution till it gets successfully completed. If it is failed at

unavoidable situation, re-executes the job with the same

resource using the last saved state when the Failure Rate of the

resource is lesser than the optimal value or with the backup

resources when it exceeds an optimal value using the last saved

state. Otherwise it reschedules the failed job with the next

available optimal resource using the last saved state.

3. PROPOSED MODEL
This section explains the proposed model that enables the

system to tolerate faults gracefully. The overall architecture

of Improved Fault Tolerant Job Scheduler (IFTJS) for Optimal

Resource Utilization with RRT strategy is shown in Figure 1.

Figure 1. Improved Fault Tolerant Job Scheduler (IFTJS) for Optimal Resource Utilization with RRT Strategy

3.1. Process Flow
Initially, the job is given to Job Analyzer and Resource

Manager. The Job Analyzer analyzes the job and generates a job

requirement report. Mean while the Resource Manager generates

the resource value report according to the availability and

capability of resources on that time. The Resource Mapper

receives the resource value report from Resource Manager and

job requirement report from the first phase. The Resource

Mapper maps the resources respective to the job requirement

based on the value codes generated and passes it to the Fault

Tolerant Scheduler. The Fault tolerant Scheduler prioritizes the

resources according to their failure rate using Improved Fault

Tolerant (IFT) algorithm. The IFT algorithm first categorizes the

resources into capable old resources and capable new resources.

If number of executions is greater than zero, then those

resources will come under old capable resource and remaining

resource will comes under new capable resources. Then the IFT

algorithm computes the failure rate of each old resource and

sorts them according to their failure rate in ascending order.

Then the job will be submitted to the first available resource and

in case of unavailability of lowest failure rate resource, the job

will be submitted to next available new capable resource. Then

the Job Manager with RRT strategy starts to monitor the

execution of the job. If any interruption occurred during

execution, re-executes the job with the same resource using the

last saved state when the Failure Rate of the resource is lesser

than the optimal value or with the backup resources when it

exceeds an optimal value using the last saved state. Otherwise it
reschedules the failed job with the next available optimal

resource using the last saved state. So, once the job is completed,

it will be removed from the Job Manager and returned to the

user as successfully completed job.

The main components of the proposed model are the Fault

Tolerant Job Scheduler and Job Manager with reduced recovery

time.

The Scheduler allocates the job to the optimal resources using

Improved Fault Tolerant (IFT) algorithm. The following

diagram (Figure 2) shows the detailed design of the fault tolerant

job scheduler with clear visualization of processing steps.

Fault Tolerant Job Scheduler using IFT Algorithm:

Job Analyzer Requirement
report

Res.
Value
Gen.

Resource
Mapper

Fault
Tolerant

Job
Scheduler
(IFT Algo.)

Resource
Clusters

R1

R2

Job Analysis and
Requirement
Gathering Phase

Optimal Resource
Selection and
Allocation Phase

Efficient Job
Execution with
RRT Phase

JOB

Resource
Manager

Resource
List

Res.
Property

Job done

Start

Completed Job

Job Manager
(RRT Strategy)

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

8

1. Gets the list of capable resources and job requirement

report

2. Categorizes the new resources and already executed

resources

3. Calculates the failure rate of already executed

resources

4. Prioritizing the resources based on their failure rate.

 Note: Lowest failure rate gets highest priority and

New

 Resources will get least priority

5. Gets the list of Optimal (Fault Tolerant) Resources.

6. Select the first priority Fault tolerant resource and

7. Submit the job to the selected resources

After allocating the job with the optimal resource for the

execution, the Job Manager monitor the job till it gets

successfully completed in an efficient way using reduced

recovery time strategy.

Job Manager with Reduced Recovery Time (RRT) Strategy

If failure occurs the Job Manager re-executes the job with

1. The same resource using the last saved state when the

Failure Rate of the resource is lesser than the optimal

value, or with

2. The backup resources when it exceeds an optimal

value with the last saved state using Reduced

Recovery Time (RRT) strategy.

 Where Optimal Value=90% Failure Rate.

3. Otherwise it reschedules the failed job with next

available optimal resource using the last saved state.

Hence the recovery time is getting reduced.

 Figure 2. Systematic Design of IFTJS using IFT

3.2. Module Description
This system is divided into three phases of process. The

respective three phases are

 Job Analysis and Requirement Gathering Phase

 Optimal Resource Selection and Allocation Phase

 Efficient Job Execution with Reduced Recovery

Time (RRT) Strategy Phase

3.2.1 Job Analysis and Requirement Gathering

Phase
This phase is the first phase in this fault tolerant system. The

systems used in this phase are job analyzer and requirement

report generator. Here the system receives the job request and

sends it to the job analyzer system. The job analyzer analysis the

job and generates the report according to the job’s nature and its

requirements. The requirement values will be either 1 or 0. For

example, if the value of speed is 1, then the job needs high speed

processor. The report generated by this phase will the in the

form as given below (Table1) using the descriptions for each

value codes that are generated for jobs and resources (Table3).

Table 1. Job Requirement Report

Job

Id

Speed Memory Bandwidth

J1 1 0 1

J2 1 1 0

3.2.2 Optimal Resource Selection and Allocation

Phase
Resource Manager generates the Resource capability value

report with respect to speed, memory and bandwidth of each

resource. The values of each column will be either 1 or 0. If the

resource is good in memory and processing speed and but

having low bandwidth, then the values will be given as 1 for

memory and processing speed and 0 for bandwidth. Resource

mapping system receives the resource capability value report

(see Table 2) and the job requirement report and maps the job

with the respective resources and provides the optimal list of

resources.

Fault Tolerant Job Scheduler

 IFT Algorithm

1. List of Capable

Resources and

Job Requirement

Report

2. Categorization

of new and

already executed

resources

3. Calculation of

failure rate of already

executed resources

4. Prioritizing the

resources based

on their failure

rate

5. List of

Optimal

Resources

6. Selection

of first

priority Res

7. Submission of job to

the selected resource

List of

Capable

available

resources for

respective

jobs

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

9

Table 2. Resource Capability Value Report

Res. Id Speed Memory Bandwidth

R1 1 0 1

R2 1 1 1

R3 1 0 0

The IFT (Improved Fault Tolerant) algorithm prioritizes the

resources with the help of failure rate of each resource. The

system first categorizes the resources into already executed (No.

of. executions > 0) and new resources (No. of executions=0).

After that, it computes the failure rate of each resource that

comes under already executed category. Then it sorts the

resources according to their failure rate in ascending order.

3.2.2.1 Formula to Calculate Failure Rates

No. of Executions = E

No. of failures w.r.t Processor = NProc

No. of failures w.r.t Memory = NMem

No. of failures w.r.t Bandwidth = NBW

Failure Rate of Processor = FRProc

Failure Rate of Memory = FRMem

Failure Rate of Bandwidth = FRBW

FRProc = NProc * 100/(E - (NMem+NBW))

FRMem = NMem * 100/(E - (NProc+NBW))

FRBW = NBW * 100/(E - (NMem+NProc))

The value codes of resources and jobs will be in either one of the

eight combinations as shown in Table 3. If the value of

capability of processor speed, memory and bandwidth is greater

than 80% then it considered as High otherwise considered as

Low. The binary value 1 is assigned to High and 0 is assigned to

Low.

Table 3. Value Codes Description

Value

Codes

Description

0 0 0 Low Speed, Low Memory, Low BW

0 0 1 Low Speed, Low Memory, High BW

0 1 0 Low Speed, High Memory, Low BW

0 1 1 Low Speed, High Memory, High BW

1 0 0 High Speed, Low Memory, Low BW

1 0 1 High Speed, Low Memory, High BW

1 1 0 High Speed, High Memory, Low BW

1 1 1 High Speed, High Memory, High BW

Using the descriptions for each value codes that are generated

for jobs and resources (see Table 3) the system computes the

failure rate of each resource and the report is generated as given

in the Resource Failure Rate Report (see Table 4). Then the

resource with least failure rate is assigned to the job.

Table 4. Resource Failure Rate Report

Res

Id

 No.

of

Exec.

(E)

Speed Memory Bandwidth

No.

of

Fail.

Fail

Rate.

%

No.

of

Fail.

Fail.

Rate

%

No.

of

Fail

Fail.

Rate

%

R1 0 0 0 0 0 0 0

R2 200 3 1.5 0 0 7 3.6

R3 100 1 1.9 45 47.4 4 7.4

R4 200 1 0.6 42 21.4 3 1.9

R5 100 0 0 25 25 0 0

The process of selecting the optimal resources according to their

failure rate is represented in the Figure 3. In case of

unavailability of already executed resources, the IFT algorithm

will select the first available capable new resource.

3.2.2.2 Example for Resource Selection

Figure 3. Resource Selection Process

3.2.3 Efficient Job Execution with Reduced

Recovery Time (RRT) Strategy Phase
After selecting the respective resource, the job will be scheduled

in that selected resource by the job manager. As soon as the

execution starts, the job manager calls the checkpoint manager

to find the optimal number of checkpoints to reduce the

Checkpointing time. Checkpoint manager updates the status of

the job completion with its table periodically and passes this

information’s to the job manager. During failure, the job

manager calls the recovery manager to select an appropriate

method for recovery of the job using RRT strategy.

3.2.3.1. Checkpoint Manager
An inappropriate check pointing interval leads to delay in the job

execution, and reduces the throughput. Hence checkpointing

frequency is calculated based on current status and history of

failure information of the resource [7]. Checkpoint Manager in

the job manager receives the partially executed result of a task

from a grid resource in the intervals specified by the job

manager based on the checkpointing frequency. It maintains

grid tasks and their checkpoint table which contains

information of partially executed tasks by the grid resources. It

also receives and responds to the task completion and task

failure message from grid resources. It updates its table

periodically and passes that information’s to job manager.

Speed Memory BW

1 0 1

Resource Speed Memory BW

R1 1 0 1

R2 0 1 1

R3 1 0 0

R4 1 1 1

R5 1 0 1

Optimal
List

R1

R4

R5

Resource No. of
Exec.

Speed Memory BW

R1 0 0 0 0

R4 200 1 42 3

R5 100 0 25 0

R5 R4 R1

Job Requirement Report Table Resource Capability Value Table

Resource Failure Rate Table

IFT Algorithm

Mapping

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

10

3.2.3.2. Recovery Manager
During interruption, the recovery manager in the job manager

selects an appropriate method for recovery of the job from the

failure during an execution using RRT Strategy.

Method 1: Recovery using the Same Resource.

If failure occurs Job Manager re-executes the job with the same

resource using the last saved state when the Failure Rate of the

resource is lesser than the optimal value.

 Figure 4. Timeline of Job Execution within Same

Resource

STi i
th

 Start Time

SSi i
th

Saved State

 Reduced Recovery Time (RRT) = ∑
n

i=1 (ST (i+1) -SS (i)) +

(SS(n))
 Where, n is the number of Saved States &

 Checkpointing State is called as Saved State.

 Where Optimal Value= 90% Failure Rate.

Method 2: Recovery using the Backup Resource.

If failure occurs Job Manager re-executes the job with the

backup resource when the Failure Rate of the resource is

exceeds the optimal value with the last saved state.

Figure 5. Timeline of Job Execution with Backup Resource

 Reduced Recovery Time (RRT) = ∑
n

i=1 (ST (i+1) -SS (i)) +

 (SS (n)) + Transfer

Time

Otherwise the job manager reschedules the failed job with the

next available optimal (Fault Tolerant) resource using the last

saved state and continues to monitor the job till it completely

done (see Figure 4).

R5 R4 R1

23

Job Manager

Running state

Resuming from last
saved state

Start

Completed

R5 R4

Update
resource table

Efficient Job Execution

 Figure 6. Job Execution Process

On successful completion of the job execution, the job manager

returns the output to the user via Resource manager. Once the

job is either completed successfully or interrupted, the failure

rate table of respective failures of resource is updated by the

resource manager with the request initiated by the job manager.

3.3 Improved Fault Tolerant (IFT)

Algorithm

 for Optimal Resource Utilization
1. Get user request (Specifications)
2. Register resources to Resource Manager with Resource id,
 No. of PEs, Processing Speed, Memory Size, Bandwidth
3. Submit Job to the Job Analyzer
4. Job Analyzer analyzes the job & return job requirement Report
5. Resource Manager maintains the resource properties and
 Failure Rate (History) & Assign values to each resources

 For each job Ji from a queue

{ For each selected resource Rj
 { If (resource_proc. speed(j) > job_proc. Speed(i))
 Assign resource.proc speed(j) =1 ; Else Assign 0
 If (resource_memory(j) >job_memory(i))

 Assign resource_memory(j) =1 ; Else Assign 0
 If (resource_bandwidth(j) >job_bandwidth(i))
 Assign resource_bandwidth(j) =1 ; Else Assign 0 } }

6. Filter the list of resources that have the resource value
code >= Job Requirement value code
{ // FT Scheduling using IFT Algo.
a. Calculate the failure rate of each resource in terms of
 Processor, Memory & Bandwidth limitations

 b. if (E !=0) // if already executed jobs
 // create optimal list
 Sort the list of capable resources in ascending order
 with respect to their failure rate. (Smallest failure
 rate gets highest priority)
 Select the first available, lowest failure rate resource.
 Else // new resources with expected requirement
 Select the first available new resource }

7. Return selected resource & Submit job to it
8. Call job manager for monitoring
 { a. Start Execution &

 Call CheckpointRequest()
 //Calculate the Checkpointing time and update
 //Checkpoint Info.Table in Checkpoint

Manager.
 b. Make a handshake with running job;
 If (Status= Done)
 Assign RSpeed=RMem=RBW=0;
 & Call UpdateHistory()

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

11

 ElseIf (job has been Failed) // Check Status
 {
 If (Failed due to lack of Proc.) Assign RProc=1;
 If (Failed due to lack of Mem) Assign RMem=1;
 If (Failed due to lack of BW) Assign RBW=1;

 Call SelectionRequestforRecovery()
 { //using Reduced Recovery Time (RRT)
Strategy

A. If Failure Rate<=Optimal Value, allow
to recover the failed job with the Same
Resource using the last Saved State.

 Calculate RRT=∑n
i=1 (ST (i+1) -SS (i)) +

 (SS (n))
B. Else, allow to recover the failed job with

the backup resource using the last
Saved State.

 Calculate RRT=∑n
i=1 (ST (i+1) -SS (i)) +

 (SS (n)) + Transfer Time
 Where Optimal Value= 90% Failure
Rate.

C. Calculate Total Job Completion Time
 (Where, TJCT<Deadline of the Job)
&
Update Checkpoint Information Table
in the Checkpoint Manager.

 & Call UpdateHistory()
 }
 } Else
 Return the failed job to next available resource in
 the optimal list; // continue handshaking till it ends
 c. Goto 10 \\ End
 UpdateHistory()
 If Status=Done
 Increment No.of Executions by 1
 Else
 Increment number of Failures by 1
 Assign NProc=NProc+RProc; NMem=
 NMem+RMem & NBW=NBW+RBW

9. Return the completed job to the user.
10. End

4. EXPERIMENTAL RESULTS
We have implemented our proposed model using Grid

Simulation toolkit GridSim 5.2. A simulation is conducted in

heterogeneous environment where each resource has machines

with different characteristics such as processing speed, memory

size, and bandwidth. The parameters such as number of

executions and number of failures are taken into account to

calculate the failure rate and the utilization range of each

resource. Recovery time is also calculated and checked with

number of failures.

The simulation is done successfully in order to verify that the

proposed IFT algorithm is more efficient than the existing

strategy. The simulation setup (see Table 5) for five resources

with respect to their total number of executions, number of

failures and failure rates.

Table 5. Simulation Setup

Resource

Id

No. of

Executions

No. of

Failures

Overall

Failure Rate

(%)

R1 100 20 20

R2 200 10 5

R3 100 50 50

R4 20 10 50

R5 400 100 25

The proposed strategy can increase the usage of resources while

categorizing the resources according to their capability failure

rate rather than overall failure rate. Thus the proposed strategy

can improve the probability of resource selection depends on the

capability of resources which match the need for the job

requirements. The utilization rate of each resource is calculated

with respect to processor, memory and bandwidth rather than the

overall utilization rate of each resource.

Figure 7. Resources Vs Overall Utilization

Figure 8. Resources Vs Categorized Resource Utilization

From the Figure 7 and Figure 8, it is seen that the proposed

technique gives the utilization of each resource during resource

selection phase and reduces the wastage of fault tolerant

resources. This leads the optimal utilization of resources.

Figure 9. No. of Failures Vs. Recovery Time (ms)

The system reduces the recovery time during the failure of the

execution of the job (see Figure 9). The jobs are continued with

the appropriate resources that satisfy the condition that is the total

job completion time should be lesser than the given deadline. For

the collection of 50 jobs, the recovery time is calculated with

respect to number of failures occurred.

Thus the proposed strategy attains the better efficiency in terms

of increased resource utilization and reduced recovery time.

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.22, June 2012

12

5. CONCLUSION AND FUTURE WORK
In Grid environment, resource failures can occur for various

reasons. In this strategy, a new approach called Improved Fault

Tolerant Job Scheduler (IFTJS) for Optimal Resource Utilization

in Computational Grid is addressed to assure fault tolerance

during job execution with increased utilization of optimal

resources. This system maintains the history of fault occurrence

of resources with respect to Processor, Memory and Bandwidth.

The Improved Fault Tolerant (IFT) algorithm uses this

information from the resource manager to generate the value for

each resource according to their capability and find the optimal

resource for job execution. The usage of this information causes

the reduction of selecting chance of the resources which have

more failure probability. After selection of resource, the job will

be submitted to the selected resource and the submitted job will

be monitored for its successful completion by the job manager.

The proposed model recovers the failed job during an execution

with the same resource if the Failure Rate of resource is lesser

than the optimal value or with backup resources if the Failure

Rate exceeds an optimal value using last saved state using

Reduced Recovery Time (RRT) strategy. Otherwise it

reschedules the failed job with the next available optimal

resource using the last saved state. Hence the adaptation of

recovery method decreases the total job completion time and

increases the job throughput, and thus makes the grid

environment more reliable.

In future, in order to improve this improved fault tolerant job

scheduler, the prediction of failure can be found using some

more failure parameters. And also, the proposed strategy has not

addressed any migration time reduction techniques during

unavoidable failure situation. So these are the areas that can be

worked upon.

6. REFERENCES

 [1] Foster, C. Kesselman, and S. Tueke 2001 The anatomy of

the grid: Enabling scalable virtual organizations

Supercomputing Applications.

 [2] P. Latchoumy, P. Sheik Abdul Khader 2011 Survey on

Fault Tolerance in Grid Computing International Journal of

Computer Science & Engineering Survey(IJCSES) Vol. 2,

No. 4.

[3] Huda MT, Schmidt HW, Peake ID 2005 An agent oriented

proactive fault tolerant framework for grid computing

In: First international conference on e-science and grid

computing.

 [4] Leili Mohammad Khanli, Maryam Etminan Far, Amir

Masoud Rahmani 2010 RFOH: A New Fault Tolerant Job

Scheduler in Grid Computing.

 [5] Amoon.M. dept. of comput. sci., king saud univ., riyadh,

saudi arabia 2011 Design of a fault-tolerant scheduling

system for grid computing in networking and distributed

computing (icndc) second international conference .

 [6] Babar Nazir , Kalim Qureshi, Paul Manuel 2008 Adaptive

checkpointing strategy to tolerate faults in economy based

grid ©Springer Science+Business Media.

 [7] P. Latchoumy, P. Sheik Abdul Khader 2012 Fault Tolerant

Scheduler with Reduced Checkpointing Time in Grid

Computing in National Conference on Information

Technology-NCIT.

 [8] Dasgupta, G.; Ezenwoye, O.; Liana Fong; Kalayci, S.;

Sadjadi, S.M.; Viswanathan, B. 2008 Runtime Fault-

Handling for Job-Flow Management in Grid Environments

In International Conference on Autonomic Computing.

 [9] S.Baghavathi Priya, M. Prakash, Dr. K. K. Dhwan 2007

Fault Tolerance-Genetic Algorithm for Grid Task

Scheduling using Check Point The Sixth International

Conference on Grid and Cooperative Computing (GCC).

 [10] Imran, M.; Niaz, I.A.; Haider, S.; Hussain, N.; Ansari,

M.A. 2007 Towards Optimal Fault Tolerant Scheduling in

Computational Grid In. Emerging Technologies (ICET).

 [11] Li Y, Lan Z 2006 Exploit failure prediction for adaptive

fault tolerance in cluster. In: Proceedings of the sixth IEEE

international symposium on cluster computing and the grid

(CCGRID’06), ISBN 0-7695-2585-7, vol1.

 [12] Malarvizhi Nandagopal and Rhymend Uthariaraj 2011

Performance Analysis of Resource Selection Algorithms in

Grid Computing Environment Journal of Computer Science

79(4):493-498.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4550843&contentType=Conference+Publications&queryText%3Dfault+tolerant+job+scheduler+in+grid+computing
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4550843&contentType=Conference+Publications&queryText%3Dfault+tolerant+job+scheduler+in+grid+computing
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4550812
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4516335&contentType=Conference+Publications&queryText%3Dfault+tolerant+job+scheduling+in+grid+compurting
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4516335&contentType=Conference+Publications&queryText%3Dfault+tolerant+job+scheduling+in+grid+compurting
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4509978

