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ABSTRACT 
In this paper  a new programming methodology for 

optimizing rocket trajectories using steepest descent technique 

is presented. The programming is done in Matlab platform. At 

first the dynamical equations of rocket is derived and for the 

proper derivation and analysis of the equations ,Eulers 

integration method is used. A new programming approach is 

designed and the equations are optimized using steepest 

descent technique, assuming certain boundary conditions. The 

results obtained are verified and it is seen that the optimal 

trajectory is attained with all objectives  satisfied. This project 

is done at Vikram Sarabhai Space Centre(VSSC),a constituent 

of Indian Space Research Organization(ISRO). 

 

General Terms 
Rocket dynamics,Euler‟smethod,Simulator program. 

Keywords 
Rocket trajectory,Matlab,Optimization,Steepest descent  

1. INTRODUCTION 
The optimality of rocket trajectories may be defined according 

to several objectivesliketransfer time is minimal for a given 

propellant and payload mass (i.e. for a given launch mass),the 

required propellant mass is minimal for a given transfer time 

and launch mass, the required propellant mass is minimal for 

a given transfer time and payload mass.In practice, the 

methods of solving deterministic optimal control problems are 

divided into two categories: direct and indirect methods[9]. 

Indirect methods proceed by formulating the optimality 

conditions according to the Pontryagin maximum principle 

and then numerically solving the resulting two point boundary 

value problem. Direct methods discretize the original problem 

in time and solve the resulting parameter optimization 

problem and thus generate an approximate solution of the 

original problem. Both methods solve the necessary 

conditions of optimality and both discretize the problem. The 

most common objective is to minimize the propellant required 

or equivalently to maximize the fraction of the rocket that is 

not devoted to propellant. Of course, as is common in the 

optimization of continuous dynamical systems, it is usually 

necessary to provide some practical upper bound for the final 

time or the optimizer will trade time for propellant. There are 

also rocket trajectory problems where minimizing flight time 

is an important, or, for example those using continuous thrust, 

where minimizing flight time and minimizing propellant use 

are synonymous. 

2. MATHEMATICAL 

REPRESENTATION OF 

ROCKETDYNAMICS 
Point-mass equations of motion with non-rotating 

sphericalearth are considered in this paper, which is given by 

𝑟  = 𝑉𝑠𝑖𝑛𝛾                                                                (1) 

𝑉  =  
1

𝑚𝑉
 𝑇 𝑐𝑜𝑠𝛼 − − 𝑚𝑔 𝑠𝑖𝑛𝛾                                (2) 

𝛾   =
1

𝑚𝑉
 𝑇 𝑠𝑖𝑛𝛼  +  

𝑉

𝑟
−  

𝑔

𝑉
 𝑐𝑜𝑠𝛾                         (3) 

For a problem without path constraints, with terminal equality 

constraints, and with an initial state vector whose components 

are either fixed or optimizable, the first order necessary 

conditions can be formulated as shown in equations 

from 4 to(11). 

Hamiltonian: 

𝐻 = 𝐿 + 𝜆𝑇𝑓                                                   (4) 

Dynamics: 

𝑋 = 𝑓 𝑥,𝑢, 𝑡 = (
𝜕𝐻

𝜕𝜆
)𝑇                             (5) 

Adjoint differential equations: 

𝜆 = (
𝜕𝐿

𝜕𝑥
)𝑇 − (

𝜕𝑓

𝜕𝑥
)𝑇𝜆 = (

𝜕𝐻

𝜕𝑥
)𝑇                     (6) 

Optimality condition: 

(
𝜕𝐻

𝜕𝑢
)𝑇 = 0 = (

𝜕𝑓

𝜕𝑢
)𝑇𝜆 + (

𝜕𝐿

𝜕𝑥
)𝑇                     (7) 

 

Initial conditions: 

𝑥𝑘(𝑡0)given or 𝜆𝑘 𝑡0 = 0                       (8) 

Terminal constraints: 

𝛹𝑓 𝑥𝑓 , 𝑡𝑓 = 0                                           (9) 
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Transversality conditions: 

𝜆𝑓 = (
𝜕∅

𝜕𝑥
+ 𝑣𝑇

𝜕𝛹𝑓

𝜕𝑥
)𝑡=𝑡𝑓                           (10) 

Transversality condition for optimizable𝑡𝑓 : 

Ω = [(
𝜕∅

𝜕𝑡
+ 𝑣𝑇

𝜕𝛹𝑓

𝜕𝑡
+ 𝐻)]𝑡=𝑡𝑓                 (11) 

Where L = Lagrangefunction 

 H =  Hamilton function 

 𝜆 = costate variable 

Euler-Lagrange [22] equations were extended by the 

introduction of further necessary conditions, such as the 

Legendre- Clebsch condition, The Jacobi condition[4] and the 

Weierstrass condition[4]. 

𝜕2𝐻

𝜕𝑢2 ≥ 0                                  (12) 

A detailed discussion on these conditions can be found in Ref. 

[22].In this part optimization of the three variables take place, 

they are radial distance from the center of earth 𝑟 , rocket 

velocity 𝑣 and the flight path angle 𝛾.The equations  1 − (3) 

can be described in generic form as, 

𝑋 = 𝑓 𝑋,𝑈                                     (13) 

 
𝑟 
𝑣 
𝛾 
  =   

 
 
 
 
 

𝑉𝑠𝑖𝑛𝛾
1

𝑚𝑉
(𝑇𝑐𝑜𝑠𝛼 − 𝑚𝑔𝑠𝑖𝑛𝛾 )

1

𝑚𝑉
  (𝑇𝑠𝑖𝑛𝛼 )  +  ( 

𝑉

𝑟
−
𝑔

𝑉
) 𝑐𝑜𝑠𝛾 

 
 
 
 

        (14) 

Where the state and control vectors are defined as  

𝑋 =  𝑥1𝑥2𝑥3 
𝑇                                    (15) 

That is 

𝑋 =  𝑟𝑣𝛾 𝑇                                 (16) 

𝑈 = 𝛼                                       (17) 

In this a trajectory optimization problem of  a single stage  

launch vehicle is considered. The objective here is to generate 

the guidance command history 𝛼 𝑡 , 𝑡 ∈  𝑡0, 𝑡𝑓 such that the 

following concerns are taken care of, 

(a) At the final time 𝑡𝑓 , the specified terminal constraints must 

meet as accurately. The terminal constraints include 

constraints on altitude, velocity and flight path angle (which is 

the angle made by the velocity vector with respect to the local 

horizontal). 

(b) The system should demand minimum guidance command, 

which can be ensured by formulating a „minimum time‟ 

problem. 

To achieve the above objectives, the following cost function is 

selected, which consists of terminal penalty terms and a 

dynamic control minimization term. 

𝐽 = (𝑟 𝑡𝑓 − 𝑟𝑓)2𝑠𝑟 + (𝑣 𝑡𝑓 − 𝑣𝑓)2𝑠𝑣

+ (𝑟𝑜𝑤 𝑡𝑓 − 𝑟𝑜𝑤𝑓)2𝑠𝛾                   (18) 

Where 𝑠𝑟 ,𝑠𝑣 ,𝑎𝑛𝑑𝑠𝛾  weighing factors. The Hamiltonian (Ref 

equation (4)) is defined as , 

𝐻 = 𝐽 + 𝜆𝑇                                   (19) 

Where 𝜆𝑇 = [𝜆1𝜆2𝜆3], costate variables. 

𝐻 = 𝐽 − 𝜆1 𝑉𝑠𝑖𝑛𝛾 − 𝜆2  
1

𝑚𝑉
 𝑇𝑐𝑜𝑠𝛼 − 𝑚𝑔𝑠𝑖𝑛𝛾  

− 𝜆3  
1

𝑚𝑉
 𝑇𝑠𝑖𝑛𝛼  

𝑉

𝑟

−
𝑔

𝑉
 𝑐𝑜𝑠𝛾                                      (20) 

From equation (18) we get 

𝐻 = (𝑟 𝑡𝑓 − 𝑟𝑓)2𝑠𝑟 + (𝑣 𝑡𝑓 − 𝑣𝑓)2𝑠𝑣

+ (𝑟𝑜𝑤 𝑡𝑓 − 𝑟𝑜𝑤𝑓)2𝑠𝛾 − 𝜆1 𝑉𝑠𝑖𝑛𝛾 

− 𝜆2  
1

𝑚𝑉
 𝑇𝑐𝑜𝑠𝛼 − 𝑚𝑔𝑠𝑖𝑛𝛾  

− 𝜆3  
1

𝑚𝑉
 𝑇𝑠𝑖𝑛𝛼 

+  
𝑉

𝑟
−
𝑟

𝑉
 𝑐𝑜𝑠𝛾                            (21) 

Equation (21)  gives the final Hamiltonian function. This 

function has solve to get the optimum solution .Therefore  

𝜕𝐻

𝜕𝑟
= 𝜆3 

𝑣

𝑟2 𝑐𝑜𝑠𝛾 = −𝜆1
                                                (22) 

𝜕𝐻

𝜕𝑣
= −𝜆1𝑠𝑖𝑛𝛾 + 𝜆3 −  

1

𝑚𝑣2
 𝑇𝑠𝑖𝑛𝛼 −  

1

𝑟
−

𝑔

𝑣2 𝑐𝑜𝑠𝛾 

= −𝜆2
                                                (23) 

𝜕𝐻

𝜕𝛾
= −𝜆1𝑐𝑜𝑠𝛾 − 𝜆2𝑔𝑐𝑜𝑠𝛾+ 𝜆3  

𝑣

𝑟
−
𝑔

𝑣
 𝑠𝑖𝑛𝛾

= −𝜆3
                                                (24) 

𝜕𝐻

𝜕𝛼
= 𝜆2

𝑇

𝑚
𝑠𝑖𝑛𝛼 − 𝜆3

𝑇

𝑚𝑣
𝑐𝑜𝑠𝛼                                  (25) 

The above equations  22 −  25  to be solved to get the 

solutions of costate variables, that is 𝜆1 ,𝜆2𝑎𝑛𝑑𝜆3 . In an 

optimal control formulation, the necessary conditions of 

optimality include the state equation, costate equation, 

optimal control equation and appropriate boundary 

conditions.An steepest descent method needs accurate initial 
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conditions. The equations  1  2 & 3 in  the simulator 

program is developed initial steering profile for steepest 

descent optimization is obtained.For finding the accurate 

steering profile taking an assumption that is acceleration is a 

linearly increasing quantity. So rate of change of velocity is 

approximating as linear function. This linear function is 

selected by polynomial approximation[17] that is by changing 

the functions randomly to fit the curve properly.  

𝛼 = 𝑐𝑜𝑠−1  
𝑐1𝑡 + 𝑐2 + 𝑔 𝑠𝑖𝑛𝛾

𝑇
𝑚 

                  (26) 

Now knowing the values of  𝜆1
 , 𝜆2

 𝑎𝑛𝑑𝜆3
 ,  so to get  

𝜆1 ,𝜆2𝑎𝑛𝑑𝜆3  have to integrate. Therefore the final values of 

𝜆𝑇is 𝜆1𝑓 , 𝜆2𝑓𝑎𝑛𝑑𝜆3𝑓 . To find the final values of  𝜆. 

𝜆1𝑓 =
𝜕𝐽

𝜕𝑟
= 2 × 𝑠𝑟 ×  𝑟 𝑡𝑓 − 𝑟𝑓                (27) 

𝜆2𝑓 =
𝜕𝐽

𝜕𝑣
= 2 × 𝑠𝑣 ×  𝑣 𝑡𝑓 − 𝑣𝑓               (28) 

𝜆3𝑓 =
𝜕𝐽

𝜕𝛾
= 2 × 𝑠𝛾 ×  𝛾 𝑡𝑓 − 𝛾𝑓              (29) 

The integration method used in the optimal control problem is 

Eulers method. It is the usual basic method. 

2.1Implementation of Euler’s method 

Euler‟s method can be implemented both in simulator 

program and the optimal control problem. In simulator 

program the integration of  𝑟, 𝑣 𝑎𝑛𝑑 𝛾 happens. That is given 

as follows. 

𝑟 = 𝑟0 + 𝑟  𝑑𝑡                                                          (30) 

𝑣 = 𝑣0 + 𝑣  𝑑𝑡                                                         (31) 

𝛾 = 𝛾0 + 𝛾  𝑑𝑡                                                          (32) 

In optimal control the 𝜆𝑇 is integrating to get final 𝜆 values. 

𝜆1 = 𝜆10 + 𝜆1
  𝑑𝑡                                                     (33) 

𝜆2 = 𝜆20 + 𝜆2
  𝑑𝑡                                                     (34) 

𝜆3 = 𝜆30 + 𝜆3
  𝑑𝑡                                                     (35) 

Where 𝑑𝑡 is the integration step size.𝑟0,𝑣0&𝛾0are the initial 

values of 𝑟, 𝑣 𝑎𝑛𝑑 𝛾 . Similarly 𝜆10 , 𝜆20&𝜆30 are the initial 

values of 𝜆1, 𝜆2&𝜆3 .Thus gets the solution of equation 

(21) For optimal solutions, The optimality condition (Ref 

equation (26)) is given by 

𝜕𝐻

𝜕𝛼
= 0                                                       (36) 

The weighting factor tow (𝜏) should select according to the 

steepest descent method . That is  

𝑡𝑜𝑤𝑤 =
𝜕𝐻

𝜕𝛼
×  

𝜕𝐻

𝜕𝛼
 
𝑇

                                  (37) 

tow 𝜏 =
1

 𝑡𝑜𝑤𝑤
2

                                        (38) 

Thus weighting factor tow (𝜏) is obtained. Then it is applied 

to the control variable alpha (𝛼) ,toget the new alphaprofile. 

𝛼 = 𝛼0 −
𝜕𝐻

𝜕𝛼
× tow 𝜏                                (39) 

Where 𝛼0 = privious computed 𝛼 

Equation  21  is the gradiant function, optimizes the objective 

function. An optimal control problem needs accurate initial 

conditions. From the equations  1 −  (3)  the simulator 

program is developedand initial steering profile for steepest 

descent optimization is obtained.For finding the accurate 

steering profile acceleration is assumed to be a linearly 

increasing quantity. So rate of change of velocity is 

approximated as linear function. This linear function is 

selected by polynomial approximation that is by changing the 

functions randomly to fit the curve properly. The vehicle 

acceleration is a linear function of time as given in the 

equation. The constants are obtained by varying initial and 

final steering angle value. Thus tuning of  

constants𝑐1  𝑎𝑛𝑑 𝑐2 are done. The initial and final 𝛼  is thus 

obtained to be3.5 𝑑𝑒𝑔and 14 𝑑𝑒𝑔 respectively.Therefore by 

solving the equation  21 using the initial and final values the 

appropriates values for  𝑐1 𝑎𝑛𝑑 𝑐2 can be find out; 

𝑐1 = 6.4217 × 10−3 

𝑐2 = 1.918235 

3. SIMULATOR PROGRAM STEPS AND 

RESULTS 

The simulator program is mainly used for generating the 

initial steering angle. This steering is given as the input thrust 

angle for trajectory optimization problem. Table (1)shows 

travelling time and the initial steering angle profile. The main 

programming steps are given below:- 

a)-Develop rocket dynamics equations. 

b)-To get initial alpha profile develop a simulator program 

that has minimum objective function values. 

c)-Put this alpha profile in the trajectory optimization  

problem. 

d)By varying costate variables optimization takes place 
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e)Alpha profile is updated by using steepest descent 

technique. 

f) Alpha profile update is done by tuning of multiplication 

factor. 

g) The optimized result will be obtained after 82 iterations. 

The results obtained are shown below:- 

Table 1 Travelling time and the initial steering angle 

profile 

Time in 

seconds 

initial thrust angle 

𝛼 values in radian 

1 0.275101 

50 0.279912 

100 0.271316 

150 0.255160 

200 0.235788 

250 0.217232 

300 0.203625 

350 0.198925 

400 0.206037 

450 0.226118 

500 0.258920 

510 0.266945 

Figure  1  shows the graph obtained for the simulation 

program.The figure indicates the radial distance from earth 

centre.The symbol,„ * ‟ indicates the target,   𝑟𝑓 =

6862.41573 𝑘𝑚 . By this method, the rocket achieved the 

desired position, but not the desired velocity. Therefore the 

above method is not an optimized one. So has to be  

optimized. 

Fig 𝟏 Radial distance from earth centreVs time 

Fig 𝟐 Velocity Vs time 

 

Fig 𝟑: Flight path angle Vs time 

Figure  3 & (2) indicates the flight path angle and velocity 

variation with respect to time.1n figure (4.8), the symbol‘ ∗ ’ 

indicates the value of final velocity, 𝑉𝑓 =  7623.5321 𝑚/𝑠 
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and in figure  3 , it indicates the value of final gamma,𝛾 =

 0 𝑑𝑒𝑔 . In figure (2) the desired target-velocity is not 

achieved. The simulation program provides the basic model 

trajectory and the initial steering angle. The trajectory 

optimization problem is explained in the following sections. 

Euler‟s method of integration can be used for optimization. In 

Euler‟s method of integration the integration step size is same. 

Iteration results are shown below. Total iteration number =

82 

Table 2 Itration number and the objective function value 

Iteration 

number 

Objective 

function values 

1 64.0930 

5 93581 

10 22177 

15 76128 

20 19333 

25 53712 

30 20685 

35 28653 

40 20762 

45 16666 

50 12255 

55 81863 

60 4699.7 

65 2037.8 

70 418.6931 

71 237.3277 

73 30.6289 

75 26.113 

77 2.289 

79 0.0002527 

80 8.3802× 10−6 

81 0.0002527 

82 8.3802× 10−6 

Table (2) shows the objective function values for each 

iteration. By analyzing the objective function values, it  seems 

to be decreasing and tends to a minimum value. Table (3) 

shows final radial distance from center of earth, final velocity 

of rocket and final flight path angle in each iteration. 

Table 3 Iterationnumber, final radial distance, final 

velocity and final flight path angle 

Iteration 

number 

final radial 

distance from 

centre of earth 

(𝑘𝑚) 

final velocity 

of rocket 

(𝑚/𝑠) 

Final flight 

path 

angle  (𝑟𝑎𝑑) 

1 6862.4 7703.6 0.0002116 

5 68655 7696.6 0.0015444 

10 6863.9 7700.7 -0.0002827 

15 6865.2 7697.5 -0.0004971 

20 6863.8 7700.2 -0.0024106 

25 6864.7 7696.5 -0.0030378 

30 6863.9 7696.0 -0.0049032 

35 6864.1 7691.4 -0.0061224 

40 6863.9 7686.7 -0.0076483 

45 6863.7 7680.5 -0.0090698 

50 6863.5 7673.3 -0.010482 

55 6863.3 7664.9 -0.011885 

60 6863.1 7655.5 -0.013288 

65 6862.9 7645.0 -0.014698 

70 6862.6 7633.5 -0.016121 

71 6862.6 7631.0 -0.016407 

73 6862.5 7626.1 -0.016981 

75 6862.4 7623.6 -0.01713 
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77 6862.4 7623.6 -0.017293 

79 6862.4 7623.5 -0.017286 

80 6862.4 7623.5 -0.017286 

81 6862.4 7623.5 -0.017286 

82 6862.4 7623.5 -0.017286 

 

Table 4 Itration number and weighting factor (𝝉) 

Iteration number Weighting factor (𝜏) 

1 0.0031 

5 0.0044 

10 0.0122 

15 0.0052 

20 0.0088 

25 0.0059 

30 0.0069 

35 0.0060 

40 0.0056 

45 0.0054 

50 0.0055 

55 0.0060 

60 0.0070 

65 0.0096 

70 0.0191 

71 0.0250 

73 0.0367 

75 5.0936× 10−6 

77 1.7206× 10−5 

79 0.001649 

80 0.011844 

81 0.001649 

82 0.011843 

 

Table (4) shows weighting factor (𝜏) variation in each 

iteration. Weighting factor has a significant major role in 

optimizing the trajectory. Figure 4 , (5) & (6) shows the 

graphs obtained for Steepest Descent method with Euler‟s 

integration. The figure (4)indicates the radial distance from 

earth center. The symbol, „ * ‟ indicates the target,𝑟𝑓 =

6862415.73 𝑚 . The above method is optimized with 

minimum objective function value. From the graph it can be 

seen that  the rocket achieved the target-position .A higher 

altitude is considered in this method, sothat it can achieve the 

target-velocity.

Fig.𝟒 Radial distance from the centre of earth Vs time 

Figure  5 &(6) indicates the flight path angle and velocity 

variation with respect to time.1n figure  5 the symbal‘ ∗ ’ 

indicate the final velocity, 𝑉𝑓 =  7623.5321 𝑚/𝑠  and in 

figure  6 the symbal‘ ∗ ′  indicates final gamma , 𝛾 =

 0.0002𝑑𝑒𝑔. In figure (4), graph achieving the target-velocity 

while comparing with the simulator program results (refer 

figure (2)).The graph shows that the desired gamma value is 

not achieved. But it is the optimal solution since the objective 

function has the minimum value. 
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Fig 5  VelocityVstime 

Fig .6 Flight path angle Vs time 

5 .CONCLUSIONS 
A new programming approach for steepest descent 

optimization of rocket trajectories is presented in this paper. 

From the results it is clear that the final objectives are 

achieved with optimum resources and time. All the constraints 

are satisfied and the trajectory is a optimal one. This 

methodology can be implemented in future missions and the 

results ]can be verified and compared with the real time 

outputs. Comparison of the results with real time results and 

formulation of more efficient algorithms will be the  future 

work. 
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