
International Journal of Computer Applications (0975 – 888)

Volume 48– No.19, June 2012

1

Performance Analysis of FTL Schemes

M. N. Kale
PG student,

Department of IT- PDVVP COE,
Pune University, Ahmednagar.

A. S. Jahagirdar
Asst. Professor,

Department of IT-MIT COE,
Pune University, Pune.

ABSTRACT

Today Nand Flash memory is not only used in hand hold

electronic devices but also as secondary storage medium. It

serves as an alternative to Hard Disk Drives (HDDs) in the

form of Solid State Dives (SDDs). However, unlike HDD

flash memory does not support in place update, i.e. for

updating data, old data can not be replaced by new data. Data

can be written only at clean i.e. already erased place. This is

called as erase before update. This erase before update nature

of Nand Flash memory is kept hidden with the help of a

functionality called as address mapping or address translation.

Many efforts for optimizing the working of address mapping

schemes have been done by different research workers.

Though various schemes are designed and proposed but there

is no literature available providing mathematical computations

comparing the performance of the various mapping schemes

in the form of time complexity. In this paper we have tried to

find out the comparative cost of block merge operation

required during garbage collection for some representative

mapping schemes like BAST [9] and FAST [7].

This paper also presents a review of all these schemes and

presents a comparative trade offs among all these major

schemes. The paper is divided into five sections: section 1 is

introduction of Flash memory, section 2 describes various

mapping schemes and presents their comparative

performance, Section 3 does the conclusion. Section 4 is

acknowledgement and section 5 describes the future scope.

1. INTRODUCTION

1.1 Flash Memory Organization
Nand Flash Memory (simply called as Flash hence after) has

became a very common storage medium nowadays due to it‟s

low cost, light weight, low power consumption and faster

access. Flash is a kind of Electrically Erasable Read Only

Memory (EEPROM). Flash has two major types; NOR Flash

which is directly accessible and NAND flash which is

addressable through a single 8-bit bus, that is used for both

data and addresses. The control lines are separate. The erase

(clean) operation set each bit in Flash to one „1‟. This bit can

be reset to zero „0‟ by write operation. Flash has many

desirable characteristics, however, a major drawback of the

flash memory is that it does not allow in-place update (i.e.,

overwrite operation). Flash chips are organized in blocks,

where each block is comprised of pages; 32 pages of 512+16

bytes each for a block size of 16 KB, 64 pages of 2,048+64

bytes each for a block size of 128 KB [12], each of which has

an extra “out of band'' storage space, intended to be used for

error correction codes (ECC) [10]. Every page carries a data

part for user data and a spare part for error correction code

associated with the user data, such as mapping and ECC

information. Data part size is a multiple of the sector size (512

bytes), and the spare part is typically 16 bytes for each sector

in the data part [4]. The smallest unit of read and write

operation in Flash is page. Data is stored in flash in an array

of blocks. Each block spans 32-64 pages. In flash a page is the

smallest unit of read, write operation [5]. Page write

operations in a flash memory must be preceded by an erase

operation. Within a block pages need be to written

sequentially. Update operation becomes more critical due to

the different access units used for read and erase operation in

Flash. The unit for read, write operation is page, whereas the

unit for erase operation is block. The typical access latencies

for read, write, and erase operations are 25 microseconds, 200

microseconds, and 1500 microseconds, respectively. While a

flash device can read any of its pages, it may only write to one

that is in a special state called erased. This is called as erase

before update characteristics of Flash. Flashes are designed to

allow erases at a much larger spatial unit than pages since

page-level erases are extremely costly [3]. As a typical

example, a 16GB flash product from Micron has 2KB pages

while the erase blocks are 128KB. Before erasing a block, the

pages containing valid data need to be moved to some clean

block. Due to this, block erase operation accompany with a lot

of page read and write operations. Thus the erase operation

becomes critical in view of performance.

Another undesirable characteristic of Flash is; after a limited

number of erase operations (10K-100K) [8], Flash undergoes

wear out problem, reducing the lifetime of Flash. To reduce

this wear out problem it is necessary to ensure that no

particular block in Flash reaches to this wear out limit, as far

as possible. For this erase operations need to be evenly

distributed around the Flash [13]. Flash is written by loading

the required data into an internal buffer one byte at a time,

then issuing a write command [10].

1.2 FTL: Flash Translation Layer
To get around the erase before update, a special purpose

software called as Flash Translation Layer (FTL) is

implemented inside flash storage medium. FTL resides inside

a small controller, mounted inside the flash storage medium.

FTL make the flash device to act like a block storage device

such as magnetic disk drive as shown in Figure 1. FTL allows

Flash to be accessed as a set of standard 512Byte, 2K or 4K

logical sectors or pages. That is FTL allows an array of

NAND flash to be addressed as a set of standard 512 byte, 2K

or 4K logical sectors or pages. The main task of FTL is to

hide the erase before update nature of flash. FTL does this

with the help of a functionality called as address mapping or

address translation. Address mapping maps two address

domains: the logical address and the physical flash address. It

does so by maintaining a mapping table of virtual addresses

received from upper layers (e.g., those coming from file

systems) to physical addresses in the Flash. For any page

update FTL works in following manner,

International Journal of Computer Applications (0975 – 888)

Volume 48– No.19, June 2012

2

Figure 1: Flash Memory Interface to file system

It takes the page number received from the upper layer like

operating system called as logical page number, from the page

map table it then locates the physical page number for that

logical page; if that page is already written then it finds

another clean page, and copies the updated data there [1]. That

is, FTL emulates disk-like in place update for a logical page

number (LPN) by writing the new page data to a different

physical page number (PPN). It maintains a mapping between

each LPN and its current PPN. Finally, it marks the old PPN

as invalid for the later garbage collection. Thus, FTL enables

existing application to use flash memory without any

modification. FTL emulate the functionality of a normal block

device by exposing only read/write operations to the upper

software layers. This update type is called as out of place

update.

Thus an out-of-place update involves: (i) choose an already

erased page, (ii) writes to it, (iii) invalidates the previous

version of the corresponding page, (iv) finally updates

mapping table to reflect this change. The out-of-place update

requires Flash to employ a garbage collection (GC)

mechanism. Because after certain number of page writes the

number of invalid pages will increase reducing the free pages

available for further data write or update operations. The role

of the GC is to reclaim the data blocks containing invalid

pages by erasing these blocks and relocating any valid pages

within these blocks to some new locations [4]. Evidently, FTL

crucially affects Flash performance. One of the main

difficulties the FTL faces in ensuring high performance is the

severely constrained size of the on flash SRAM-based cache

where it stores its mapping table. For example, if the capacity

of a device is 4GB, the page size is 2KB, and each mapping

entry is 4 bytes in size, the memory required for the mapping

table is 8MB [2]. The performance of Flash memory mainly

depends on three factors: address translation time, the look up

time to search the requested data, Garbage Collection.

2. TYPES OF MAPPING SCHEMES
Depending upon the spatial unit of mapping, mapping

schemes are classified two categories [6]. These are; Page

mapping, Block mapping. And later on, a hybrid mapping

scheme proposed by D. Park [9] came into existence. This

hybrid scheme is combination of the earlier two schemes. All

these three schemes are discussed in following subsection.

2.1 Page Mapping

In page mapping [7] scheme the smallest logical unit that FTL

uses for address translation is a page. A page is made up of

certain number of smallest units called as sector. Where a

sector is a smallest physical unit in which data actually can be

read or written to flash memory.

Generally a page is made up of single sector. In page mapping

scheme, during any read or write operation, the address of the

page containing the data to be read or updated is passed from

the application that is running on the top of Flash memory, to

the Flash memory device. This address is called as the logical

page number. The actual physical page containing the

information corresponding to this address may be located

somewhere else in the Flash. That is the logical page may be

mapped to a different physical page in Flash. This mapping

information is kept in the form of tables called as mapping

tables. For page mapping scheme the page map table consists

of entries storing the physical page number of the

corresponding logical page number. The index of the entry

denotes the logical page number and the value stored in the

entry indicates the corresponding physical page number as

shown in figure 2. For example one want to see: in which

physical page the logical page 10 is located, then just go to the

page map table entry having index 10 and check the value

stored there, say it contains the value 17. Then this is the

actual physical page number of the flash memory, which

contains the data corresponding to the logical page number

10.

Figure 2: page mapping scheme

Advantage: This mapping technique provides the flexibility

that for update operation any logical page coming from the

top layer can be mapped to any clean physical page available

0

1

7

3

6

4 312

10”

7

50

2

PBN 1

PPN PBN 0

0

1

4

6

7

3

2

3

0

4

2->5

5

LPN PPN

Logical Page Number

Mapping Table

Flash Memory

PBN 31

127

127

10

1

2

File system

SRAM

 FTL

Controller

NAND FLASH

Mapping
Table

Physical Address Logical address

Flash device

International Journal of Computer Applications (0975 – 888)

Volume 48– No.19, June 2012

3

in the flash memory in any block [11]. Thus there is no

necessity of aligning the page at the same physical offset

within a block in Flash memory as that of its given logical

offset. But it suffers from a critical drawback which prevents

it from becoming a scalable system i.e. the size of page map

tables increase with the size of Flash Memory. For page

mapping scheme the page map table consists of entries storing

the physical page number of the corresponding logical page

number. The index of the entry denotes the logical page

number and the value stored in the entry indicates the

corresponding physical page number

Table 1. Measures of page mapping scheme

Garbage collection cost Block Erase is done when

a block is completely

utilized.

RAM requirement Proportional to flash size

Search time Not required

Usefulness Useful in case of strict

time requirement

2.2 Block mapping

In block mapping [7] scheme, the smallest logical unit that the

FTL uses for address translation is a block. A block is also

smallest erase unit for flash memory. For block mapping

scheme the block map table consists of entries storing the

physical block number of the corresponding logical blocks.

The index of the entry in the map table denotes the logical

block number and the value stored in the entry indicates the

corresponding physical block number as shown in figure 3. In

this scheme the top layer passes the address of the data which

is to be updated. This address consists of the block number

and the page offset i.e. page number within that block. This is

called as logical address. Using logical block number,

corresponding physical block number is looked in the map

table. The data then is written in that physical block at the

same page offset, as that of it‟s offset in the given logical

block [11]. If data is already written at that offset in the

physical block, then a new clean block is allocated and the

data which is to be updated along with the data in the old

block are written in the new allocated block.

Advantage: this mapping scheme requires less space for

storing the mapping information. The disadvantage is that the

garbage collection overhead is more, as it has to perform a

block copy and a block erase for a single page update.

Table 2. Measures of block mapping scheme

Garbage collection cost Block Erase is done for a

single page update

RAM requirement Proportional to block size

and flash size

Search time Not required

Usefulness Useful in case of read

dominant access pattern

2.3 Hybrid mapping scheme
In hybrid mapping scheme the total available blocks of flash

memory are divided into two types: log blocks also called as

update blocks, this entire set of log blocks is called as log

buffer. Data blocks or primary blocks, the entire set of data

blocks is called as data buffer. This combines the page

mapping for data blocks and block mapping for log blocks.

That is whenever an update to some data is to be done, the

data page to be updated is appended sequentially in the

corresponding log block and the mapping table is updated

accordingly. The log blocks are very less in number 3% of

total data blocks. The advantage of the scheme is that it

requires less space for storing mapping information, just like

block mapping scheme and also requires less overhead of

garbage collection as that of page mapping scheme. Based on

the hybrid mapping schemes various mapping schemes have

been proposed and various state of art FTLs has been

implemented.

Figure 3: Block mapping scheme

Most representatives of them have been analyzed in next

section by presenting time complexity computations. The

following context tries to derive the time complexity of merge

operation. Merge operation merges more than one data blocks

into a single block with the intention to reclaim some data

blocks. The computations presented here are derived for the

two representative schemes, BAST and FAST.

2.3.1 Block associative sector translation layer
BAST [9] scheme is a hybrid scheme proposed by Kim. It

consists of two types of blocks: data blocks mapped by block

mapping and log block that act as update buffer, mapped by

page mapping. A separate log block is associated with each

data block. They are less in number than the data block i.e.

3% of total data block. The proposed merge cost of this

scheme is calculated as follows: considering, there are total T

blocks in the complete Flash space. Then assuming 3% log

blocks, total log blocks will be 3T/100, considering random

write pattern it is clear that after 3T/100 number of random

write requests from 3T/100 different data blocks, there is need

of free blocks, Hence to free all the 3T/100 log blocks number

of read and writes required will be:

((3T/100 *N) Read + ((3T/100) * N) Write + ((3T/100) +

(3T/100)) Erase (data and log blocks) operations, where N is

0

1

11

3

 10

8 312

 10”

7

 312

PBN 2

PPN PBN 0

0

29

28

30

31

3

2

3

0->2

1

2

0

4

LPN PPN

Logical Block Number

Block mapping

Table

PBN 31 127

50

5

Logical Page Number

1 1

 50

 7

Flash Memory

Page offset

 10

International Journal of Computer Applications (0975 – 888)

Volume 48– No.19, June 2012

4

number of pages per block. These computations gives the

merge cost required after every 3T/100th random write request

where Log blocks are considered 3% of the total blocks. Thus

in random write pattern, log blocks are required more

frequently and the system goes under the deficiency of log

blocks, this problem is called as log block thrashing [6] and

initiates a merge operation. But the data lookup complexity of

BAST scheme is less as compared to other scheme as each log

data block has only one log block associated with it.

Therefore no search cost is involved. Only one entry it has to

examine in the page map table, i.e. the page number of the

given page. RAM requirement of BAST is also less as the

data blocks are block mapped. Only the page tables of log

blocks are to be maintained in RAM and log blocks are very

few in number hence RAM space for keeping mapping

information is less.

Table 3. Measures of BAST scheme

Garbage collection cost

(Worst case:

considering number of

random requests =

number of log blocks)

((3T/100)*N)Read +

((3T/100)*N) Write +

(2*3T/100) Erase

T: total blocks in flash

N: number of pages/block

Log block: 3% of T

RAM requirement Less, Proportional to

number of log block

Search time (worst case) Time to search the page

map table of a single log

block

Usefulness In case of sequential read

write and update pattern

2.3.2 Fully associative sector translation layer

Figure 4: FAST Scheme

FAST[7] scheme, proposed by Lee is a hybrid scheme. It

consists of log blocks and data blocks as shown in figure 4.

All the data blocks are mapped using block mapping scheme.

Log blocks are mapped using page mapping. The scheme uses

two types of log blocks: a single sequential log block

dedicated to accommodated sequential write operations. And

another kind of log blocks called as random log blocks are

dedicated for random writes. Both type of log blocks are

shared by all the data blocks and data from a single data block

can scatter over many log blocks. Hence, name fully

associative. The advantage of the scheme is that it does the

better utilization of space as hence garbage collection

overhead is less. Again the worst case merge cost of this

scheme can be calculated by the same method: considering,

there are total T blocks in the complete Flash memory space.

Then assuming 3% log blocks, total log blocks will be

3T/100, considering random write pattern and K as the

associativity of log block i.e. a Log block can accommodate

data from K different data blocks, it is clear that after

3T/100*K number of random page write requests from

3T/100*K different data blocks, there is need of free blocks

Hence to free all the 3T/100 log blocks number of read and

writes required will be:

((3T/100)*K*N) Read + ((3T/100) * K*N) Write + ((3T/100)

+ (3T/100)) Erase (data and log blocks) operations, where N

is number of pages per block. This computations gives the

merge cost required after every (3T/100*K)th random write

request, where Log blocks are considered 3% of the total

blocks.

It can be observed that this cost is less than the cost derived

for BAST scheme seen earlier. However Lookup complexity

of FAST is much larger than BAST, as in this scheme the data

structures maintaining the mapping information are not

simple, due to associativity of data and log blocks. Therefore

for doing a lookup operation all the log blocks need to be

searched because in the mapping table the index does not

indicate the logical page number, but instead it indicates the

physical page number and the value stored at that index entry

indicate the logical page number. Hence for lookup of a

logical page number linear search is performed, a time

consuming operation. For example if the capacity of the

storage flash under consideration is 4GB, the block size is

128KB, the page size is 2KB, and the number of log blocks is

320 (1% of the entire space). Considering, 64 pages per block,

it has to examine total 64*320 entries in worst case, if it has to

examine mapping information of all log blocks. Considering

the controller speed as 100 Mhz, and examining an entry

suppose takes 3 cycles, load compare and increment, finding

the location of a page will require 600μs, which is 3 times

longer than write latency of a NAND page. The RAM

requirement is less and is same as that of the BAST scheme.

Table 4. Measures of FAST mapping scheme

Garbage collection cost

(worst and best case :

considering number of

random requests =

K* number of log

blocks)

((3T/100)*K*N) Read +

((3T/100) * K*N) Write +

(2*3T/100) Erase

T: total blocks in flash

N: number of pages/block

Log block: 3% of T

RAM requirement Less, Proportional to num.

of random log blocks

Search time (worst case) Time to search the page

map table of all log

blocks.

Usefulness In case of random read

write and update pattern

2.3.3 Shared Block associative sector translation
SBAST [2] scheme is similar to FAST except one additional

constraint has been imposed is that each data block is

associated with only one log block, this is in contrast to the

FAST scheme. The advantage of this scheme is that the data

structures storing the mapping information becomes simple

…

.
 1 2 3 4 5 6 7 …

.

12 11 8
Data

blocks

Case 1

1, 2, 3

lbn pbn

0

1 11

2 12

… …

10
Case 2 Sequential

writes
Random

writes

5, 7, 11

Lbn to pbn

table

table

1 2 3 5 7 11

Physical sector number 120 121 122

Log block for

sequential writes

Log block for

Random writes

Pbn 10 Pbn 11 Pbn 12

lbn pbn

5

7 121

11 122

… …

120

Lsn to psn
table

t

International Journal of Computer Applications (0975 – 888)

Volume 48– No.19, June 2012

5

shown in figure 5, where PPI is physical page index i.e. offset

or page number within a block. For a page lookup operation

only the page map table associated with a single log block is

to be searched Hence Lookup cost gets reduced than that of

FAST, whereas merge cost does not get much affected and

remains as that of FAST.

Figure 5: SBAST page map table

The RAM requirement of this scheme is also less, as that of

the above mentioned three schemes.

Table 5. Measures of SBAST mapping scheme

Garbage collection

cost

Better than BAST

RAM requirement Same as that of BAST

Search time Time to search a page map

table of a log block

Usefulness Useful in case of random read,

write and update pattern

2.3.4 Locality Aware Sector Translation Layer
LAST [6] is a combination of FAST and BAST schemes.

Unlike other schemes it divides its log blocks again into two

types i.e. sequential log blocks and random log blocks which

are mapped using block mapping scheme. It handles

sequential updates using sequential log blocks and handles

random updates using random log blocks which are mapped

using page mapping scheme. It uses a locality detector to

separate the random and sequential updates. This scheme is

having merge cost less than FAST scheme because some of

the full merges are converted to switch merges due to

sequential log blocks. The lookup complexity is less than

FAST, as it also involves the mapping like BAST scheme for

sequential log blocks and mapping like FAST scheme for

random log blocks.

Table 6. Measures of LAST mapping scheme

 Garbage collection cost Better than FAST

RAM requirement Same as that of FAST

Search time Time to search a page map

tables of all log block

Usefulness Useful in case of random

read, write and update

pattern

BAST has to examine only one entry in map table for lookup.

RAM requirement is less than that of the FAST and BAST

scheme.

2.3.5 Demand paged mapping Scheme (DFTL)
DFTL [10] Recently a page level based mapping scheme

called Demand paged Flash translation Layer i.e. DFTL has

presented by Gupta. It has much better performance. It

maintains two types of tables in SRAM, namely, Cached

Mapping Table (CMT) and Global Translation Directory

(GTD). CMT stores only a small amount of page mapping

information like a cache for a fast address translation in

SRAM. GTD keeps track of all scattered page mapping tables

stored in flash. This scheme is paradigm shift from the

previous hybrid mapping schemes. It is fundamentally a page

mapping scheme. It maintains the complete page map table in

the flash memory itself. Hence its RAM requirement is much

less the other schemes.

Table 7. Comparative analysis of various FTL schemes

FTL SCHEME Merge cost of blocks

during GC

Lookup Performance RAM requirement Mapping granularity

Pure page level N/A No lookup cost Much more Page

Pure block level Much more No lookup cost Very less Block

BAST More Lesser Less Page for log blocks

Block for data blocks

SBAST Less less Less Page for log blocks

Block for data blocks

FAST Lesser than SBAST Much more Less Page for log blocks

Block for data blocks

LAST Lesser than FAST Much more Less Page & block for log blocks

Block for data blocks

Demand paged N/A Lesser Lesser Page

3. CONCLUSION
The conclusion is summarized in the form of a table; table 7.

It shows the comparative trade offs among various FTLs and

analysis of various FTLs that has been calculated in above

section. It is observed that the page mapping scheme has the

greatest advantages except it‟s drawback of high memory

consumption and hence the DFTL tries to retain this

advantage of page level mapping scheme, as well as found a

solution to resolve the need of high memory demand.

4. ACKNOWLEDGMENTS
Our special thanks to the guide who have contributed towards

development of this paper as they were continuously insisting

and inspiring to frame a review paper presenting the

comparative analysis of various FTL schemes.

Log Blk # PBN

10 100

23 100

32 invalid

13 105

06 105

24 108

Block mapping Table

PPI 0

PPI 1

PPI 2

 ….

PPI 62

PPI 63

 3

 98

invalid

 …..

85

free

Page mapping Table
Log block #100

LPN

International Journal of Computer Applications (0975 – 888)

Volume 48– No.19, June 2012

6

5. FUTUTE WORK
In proposed future work the reduction in data lookup time is

planned. To do this the advanced data structures like hashing

and search trees should be implemented to store the mapping

information, so that the search time will get reduced

6. REFERENCES
[1] Yeonseung Ryu, “A Flash Translation Layer for NAND

Flash-Based Multimedia Storage Devices”, IEEE

TRANSACTIONS ON MULTIMEDIA, pages: 563-

572, VOL. 13, NO. 3, JUNE 2011

[2] Shin I.: Light weight sector mapping scheme for NAND-

based block devices, IEEE Transactions on Consumer

Electronics, pages: 651 – 656, May 2010, ISSN: 0098-

3063 Volume: 56 Issue:2

[3] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a Flash

Translation Layer Employing Demand-based Selective

Caching of Page-level Address Mappings,” in ASPLOS,

2009.

[4] Aayush Gupta Youngjae Kim Bhuvan Urgaonkar

“DFTL: A Flash Translation Layer Employing Demand-

based Selective Caching of Page-level Address

Mappings” Computer Systems Laboratory, Department

of Computer Science and Engineering. The Pennsylvania

State University, University Park, PA 16802, Technical

Report CSE-08-012August 2008

[5] Dongchul Park, Biplob Debnath, and David Du “CFTL:

A Convertible Flash Translation Layer with

Consideration of Data Access Patterns”, Technical

Report Department of Computer Science and

Engineering University of Minnesota September 14,

2009.

[6] S. Lee, D. Shin, Y. Kim, and J. Kim. LAST: Locality-

Aware Sector Translation for NAND Flash Memory-

Based Storage Systems, in Proceedings of the

International Workshop on Storage and I/O

Virtualization, Performance, Energy, Evaluation and

Dependability (SPEED2008), February 2008.

[7] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song.

A Log Buffer based Flash Translation Layer Using Fully

Asso-ciative Sector Translation. IEEE Transactions on

Embedded Computing Systems, 6(3):18, 2007. ISSN

1539–9087.

[8] J. Kang, H. Jo, J. Kim, and J. Lee. A Superblock-based

Flash Translation Layer for NAND Flash Memory. In

Proceedings of the International Conference on

Embedded Software (EM-SOFT), pages 161–170,

October 2006. ISBN 1-59593-542-8.

[9] Chung, D. Park, S . Park, D. Lee, S. Lee, and H. Song.

System Software for Flash Memory: A Survey. In

Proceedings of the International Conference on

Embedded and Ubiquitous Computing, pages 394–404,

August 2006.

[10] JFFS : The Journalling Flash File System David

Woodhouse Red Hat, Inc.

dwmw2@cambridge.redhat.com

[11] Yang Hu “Achieving Page-Mapping FTL Performance

at Block-Mapping FTL Cost by Hiding Address

Translation(HAT)” Huazhong University of Sci. & Tech.

China

[12] Micron Technical Report (TN-29-07): Small-Block vs.

Large-Block NAND Flash Devices. Technical Report

(TN-29-07): Small-Block vs. Large-Block NAND Flash

Devices.

[13] Micron Technical Report (TN-29-07): Small-Block vs.

Large-Block NAND Flash Devices. Technical Report

(TN-29-07): Wear-Leveling Techniques in NAND Flash

Devices

