
International Journal of Computer Applications (0975 – 888) 

Volume 48– No.18, June 2012 

38 

Modified Jelinski-Moranda Software Reliability Model 

with Imperfect Debugging Phenomenon 

 
G. S. Mahapatra 

Department of Engineering Sciences and 
Humanities, 

Siliguri Institute of Technology, 
P.O.- Sukna, Siliguri-734009, West Bengal, India 

 

P. Roy 
Department of Engineering Sciences and 

Humanities, 
Siliguri Institute of Technology, 

P.O.- Sukna, Siliguri-734009, West Bengal, India 

 

ABSTRACT 

In this paper, we have modified the Jelinski-Moranda (J-M) 

model of software reliability using imperfect debugging 

process in fault removal activity. The J-M model was 

developed assuming the debugging process to be perfect 

which implies that there is one-to-one correspondence 

between the number of failures observed and faults removed. 

But in reality, it is possible that the fault which is supposed to 

have been removed may cause a new failure. In the proposed 

modified J-M model, we consider that whenever a failure 

occurs, the detected fault is not perfectly removed and there is 

a chance of raising new fault/faults due to wrong diagnosis or 

incorrect modifications in the software. In this paper, we 

develop a modified J-M model which can describe the 

imperfect debugging process. The parameters of our modified 

J-M model are estimated by using maximum-likelihood 

estimation method. Applicability of the model has been 

shown on the failure data set of Musa.   
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1. INTRODUCTION 
Over the last two decades, measurement of software reliability 

has become increasingly important because of rapid 

advancements in microprocessors and software. Today 

computer systems have been widely used for control of many 

complex systems. For critical systems failure of a computer 

system may result in disaster. The quality of software system 

can be described by many metrics such as complexity, 

portability, maintainability, availability, reliability, etc. 

Software reliability is a user oriented metric. The software 

failure is the departure of the software output from the system 

requirement and specification. There are many reasons for 

software to fail but usually these are attributed to the design 

problems resulting from new or changed requirements, 

revisions, corrections, etc. The software failures are 

introduced by the system analysts, designers, programmers 

and managers during different phases of the software 

development life cycle. To detect and remove these errors, the 

software system is tested. The quality of software system in 

terms of reliability is measured by the removal of these errors. 

Reliability is defined in terms of operational performance that 

one cannot measure before the product development is 

finished. In order to provide reliability indicators before the 

system is completely built, a reliability model is developed on 

the factors that affect reliability and the reliability predictions 

are made based on one’s understanding of the system while it 

is under development [1, 2]. 

Software reliability is defined as the probability of failure-free 

operation of a computer program for a specified time in a 

specified environment [2]. Over the years, efforts made to 

estimate and measure software reliability has led to the 

development of many software reliability models. The J-M 

model [3] has a simple structure and assumptions. Use of the 

J-M model always yields an over optimistic reliability 

prediction [4]. Musa [5] proposed the basic execution time 

model with similar assumptions to the J-M model but 

introduced many important refinements. Goel and Okumoto 

[6] proposed the first Non Homogenous Poisson Process 

(NHPP) model. They assumed that the failure removal 

phenomenon follows NHPP. Yamada et al. [7] described the 

s-shapedness to the time delay between the failure observation 

and corresponding error removal. Ohba [8] attributed the s- 

shapedness to the mutual dependency between the software 

errors. Most of the software reliability models assume that the 

error removal process (debugging) is perfect, i.e. when an 

attempt is made to remove a fault (cause of failure) the fault is 

removed with certainty. This assumption may be unrealistic, 

due to the complexity of software systems and vague 

understanding of the software requirements or specification. 

The testing team may not be able to remove the faults 

perfectly and the original error can be replaced by another 

error. The new fault may generate new failures when this part 

of the software system is traversed during the testing phase. 

The concept of imperfect debugging was first introduced in 

software reliability models by Goel [9] by introducing 

probability of imperfect debugging to the J-M model. Kapur 

and Garg [10] introduced the imperfect debugging process in 

the Goel and Okumoto model. They assumed that the error 

removal rate per remaining error is reduced due to the 

imperfect debugging. Chang and Liu [11] proposed a non-

Gaussian state space model to formulate an imperfect 

debugging phenomenon in software reliability. Shyur [12] 

developed the software reliability growth model with both 

imperfect debugging and change-point problem. Kapur et al. 

[13] presented a discrete software reliability growth model 

and the concept of two types of imperfect debugging during 

software fault removal phenomenon with Logistic Fault 

removal rate. Prasad et al. [14] used imperfect debugging and 

change-point problem into the software reliability growth 

model based on the well-known exponential distribution. Raju 

[15] discussed how to integrate a log-logistic testing-effort 

function into inflection s-shaped NHPP growth models to get 

a better description of the software fault detection 

phenomenon under imperfect debugging environment. 

In this paper, we shall examine the J-M model, possibly the 

earliest and certainly one of the most well known black-box 

models. A modified J-M model is proposed in this paper 

assuming that the fault removal process is imperfect. The J-M 
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model was developed assuming the debugging process to be 

perfect i.e. the detected fault is removed with certainty, this 

assumption is highly unrealistic. In reality, it is possible that 

the detected fault may not be removed perfectly and the fault, 

supposed to have been removed may cause a new failure. In 

our modified J-M model, we consider that whenever a failure 

occurs, the detected fault is not perfectly removed and there is 

a chance of raising new fault/faults, due to wrong diagnosis or 

incorrect modifications in the software. We extend the J-M 

model by relaxing the assumptions of perfect debugging 

process and considering imperfect debugging process in fault 

removal activity. We consider that the probability of perfect 

debugging, the probability of imperfect debugging and the 

probability of raising new fault/s are independent of the 

testing time. We estimate the parameters of our modified J-M 

model using maximum likelihood estimation method. To 

check the validity of our modified J-M model, the model has 

been tested on the Musa system 1 failure data set. We have 

shown how the failure rate varies on failure number for the 

two models. Finally, the prediction analysis is presented and 

some conclusions are drawn. 

The rest of the paper is organized as follows. Section 2 

presents the classical J-M model, its assumptions and 

estimation of this model parameters. The modified J-M model 

with imperfect debugging phenomenon is presented in section 

3. This section discusses the assumptions, formulation and 

parameter estimation of the proposed model. Section 4 gives 

numerical results showing the data and prediction analysis of 

the J-M model and the modified J-M model using failure data 

set. Sensitivity analysis of the proposed model is also 

presented in this section. Finally, conclusions are drawn in 

section 5.    

2.  THE J-M MODEL 
The J-M model [1,3,16] is one of the earliest and most widely 

cited software reliability models to describe the failure 

behavior of a software system. It belongs to the exponential 

failure time class of models [1]. 

2.1 Model Assumptions 
The assumptions made in the J-M model include the 

following: 

(i) The number of initial software faults is unknown but 

fixed and constant. 

(ii) Each fault in the software is independent and equally 

likely to cause a failure during a test. 

(iii) Time intervals between occurrences of failure are 

independent, exponentially distributed random variables. 

(iv) The software failure rate remains constant over the 

intervals between fault occurrences. 

(v) The failure rate is proportional to the number of faults 

that remain in the software. 

(vi) A detected fault is removed immediately and no new 

faults are introduced during the removal of the detected fault. 

(vii) Whenever a failure occurs, the corresponding fault 

is removed with certainty. 

2.2 Model Formulation 
If the time between failure occurrences are 

,,....,2,1,1 NittT iii  
then by the assumptions, the

iT 's 

are exponentially distributed random variable with parameter 

 and mean is /1 [1]. 

From the assumptions, the software failure rate at the thi  

failure interval i.e. the time between the thi )1(   and 

thi failure is given by 

NiiNti ,....,2,1)],1([)(                                 (1) 

where 

   a constant of proportionality denoting the failure rate 

contributed by each fault 

N  the initial number of faults in the software 

it  the time between  thi )1(    and  thi   failure. 

The failure density function and distribution function are as 

follows: 

))]1([exp()]1([)( ii tiNiNtf                            (2) 

and 

))]1([exp(1)( iii tiNtF                                           (3)        

The reliability function at the thi failure interval is given by 

))]1([exp()(1)( iiii tiNtFtR                             (4) 

and mean time to failure )(MTTF  for the thi fault = 

)].1([/1  iN   

2.3  Parameter Estimation 
If the failure data set }0;,....,,{ 21 nttt n

is given, the 

parameters N and  in the J-M model can be estimated by 

using the maximum likelihood estimation method as follows: 
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The maximum likelihood estimate of N i.e. N̂ can be 

obtained by solving the equation (6). Substituting the 

estimated value of N̂ from equation (6) into equation (5), we 

get the maximum likelihood estimate of  i.e. ̂  [1,16]. 

Then the current value of software reliability can be calculated 

by (4) as follows: 

))ˆ(ˆexp()(ˆ1)( 1111   nnnn tnNtFtR                           (7) 

3. MODIFIED J-M MODEL WITH 

IMPERFECT DEBUGGING 

PHENOMENON 
The imperfect debugging is a common practical situation and 

the J-M model does not take this into account. The 

assumptions (vi) and (vii) of the J-M model state that 

whenever a failure occurs, the detected fault is removed with 

certainty and no new faults are inserted during the removal of 

the detected fault. These are highly unrealistic assumptions 

for the J-M model. We extend the J-M model by relaxing the 

assumptions of perfect debugging process and considering the 

imperfect debugging process in fault removal activity. During 

an imperfect debugging process, there can be two types of 

imperfect removal: (i) the fault is not removed successfully 

while no new faults are introduced and (ii) the fault is not 

removed successfully while new faults are created due to 

incorrect diagnoses. We consider the second type of imperfect 

removal and this type of debugging process is known as a 

birth-death Markov process [17]. This is the most practical 

situation in fault removing activity. We allow the imperfect 

debugging process to introduce new faults into the software 

due to incorrect modifications or diagnoses. 
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3.1 Model Assumptions 
The assumptions for our modified J-M model are similar to 

the J-M model except that it does not consider the perfect 

debugging process in fault removal activity. Our modified J- 

M model assumes that the debugging process is truly 

imperfect. In order to modify the J-M model with imperfect 

debugging, we replace the assumptions (vi) and (vii) of the J-

M model by the following new assumption: 

Whenever a failure occurs, the detected fault is removed with 

probability ,p the detected fault is not perfectly removed 

with probability q  and the new fault is generated with 

probability r . So it is obvious that 1 rqp and rq  .    

3.2 Model Formulation 
The software failure rate function between the thi )1(  and 

thi failure for our modified J-M model with imperfect 

debugging is given by 

)])(1([)]1()1([)( rpiNiripNti          (8) 

where  N,   and  
it  have the same meaning as defined in the 

J-M model. 

The failure density and distribution functions are as follows 

( ) [ ( 1)( )]exp( [ ( 1)( )] )i if t N i p r N i p r t                   (9) 

and 

))])(1([exp(1)( iii trpiNtF                              (10) 

The reliability function at the thi failure interval is given by 

))])(1([exp()(1)( iiii trpiNtFtR                          (11) 

and  MTTF  for the thi fault =  .
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1
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Note that if 1p and ,0r then the failure behavior of the 

modified model becomes the same as the J-M model. Thus, 

the J-M model may be regarded as a special case of this 

modified model. 

3.3 Parameter Estimation 
Maximum likelihood estimation method has been used to 

estimate the parameters N and  of our modified J-M 

model. The parameters  N  and    are estimated as follows: 

Suppose that the failure data set  }0;,....,,{ 21 nttt n
 is given 

as in the J-M model. The likelihood function of the 

parameters N and  is given by 
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Taking the natural logarithm of the above likelihood function, 
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By taking the first partial derivative of the above log-

likelihood function with respect to N̂  and ,̂  respectively, 

and equating them to zero, we get the following likelihood 

equations: 
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From equation (15), we get 
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Now putting the value of ̂  from equation (16) into equation 

(14), we obtain  
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We get the maximum likelihood estimate N̂  by solving the 

equation (17) and putting this estimated value into equation 

(16) to obtain the maximum likelihood estimate .̂   

The software reliability function can be obtained from (11) as 

follows: 

1 1 1 1
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The estimated mean time to failure for the thn )1(   fault is 
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4. NUMERICAL EXAMPLE 

4.1 Model validation using Musa Data Set 
In this section, we have concentrated on analysis of the 

software reliability data set published by Musa [18]. To check 

the validity of our modified J-M model, it is tested on the 

Musa system 1 failure data set. The values of p and r are 

supposed to be known. In all the existing software failure data 

sets, these values are not provided. The estimation of p and 

r from the failure data is also not possible since the 

parameters estimation tend to be unstable. Thus the values of  

p   and  r   are assumed and for example, we consider as  

93.0p   and  .02.0r   

4.1.1 Data analysis 
The data and estimates of parameters of both the J-M model 

and the modified J-M model with imperfect debugging are 

shown in Table 1. 
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Table 1. Analysis of Musa system 1 failure data 

  J-M Model Modified J-M Model 

N nt  N̂  ̂  ̂  TFTM ˆ  )(ˆ
11  nn tF  N̂  ̂  ̂  TFTM ˆ  )(ˆ

11  nn tF  

1 3 1 0.3333 0   0 1 0.3333 0.0300 33.3333 0.5934 

2 30 2 0.0556 0   0 2 0.0517 0.0093 107.5000 0.6505 

3 113 3 0.0165 0   0 3 0.0146 0.0040 253.1358 0.2738 

4 81 4 0.0098 0   0 4 0.0088 0.0032 315.2153 0.3057 

5 115 6 0.0046 0.0046 218.6000 0.0403 5 0.0060 0.0027 372.1378 0.0239 

6 9 11 0.0021 0.0105 95.2333 0.0208 10 0.0023 0.0105 95.3142 0.0208 

7 2   0 0.0198 50.4286 0.8354   0 0.0198 50.4286 0.8354 

8 91 28 0.00074218 0.0148 67.3688 0.8103 25 0.00083370 0.0148 67.6903 0.8088 

9 112 16 0.0014 0.0099 100.7460 0.1383 15 0.0015 0.0102 98.2283 0.1416 

10 15 46 0.00042405 0.0153 65.5056 0.8784 42 0.00046426 0.0153 65.4698 0.8785 

11 138 20 0.0011 0.0098 102.1818 0.3870 18 0.0012 0.0097 103.1262 0.3842 

12 50 27 0.00075572 0.0113 88.2167 0.5822 25 0.00081211 0.0114 87.4542 0.5854 

13 77 29 0.00069496 0.0111 89.9327 0.2342 27 0.00074148 0.0112 88.9023 0.2366 

14 24 61 0.00030036 0.0141 70.8359 0.7823 56 0.00032682 0.0141 70.7293 0.7828 

15 108 39 0.00049358 0.0118 84.4167 0.6474 35 0.00055186 0.0118 84.8730 0.6454 

16 88 38 0.00050881 0.0112 89.3352 0.9994 35 0.00055060 0.0113 88.8557 0.9995 

17 670 18 0.0014 0.0015 686.2353 0.1604 17 0.0015 0.0022 449.2957 0.2344 

18 120 20 0.0012 0.0023 429.9444 0.0587 18 0.0013 0.0021 470.3628 0.0538 

19 26 23 0.00089852 0.0036 278.2368 0.3362 21 0.00098070 0.0036 274.8461 0.3395 

20 114 25 0.00078204 0.0039 255.7400 0.7194 23 0.00084144 0.0040 247.5921 0.7309 

21 325 24 0.00084378 0.0025 395.0476 0.1300 22 0.00091234 0.0026 379.2691 0.1350 

22 55 27 0.00068427 0.0034 292.2818 0.5631 25 0.00072668 0.0036 276.3307 0.5835 

23 242 28 0.00063944 0.0032 312.7739 0.1954 25 0.00073062 0.0030 336.2883 0.1831 

24 68 31 0.00054131 0.0038 263.9107 0.7979 28 0.00060325 0.0037 269.1065 0.7916 

25 422 29 0.00060835 0.0024 410.9500 0.3547 27 0.00063636 0.0027 369.7528 0.3854 

26 180 31 0.00053751 0.0027 372.0846 0.0265 28 0.00060006 0.0026 383.9882 0.0257 

27 10 35 0.00043850 0.0035 285.0602 0.9821 32 0.00047767 0.0035 281.7638 0.9829 

28 1146 30 0.00057648 0.0012 867.3393 0.4993 28 0.00059192 0.0015 670.3998 0.5914 

29 600 31 0.00052915 0.0011 944.9138 0.0157 29 0.00053854 0.0014 711.4468 0.0209 

30 15 33 0.00046201 0.0014 721.4778 0.0487 30 0.00050901 0.0014 727.6242 0.0483 

31 36 35 0.00041217 0.0016 606.5403 0.0066 32 0.00044795 0.0017 589.0268 0.0068 

32 4 38 0.00035361 0.0021 471.3229 0 34 0.00040303 0.0020 508.4395 0 

33 0 41 0.00031202 0.0025 400.6098 0.0198 38 0.00033081 0.0026 379.2781 0.0209 

34 8 46 0.00025893 0.0031 321.8382 0.5061 42 0.00028285 0.0031 319.6620 0.5084 

35 227 47 0.00025115 0.0030 331.8048 0.1779 43 0.00027335 0.0030 328.0981 0.1797 

36 65 52 0.00021546 0.0034 290.0747 0.4549 47 0.00023949 0.0034 293.2293 0.4513 

37 176 54 0.00020439 0.0035 287.8045 0.1825 49 0.00022567 0.0035 289.0592 0.1818 

38 58 60 0.00017613 0.0039 258.0778 0.8298 55 0.00019135 0.0039 255.9210 0.8323 

39 457 55 0.00019958 0.0032 313.1522 0.6163 50 0.00021970 0.0032 313.6941 0.6157 

40 300 56 0.00019362 0.0031 322.7922 0.2596 51 0.00021248 0.0031 322.3448 0.2599 

41 97 60 0.00017518 0.0033 300.4454 0.5833 54 0.00019608 0.0033 305.5672 0.5771 

42 263 61 0.00017088 0.0032 308 0.7695 55 0.00019071 0.0032 312.4837 0.7646 

43 452 58 0.00018471 0.0028 360.9240 0.5066 53 0.00020147 0.0028 357.8521 0.5096 

44 255 60 0.00017494 0.0028 357.2656 0.4239 55 0.00018977 0.0028 352.2385 0.4284 

45 197 62 0.00016669 0.0028 352.8824 0.4213 57 0.00017993 0.0029 346.2687 0.4273 

46 193 65 0.00015501 0.0029 339.5275 0.0175 59 0.00017109 0.0029 341.0078 0.0174 

47 6 71 0.00013666 0.0033 304.8927 0.2283 65 0.00014872 0.0033 302.4713 0.2299 

48 79 77 0.00012203 0.0035 282.5769 0.9443 70 0.00013431 0.0035 282.8895 0.9441 

49 816 67 0.00014865 0.0027 373.7313 0.9731 61 0.00016321 0.0027 373.3741 0.9732 

50 1351 59 0.00018299 0.0016 607.1933 0.2163 54 0.00019859 0.0017 592.4077 0.2211 

51 148 61 0.00017286 0.0017 578.5157 0.0356 56 0.00018647 0.0018 559.2125 0.0369 

52 21 65 0.00015463 0.0020 497.4630 0.3740 59 0.00017078 0.0020 501.3182 0.3717 

53 233 67 0.00014710 0.0021 485.5741 0.2412 61 0.00016149 0.0021 484.8984 0.2414 

54 134 70 0.00013704 0.0022 456.0729 0.5429 64 0.00014927 0.0022 450.8378 0.5470 

55 357 71 0.00013390 0.0021 466.7511 0.3387 65 0.00014548 0.0022 459.7839 0.3428 

56 193 74 0.00012518 0.0023 443.8036 0.4124 67 0.00013886 0.0022 448.9809 0.4088 

57 236 76 0.00012015 0.0023 438.0646 0.0683 69 0.00013259 0.0023 440.2864 0.0680 

58 31 81 0.00010898 0.0025 398.9678 0.6034 73 0.00012180 0.0025 406.0499 0.5970 

59 369 81 0.00010912 0.0024 416.5716 0.8340 74 0.00011908 0.0024 413.4820 0.8362 

60 748 78 0.00011550 0.0021 481.0083 0 71 0.00012685 0.0021 480.6770 0 
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61 0 82 0.00010707 0.0022 444.7502 0.4065 75 0.00011659 0.0023 440.0930 0.4097 

62 232 85 0.00010115 0.0023 429.8527 0.5359 77 0.00011205 0.0023 433.6545 0.5328 

63 330 86 0.00009942 0.0023 437.3230 0.5660 78 0.00010990 0.0023 440.2042 0.5636 

64 365 87 0.00009763 0.0022 445.3546 0.9357 79 0.00010770 0.0022 447.2760 0.9349 

65 1222 81 0.00010917 0.0017 572.5192 0.6127 73 0.00012232 0.0017 590.2688 0.6014 

66 543 81 0.00010925 0.0016 610.2101 0.0163 74 0.00011910 0.0017 602.3228 0.0165 

67 10 85 0.00010071 0.0018 551.6600 0.0286 77 0.00011165 0.0018 558.7317 0.0282 

68 16 89 0.00009357 0.0020 508.8922 0.6464 81 0.00010280 0.0020 508.7435 0.6465 

69 429 89 0.00009352 0.0019 534.6428 0.5078 81 0.00010275 0.0019 534.4750 0.5079 

70 379 90 0.00009192 0.0018 543.9800 0.0777 82 0.00010077 0.0018 542.2709 0.0779 

71 44 94 0.00008581 0.0020 506.6552 0.2248 86 0.00009338 0.0020 500.6751 0.2271 

72 129 98 0.00008038 0.0021 478.5080 0.8160 89 0.00008865 0.0021 480.4346 0.8147 

73 810 95 0.00008436 0.0019 538.8064 0.4162 86 0.00009362 0.0018 545.7881 0.4122 

74 290 97 0.00008162 0.0019 532.6786 0.4306 88 0.00009021 0.0019 536.5569 0.4283 

75 300 99 0.00007903 0.0019 527.2417 0.6333 90 0.00008700 0.0019 528.4436 0.6325 

76 529 99 0.00007902 0.0018 550.1894 0.3999 90 0.00008700 0.0018 551.5263 0.3992 

77 281 101 0.00007659 0.0018 544.0097 0.2548 92 0.00008401 0.0018 542.7668 0.2553 

78 160 105 0.00007195 0.0019 514.7588 0.7998 95 0.00007990 0.0019 521.0477 0.7959 

79 828 102 0.00007540 0.0017 576.6483 0.8268 93 0.00008255 0.0017 573.8421 0.8283 

80 1011 99 0.00007926 0.0015 664.0276 0.4884 91 0.00008536 0.0016 643.6806 0.4991 

81 445 101 0.00007643 0.0015 654.1981 0.3639 92 0.00008382 0.0015 652.2555 0.3648 

82 296 103 0.00007399 0.0016 643.6336 0.9346 94 0.00008084 0.0016 638.2868 0.9360 

83 1755 98 0.00008059 0.0012 827.2104 0.7237 89 0.00008896 0.0012 834.5513 0.7206 

84 1064 97 0.00008221 0.0011 935.6319 0.8513 88 0.00009098 0.0011 950.7763 0.8467 

85 1783 95 0.00008559 0.00085593 1168.3 0.5210 87 0.00009260 0.00089357 1119.1 0.5363 

86 860 96 0.00008362 0.00083622 1195.9 0.5604 87 0.00009285 0.00081149 1232.3 0.5496 

87 983 96 0.00008379 0.00075414 1326 0.4133 88 0.00009038 0.00079807 1253 0.4312 

88 707 97 0.00008201 0.00073805 1354.9 0.0241 89 0.00008824 0.00078709 1270.5 0.0256 

89 33 100 0.00007680 0.00084479 1183.7 0.5197 91 0.00008439 0.00084479 1183.7 0.5197 

90 868 100 0.00007703 0.00077027 1298.2 0.4275 91 0.00008464 0.00077027 1298.2 0.4275 

91 724 101 0.00007547 0.00075472 1325 0.8268 92 0.00008273 0.00076031 1315.3 0.8290 

92 2323 100 0.00007689 0.00061510 1625.8 0.8351 92 0.00008205 0.00067937 1472 0.8634 

93 2930 99 0.00007850 0.00047102 2123.1 0.4975 93 0.00007875 0.00065918 1517 0.6183 

94 1461 99 0.00007877 0.00039382 2539.2 0.2825 94 0.00007643 0.00064659 1546.6 0.4202 

95 843 101 0.00007463 0.00044779 2233.2 0.0054 95 0.00007453 0.00063722 1569.3 0.0076 

96 12 102 0.00007325 0.00043947 2275.4 0.1084 96 0.00007315 0.00063198 1582.3 0.1521 

97 261 104 0.00006988 0.00048917 2044.3 0.5854 97 0.00007171 0.00062606 1597.3 0.6760 

98 1800 104 0.00006997 0.00041980 2382.1 0.3045 98 0.00006960 0.00061388 1629 0.4120 

99 865 106 0.00006658 0.00046604 2145.7 0.4877 99 0.00006798 0.00060573 1650.9 0.5807 

100 1435 106 0.00006680 0.00040079 2495.1 0.0120 100 0.00006618 0.00059561 1678.9 0.0177 

101 30 108 0.00006387 0.00044710 2236.7 0.0619 101 0.00006502 0.00059103 1691.9 0.0810 

102 143 110 0.00006120 0.00048959 2042.5 0.0515 102 0.00006388 0.00058638 1705.4 0.0614 

103 108 112 0.00005879 0.00052906 1890.1 0 103 0.00006280 0.00058215 1717.8 0 

104 0 114 0.00005662 0.00056622 1766.1 0.8281 104 0.00006181 0.00057859 1728.3 0.8346 

105 3110 113 0.00005762 0.00046092 2169.6 0.4372 105 0.00005976 0.00056476 1770.7 0.5055 

106 1247 114 0.00005641 0.00045129 2215.9 0.3466 106 0.00005839 0.00055704 1795.2 0.4086 

107 943 115 0.00005532 0.00044256 2259.6 0.2664 107 0.00005716 0.00055044 1816.7 0.3198 

108 700 116 0.00005432 0.00043459 2301 0.3163 108 0.00005604 0.00054476 1835.7 0.3791 

109 875 118 0.00005207 0.00046861 2134 0.1085 109 0.00005492 0.00053877 1856.1 0.1237 

110 245 119 0.00005128 0.00046152 2166.7 0.2857 110 0.00005401 0.00053474 1870.1 0.3228 

111 729 121 0.00004929 0.00049291 2028.8 0.6074 111 0.00005301 0.00052959 1888.3 0.6338 

112 1897 121 0.00004932 0.00044388 2252.9 0.1800 112 0.00005173 0.00052149 1917.6 0.2079 

113 447 123 0.00004748 0.00047481 2106.1 0.1675 113 0.00005086 0.00051723 1933.4 0.1810 

114 386 124 0.00004679 0.00046786 2137.4 0.1883 114 0.00005003 0.00051330 1948.2 0.2046 

115 446 126 0.00004514 0.00049652 2014 0.0588 115 0.00004922 0.00050940 1963.1 0.0603 

116 122 128 0.00004368 0.00052411 1908 0.4048 117 0.00004745 0.00054282 1842.2 0.4157 

117 990 129 0.00004298 0.00051575 1938.9 0.3867 118 0.00004660 0.00053735 1861 0.3992 

118 948 131 0.00004148 0.00053930 1854.2 0.4421 119 0.00004579 0.00053212 1879.3 0.4377 

119 1082 132 0.00004082 0.00053072 1884.2 0.0116 120 0.00004498 0.00052668 1898.7 0.0115 

120 22 134 0.00003963 0.00055479 1802.5 0.0408 122 0.00004349 0.00055672 1796.2 0.0409 

121 75 136 0.00003851 0.00057759 1731.3 0.2430 124 0.00004211 0.00058497 1709.5 0.2457 

122 482 138 0.00003738 0.00059810 1672 0.9629 126 0.00004075 0.00061043 1638.2 0.9654 

123 5509 134 0.00003966 0.00043622 2292.4 0.0427 123 0.00004258 0.00047135 2121.6 0.0460 

124 100 136 0.00003841 0.00046096 2169.4 0.0046 124 0.00004200 0.00046870 2133.6 0.0047 
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125 10 138 0.00003727 0.00048457 2063.7 0.4049 126 0.00004061 0.00049749 2010.1 0.4130 

126 1071 139 0.00003672 0.00047740 2094.7 0.1623 127 0.00003994 0.00049285 2029 0.1671 

127 371 141 0.00003563 0.00049886 2004.6 0.3257 129 0.00003863 0.00051880 1927.5 0.3363 

128 790 143 0.00003455 0.00051822 1929.7 0.9587 130 0.00003806 0.00051457 1943.4 0.9578 

129 6150 139 0.00003672 0.00036720 2723.3 0.7046 129 0.00003822 0.00044373 2253.6 0.7709 

130 3321 139 0.00003666 0.00032992 3031 0.2916 130 0.00003727 0.00043605 2293.3 0.3660 

131 1045 140 0.00003608 0.00032470 3079.8 0.1897 131 0.00003664 0.00043193 2315.2 0.2441 

132 648 141 0.00003555 0.00031996 3125.4 0.8271 132 0.00003607 0.00042852 2333.6 0.9047 

133 5485 140 0.00003613 0.00025293 3953.6 0.2543 133 0.00003494 0.00041827 2390.8 0.3844 

134 1160 141 0.00003553 0.00024870 4020.9 0.3710 134 0.00003433 0.00041408 2415 0.5378 

135 1864 142 0.00003489 0.00024423 4094.4 0.6341 135 0.00003367 0.00040906 2444.6 0.8143 

136 4116 142 0.00003489 0.00020934 4777  136 0.00003278 0.00040126 2492.1  

 

Since the relationship between the reliability function 

)( itR and the failure distribution function )( ii tF  are related 

by )(1)( iii tFtR  , the quality of reliability prediction of the 

models may be judged by examining the estimated failure 

distribution functions of the models. 

From Table 1, we can see that normally the failure rate for our 

modified J-M model with imperfect debugging is greater than 

or equal to the failure rate of the J-M model. It is also noted 

that the MTTF is infinite for some intervals of times between 

failures in J-M model. So this model assumes that there are no 

more faults in the software although faults are present in the 

software at that time. In our modified J-M model, the MTTF 

is not infinite for every interval between failures. So this is 

more realistic in practical sense as it implies that till then fault 

is remaining in the software. This is the most practical 

situation in software fault debugging process. When 1p  

and 0r  i.e. for perfectly debugging procedure, our 

considered imperfect debugging modified J-M model 

approaches to the J-M model. 

Fig 1: Failure rate as a function of failure number 

A plot of failure rate against failure number for the J-M model 

and the modified J-M model is shown in Figure 1. From the 

graph of Figure 1, we get the clear idea about the failure 

behavior of the two models. The failure rate is maximum at 

the beginning of the testing process. As the fault content of 

the software is decreasing i.e. the failure number is increasing, 

the failure rate of our model is decreasing. This practical 

event occurs at the time of debugging.   

4.1.2 Prediction analysis 
In order to compare the quality of prediction of the two 

models, we consider the sequences of probabilities for 
ii tT  . 

Let )(ˆ
iii tFu  . If each of the estimated 

iF̂  is equal to the 

true
iF , the sequence }{ iu  should look like a realization of 

independent uniform )1,0(U  random variables [19,20,21]. 

We can examine the quality of each model by plotting the 

sample distribution function of the 
iu 's and comparing it with 

the distribution function of )1,0(U , which is the line of unity 

slope through the origin. We use the quantile-quantile plot [4] 

which is a plot of the order set of n  number of 
iu 's against 

ni /  , where n  is the sample size and i  is the rank of the 

sample point. The closeness of the plot to the line of unity 

slope is an indication of the closeness of the 
iu 's to uniformity 

and so an indication of the quality of prediction of the model. 

The closer the plot to the line of unity slope, the more likely 

the 
iu 's is from a random sample of the uniform distribution, 

and so the better the model. The goodness-of-fit test can be 

performed by formal statistical tests. In this paper, we have 

used the Kolmogorov-Smirnov (KS) test. KS distance is the 

maximum vertical deviation between the plot and the line of 

unity slope. 
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Fig 2: Quantile-quantile plot of the data in Table 1 

The quantile-quantile plot of the data in Table 1 is shown in 

Figure 2. The KS distance is 0.165 for the J-M model, and 

0.14 for the modified model. The results show that the 

modified model yields a better prediction in this case. 

4.2 Sensitivity Analysis of the Proposed 

Model 
To study the performance of our modified J-M model with 

imperfect debugging, sensitivity analyses have been presented 

graphically on the different values of p  and r keeping q  as 

constant. First, we consider the fixed value of q  at 05.0 and 

the values of p  and r  are taken as follows: 

 0.94 and 0.01; 0.92 and 0.03; 0.9 and 0.05p r p r p r     

 

 
 Fig 3: Failure rate against failure number for different values of p and r 

A plot of failure rate versus failure number for the above 

different values of  p   and r  of the modified J-M model is 

shown in Figure 3. From the graph, we can see that the failure 

rate is maximum for 9.0p and 05.0r . But as p is 

increasing and r is decreasing, we are able to remove more 

and more faults perfectly. So the failure rate is decreasing 

which can be found from the Figure 3. 
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Fig 4: Quantile-quantile plots for different values of p and r 

Quantile-quantile plots for the different values of p and r on 

the fixed value of q at 0.05 of our modified J-M model are 

shown in Figure 4.  

Now we show the KS distances for the different values of q 

keeping it constant for the different values of p and r in Table 

2. 

 

Table 2. KS distances for different values of p and r for different value of q 

 

 

 

 

From Table 2, we can see that for fixed value of q, as p is 

decreasing and r is increasing, the KS distance is decreasing. 

So we get better predictions as p is decreasing and r is 

increasing for some fixed value of q. Again, for fixed value of 

r, as p is increasing and q is decreasing, the KS distance is 

increasing. It is also noted that for fixed value of p, as q is 

decreasing and r is increasing, the KS distance is decreasing. 

So in this case we also get better predictions. From Table 2, it 

is clear that we get better predictions in our model for the 

smaller value of (p-r). In reality, the value of (p-r) is less than 

1 and it decreases in most of the cases of debugging process 

during testing. So our model excellently predicts the software 

reliability in practical sense.     

5. CONCLUSION 
We develop a modified J-M model which assumes the 

imperfect debugging process in fault removal activity during 

the testing phase. In our proposed model, we assume that 

whenever a failure occurs, the detected fault is not perfectly 

removed and there is a chance of raising new fault/s. We 

consider that the perfect debugging probability, the imperfect 

debugging probability and the probability of arising new fault 

are independent of the testing time. A set of failure data is 

given for illustration. From the experimental results, we have 

seen that the failure rate is normally high for our modified J-

M model. So we need to increase the probability of perfect 

debugging and to decrease the probability of raising new 

fault/s during the fault removing process. Again, the 

difference between the probability of perfect debugging and 

the probability of raising new fault/s should be decreased to 

get better software reliability prediction. The experimental 

results also show that our proposed model yields a better 

prediction than the J-M model. 
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