
International Journal of Computer Applications (0975 – 888)

Volume 48– No.18, June 2012

38

Modified Jelinski-Moranda Software Reliability Model

with Imperfect Debugging Phenomenon

G. S. Mahapatra

Department of Engineering Sciences and
Humanities,

Siliguri Institute of Technology,
P.O.- Sukna, Siliguri-734009, West Bengal, India

P. Roy
Department of Engineering Sciences and

Humanities,
Siliguri Institute of Technology,

P.O.- Sukna, Siliguri-734009, West Bengal, India

ABSTRACT

In this paper, we have modified the Jelinski-Moranda (J-M)

model of software reliability using imperfect debugging

process in fault removal activity. The J-M model was

developed assuming the debugging process to be perfect

which implies that there is one-to-one correspondence

between the number of failures observed and faults removed.

But in reality, it is possible that the fault which is supposed to

have been removed may cause a new failure. In the proposed

modified J-M model, we consider that whenever a failure

occurs, the detected fault is not perfectly removed and there is

a chance of raising new fault/faults due to wrong diagnosis or

incorrect modifications in the software. In this paper, we

develop a modified J-M model which can describe the

imperfect debugging process. The parameters of our modified

J-M model are estimated by using maximum-likelihood

estimation method. Applicability of the model has been

shown on the failure data set of Musa.

Keywords

Software reliability, Jelinski-Moranda model, Failure,

Maximum likelihood estimation, Imperfect debugging.

1. INTRODUCTION
Over the last two decades, measurement of software reliability

has become increasingly important because of rapid

advancements in microprocessors and software. Today

computer systems have been widely used for control of many

complex systems. For critical systems failure of a computer

system may result in disaster. The quality of software system

can be described by many metrics such as complexity,

portability, maintainability, availability, reliability, etc.

Software reliability is a user oriented metric. The software

failure is the departure of the software output from the system

requirement and specification. There are many reasons for

software to fail but usually these are attributed to the design

problems resulting from new or changed requirements,

revisions, corrections, etc. The software failures are

introduced by the system analysts, designers, programmers

and managers during different phases of the software

development life cycle. To detect and remove these errors, the

software system is tested. The quality of software system in

terms of reliability is measured by the removal of these errors.

Reliability is defined in terms of operational performance that

one cannot measure before the product development is

finished. In order to provide reliability indicators before the

system is completely built, a reliability model is developed on

the factors that affect reliability and the reliability predictions

are made based on one’s understanding of the system while it

is under development [1, 2].

Software reliability is defined as the probability of failure-free

operation of a computer program for a specified time in a

specified environment [2]. Over the years, efforts made to

estimate and measure software reliability has led to the

development of many software reliability models. The J-M

model [3] has a simple structure and assumptions. Use of the

J-M model always yields an over optimistic reliability

prediction [4]. Musa [5] proposed the basic execution time

model with similar assumptions to the J-M model but

introduced many important refinements. Goel and Okumoto

[6] proposed the first Non Homogenous Poisson Process

(NHPP) model. They assumed that the failure removal

phenomenon follows NHPP. Yamada et al. [7] described the

s-shapedness to the time delay between the failure observation

and corresponding error removal. Ohba [8] attributed the s-

shapedness to the mutual dependency between the software

errors. Most of the software reliability models assume that the

error removal process (debugging) is perfect, i.e. when an

attempt is made to remove a fault (cause of failure) the fault is

removed with certainty. This assumption may be unrealistic,

due to the complexity of software systems and vague

understanding of the software requirements or specification.

The testing team may not be able to remove the faults

perfectly and the original error can be replaced by another

error. The new fault may generate new failures when this part

of the software system is traversed during the testing phase.

The concept of imperfect debugging was first introduced in

software reliability models by Goel [9] by introducing

probability of imperfect debugging to the J-M model. Kapur

and Garg [10] introduced the imperfect debugging process in

the Goel and Okumoto model. They assumed that the error

removal rate per remaining error is reduced due to the

imperfect debugging. Chang and Liu [11] proposed a non-

Gaussian state space model to formulate an imperfect

debugging phenomenon in software reliability. Shyur [12]

developed the software reliability growth model with both

imperfect debugging and change-point problem. Kapur et al.

[13] presented a discrete software reliability growth model

and the concept of two types of imperfect debugging during

software fault removal phenomenon with Logistic Fault

removal rate. Prasad et al. [14] used imperfect debugging and

change-point problem into the software reliability growth

model based on the well-known exponential distribution. Raju

[15] discussed how to integrate a log-logistic testing-effort

function into inflection s-shaped NHPP growth models to get

a better description of the software fault detection

phenomenon under imperfect debugging environment.

In this paper, we shall examine the J-M model, possibly the

earliest and certainly one of the most well known black-box

models. A modified J-M model is proposed in this paper

assuming that the fault removal process is imperfect. The J-M

International Journal of Computer Applications (0975 – 888)

Volume 48– No.18, June 2012

39

model was developed assuming the debugging process to be

perfect i.e. the detected fault is removed with certainty, this

assumption is highly unrealistic. In reality, it is possible that

the detected fault may not be removed perfectly and the fault,

supposed to have been removed may cause a new failure. In

our modified J-M model, we consider that whenever a failure

occurs, the detected fault is not perfectly removed and there is

a chance of raising new fault/faults, due to wrong diagnosis or

incorrect modifications in the software. We extend the J-M

model by relaxing the assumptions of perfect debugging

process and considering imperfect debugging process in fault

removal activity. We consider that the probability of perfect

debugging, the probability of imperfect debugging and the

probability of raising new fault/s are independent of the

testing time. We estimate the parameters of our modified J-M

model using maximum likelihood estimation method. To

check the validity of our modified J-M model, the model has

been tested on the Musa system 1 failure data set. We have

shown how the failure rate varies on failure number for the

two models. Finally, the prediction analysis is presented and

some conclusions are drawn.

The rest of the paper is organized as follows. Section 2

presents the classical J-M model, its assumptions and

estimation of this model parameters. The modified J-M model

with imperfect debugging phenomenon is presented in section

3. This section discusses the assumptions, formulation and

parameter estimation of the proposed model. Section 4 gives

numerical results showing the data and prediction analysis of

the J-M model and the modified J-M model using failure data

set. Sensitivity analysis of the proposed model is also

presented in this section. Finally, conclusions are drawn in

section 5.

2. THE J-M MODEL
The J-M model [1,3,16] is one of the earliest and most widely

cited software reliability models to describe the failure

behavior of a software system. It belongs to the exponential

failure time class of models [1].

2.1 Model Assumptions
The assumptions made in the J-M model include the

following:

(i) The number of initial software faults is unknown but

fixed and constant.

(ii) Each fault in the software is independent and equally

likely to cause a failure during a test.

(iii) Time intervals between occurrences of failure are

independent, exponentially distributed random variables.

(iv) The software failure rate remains constant over the

intervals between fault occurrences.

(v) The failure rate is proportional to the number of faults

that remain in the software.

(vi) A detected fault is removed immediately and no new

faults are introduced during the removal of the detected fault.

(vii) Whenever a failure occurs, the corresponding fault

is removed with certainty.

2.2 Model Formulation
If the time between failure occurrences are

,,....,2,1,1 NittT iii  
then by the assumptions, the

iT 's

are exponentially distributed random variable with parameter

 and mean is /1 [1].

From the assumptions, the software failure rate at the thi

failure interval i.e. the time between the thi)1( and

thi failure is given by

NiiNti ,....,2,1)],1([)( (1)

where

 a constant of proportionality denoting the failure rate

contributed by each fault

N the initial number of faults in the software

it the time between thi)1( and thi failure.

The failure density function and distribution function are as

follows:

))]1([exp()]1([)(ii tiNiNtf   (2)

and

))]1([exp(1)(iii tiNtF   (3)

The reliability function at the thi failure interval is given by

))]1([exp()(1)(iiii tiNtFtR   (4)

and mean time to failure)(MTTF for the thi fault =

)].1([/1  iN

2.3 Parameter Estimation
If the failure data set }0;,....,,{ 21 nttt n

is given, the

parameters N and  in the J-M model can be estimated by

using the maximum likelihood estimation method as follows:

i

n

i
i

n

i

titN

n

)1(ˆ

ˆ

11
















 (5)

and









































i

n

it

n

i

tiN

n

iN

i

n

i

)1(ˆ
)1(ˆ

1

1

1

1

1

 (6)

The maximum likelihood estimate of N i.e. N̂ can be

obtained by solving the equation (6). Substituting the

estimated value of N̂ from equation (6) into equation (5), we

get the maximum likelihood estimate of  i.e. ̂ [1,16].

Then the current value of software reliability can be calculated

by (4) as follows:

))ˆ(ˆexp()(ˆ1)(1111   nnnn tnNtFtR  (7)

3. MODIFIED J-M MODEL WITH

IMPERFECT DEBUGGING

PHENOMENON
The imperfect debugging is a common practical situation and

the J-M model does not take this into account. The

assumptions (vi) and (vii) of the J-M model state that

whenever a failure occurs, the detected fault is removed with

certainty and no new faults are inserted during the removal of

the detected fault. These are highly unrealistic assumptions

for the J-M model. We extend the J-M model by relaxing the

assumptions of perfect debugging process and considering the

imperfect debugging process in fault removal activity. During

an imperfect debugging process, there can be two types of

imperfect removal: (i) the fault is not removed successfully

while no new faults are introduced and (ii) the fault is not

removed successfully while new faults are created due to

incorrect diagnoses. We consider the second type of imperfect

removal and this type of debugging process is known as a

birth-death Markov process [17]. This is the most practical

situation in fault removing activity. We allow the imperfect

debugging process to introduce new faults into the software

due to incorrect modifications or diagnoses.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.18, June 2012

40

3.1 Model Assumptions
The assumptions for our modified J-M model are similar to

the J-M model except that it does not consider the perfect

debugging process in fault removal activity. Our modified J-

M model assumes that the debugging process is truly

imperfect. In order to modify the J-M model with imperfect

debugging, we replace the assumptions (vi) and (vii) of the J-

M model by the following new assumption:

Whenever a failure occurs, the detected fault is removed with

probability ,p the detected fault is not perfectly removed

with probability q and the new fault is generated with

probability r . So it is obvious that 1 rqp and rq  .

3.2 Model Formulation
The software failure rate function between the thi)1( and

thi failure for our modified J-M model with imperfect

debugging is given by

)])(1([)]1()1([)(rpiNiripNti   (8)

where N, and
it have the same meaning as defined in the

J-M model.

The failure density and distribution functions are as follows

() [(1)()]exp([(1)()])i if t N i p r N i p r t         (9)

and

))])(1([exp(1)(iii trpiNtF   (10)

The reliability function at the thi failure interval is given by

))])(1([exp()(1)(iiii trpiNtFtR   (11)

and MTTF for the thi fault = .
)])(1([

1
rpiN 

Note that if 1p and ,0r then the failure behavior of the

modified model becomes the same as the J-M model. Thus,

the J-M model may be regarded as a special case of this

modified model.

3.3 Parameter Estimation
Maximum likelihood estimation method has been used to

estimate the parameters N and  of our modified J-M

model. The parameters N and  are estimated as follows:

Suppose that the failure data set }0;,....,,{ 21 nttt n
 is given

as in the J-M model. The likelihood function of the

parameters N and  is given by

1 2

1 1

ˆˆ(, ,..., ; ,)

ˆ ˆˆ ˆ() ((1)())exp(((1)()))

n

n n

i i

i i

L t t t N

f t N i p r N i p r t



 
 

         
  

1 1

ˆ ˆˆ ˆ[(1)()]exp [(1)()]
n n

n

i

i i

N i p r N i p r t 
 

 
        

 
  (12)

Taking the natural logarithm of the above likelihood function,

we get

1 1

ln

ˆ ˆˆ ˆln [(1)()]exp [(1)()]
n

n n

i

i i

L

N i p r N i p r t 
 

  
         

  
 

1

1

ˆ ˆln In [(1)()]

ˆ ˆ[(1)()]

n

i

n

i

i

n N i p r

N i p r t











    

   





 (13)

By taking the first partial derivative of the above log-

likelihood function with respect to N̂ and ,̂ respectively,

and equating them to zero, we get the following likelihood

equations:

1 1

1 ˆIn 0
ˆ ˆ[(1)()]

n n

i

i i

L t
N N i p r


 


  

   
 

 (14)

and

0)])(1(ˆ[
ˆ

In
ˆ

1








 i

i

n

trpiN
n

L


 (15)

From equation (15), we get

1 1 1

ˆ
ˆ ˆ[(1)()] (1)()

n n n

i i i
i i i

n n

N i p r t Nt i p r t



  

 

       

i
i

n

i
i

n

trpitN

n

))(1(ˆ
11







 (16)

Now putting the value of ̂ from equation (16) into equation

(14), we obtain

i
i

n

i
i

n

i
i

n

i

n

trpitN

tn

rpiN))(1(ˆ)])(1(ˆ[

1

11

1

1 














or,

1

1
1

1

1

ˆ[(1)()]
ˆ (1)()n

i

i

n

i n

i
it

n

N i p r
N i p r t








   

     
  
 


 (17)

We get the maximum likelihood estimate N̂ by solving the

equation (17) and putting this estimated value into equation

(16) to obtain the maximum likelihood estimate .̂

The software reliability function can be obtained from (11) as

follows:

1 1 1 1
ˆˆ ˆ() 1 () exp([()])n n n nR t F t N n p r t         (18)

The estimated mean time to failure for the thn)1( fault is

.ˆ
)](ˆ[ˆ

1

rpnN
TFTM






4. NUMERICAL EXAMPLE

4.1 Model validation using Musa Data Set
In this section, we have concentrated on analysis of the

software reliability data set published by Musa [18]. To check

the validity of our modified J-M model, it is tested on the

Musa system 1 failure data set. The values of p and r are

supposed to be known. In all the existing software failure data

sets, these values are not provided. The estimation of p and

r from the failure data is also not possible since the

parameters estimation tend to be unstable. Thus the values of

p and r are assumed and for example, we consider as

93.0p and .02.0r

4.1.1 Data analysis
The data and estimates of parameters of both the J-M model

and the modified J-M model with imperfect debugging are

shown in Table 1.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.18, June 2012

41

Table 1. Analysis of Musa system 1 failure data

 J-M Model Modified J-M Model

N nt N̂ ̂ ̂ TFTM ˆ)(ˆ
11  nn tF N̂ ̂ ̂ TFTM ˆ)(ˆ

11  nn tF

1 3 1 0.3333 0  0 1 0.3333 0.0300 33.3333 0.5934

2 30 2 0.0556 0  0 2 0.0517 0.0093 107.5000 0.6505

3 113 3 0.0165 0  0 3 0.0146 0.0040 253.1358 0.2738

4 81 4 0.0098 0  0 4 0.0088 0.0032 315.2153 0.3057

5 115 6 0.0046 0.0046 218.6000 0.0403 5 0.0060 0.0027 372.1378 0.0239

6 9 11 0.0021 0.0105 95.2333 0.0208 10 0.0023 0.0105 95.3142 0.0208

7 2  0 0.0198 50.4286 0.8354  0 0.0198 50.4286 0.8354

8 91 28 0.00074218 0.0148 67.3688 0.8103 25 0.00083370 0.0148 67.6903 0.8088

9 112 16 0.0014 0.0099 100.7460 0.1383 15 0.0015 0.0102 98.2283 0.1416

10 15 46 0.00042405 0.0153 65.5056 0.8784 42 0.00046426 0.0153 65.4698 0.8785

11 138 20 0.0011 0.0098 102.1818 0.3870 18 0.0012 0.0097 103.1262 0.3842

12 50 27 0.00075572 0.0113 88.2167 0.5822 25 0.00081211 0.0114 87.4542 0.5854

13 77 29 0.00069496 0.0111 89.9327 0.2342 27 0.00074148 0.0112 88.9023 0.2366

14 24 61 0.00030036 0.0141 70.8359 0.7823 56 0.00032682 0.0141 70.7293 0.7828

15 108 39 0.00049358 0.0118 84.4167 0.6474 35 0.00055186 0.0118 84.8730 0.6454

16 88 38 0.00050881 0.0112 89.3352 0.9994 35 0.00055060 0.0113 88.8557 0.9995

17 670 18 0.0014 0.0015 686.2353 0.1604 17 0.0015 0.0022 449.2957 0.2344

18 120 20 0.0012 0.0023 429.9444 0.0587 18 0.0013 0.0021 470.3628 0.0538

19 26 23 0.00089852 0.0036 278.2368 0.3362 21 0.00098070 0.0036 274.8461 0.3395

20 114 25 0.00078204 0.0039 255.7400 0.7194 23 0.00084144 0.0040 247.5921 0.7309

21 325 24 0.00084378 0.0025 395.0476 0.1300 22 0.00091234 0.0026 379.2691 0.1350

22 55 27 0.00068427 0.0034 292.2818 0.5631 25 0.00072668 0.0036 276.3307 0.5835

23 242 28 0.00063944 0.0032 312.7739 0.1954 25 0.00073062 0.0030 336.2883 0.1831

24 68 31 0.00054131 0.0038 263.9107 0.7979 28 0.00060325 0.0037 269.1065 0.7916

25 422 29 0.00060835 0.0024 410.9500 0.3547 27 0.00063636 0.0027 369.7528 0.3854

26 180 31 0.00053751 0.0027 372.0846 0.0265 28 0.00060006 0.0026 383.9882 0.0257

27 10 35 0.00043850 0.0035 285.0602 0.9821 32 0.00047767 0.0035 281.7638 0.9829

28 1146 30 0.00057648 0.0012 867.3393 0.4993 28 0.00059192 0.0015 670.3998 0.5914

29 600 31 0.00052915 0.0011 944.9138 0.0157 29 0.00053854 0.0014 711.4468 0.0209

30 15 33 0.00046201 0.0014 721.4778 0.0487 30 0.00050901 0.0014 727.6242 0.0483

31 36 35 0.00041217 0.0016 606.5403 0.0066 32 0.00044795 0.0017 589.0268 0.0068

32 4 38 0.00035361 0.0021 471.3229 0 34 0.00040303 0.0020 508.4395 0

33 0 41 0.00031202 0.0025 400.6098 0.0198 38 0.00033081 0.0026 379.2781 0.0209

34 8 46 0.00025893 0.0031 321.8382 0.5061 42 0.00028285 0.0031 319.6620 0.5084

35 227 47 0.00025115 0.0030 331.8048 0.1779 43 0.00027335 0.0030 328.0981 0.1797

36 65 52 0.00021546 0.0034 290.0747 0.4549 47 0.00023949 0.0034 293.2293 0.4513

37 176 54 0.00020439 0.0035 287.8045 0.1825 49 0.00022567 0.0035 289.0592 0.1818

38 58 60 0.00017613 0.0039 258.0778 0.8298 55 0.00019135 0.0039 255.9210 0.8323

39 457 55 0.00019958 0.0032 313.1522 0.6163 50 0.00021970 0.0032 313.6941 0.6157

40 300 56 0.00019362 0.0031 322.7922 0.2596 51 0.00021248 0.0031 322.3448 0.2599

41 97 60 0.00017518 0.0033 300.4454 0.5833 54 0.00019608 0.0033 305.5672 0.5771

42 263 61 0.00017088 0.0032 308 0.7695 55 0.00019071 0.0032 312.4837 0.7646

43 452 58 0.00018471 0.0028 360.9240 0.5066 53 0.00020147 0.0028 357.8521 0.5096

44 255 60 0.00017494 0.0028 357.2656 0.4239 55 0.00018977 0.0028 352.2385 0.4284

45 197 62 0.00016669 0.0028 352.8824 0.4213 57 0.00017993 0.0029 346.2687 0.4273

46 193 65 0.00015501 0.0029 339.5275 0.0175 59 0.00017109 0.0029 341.0078 0.0174

47 6 71 0.00013666 0.0033 304.8927 0.2283 65 0.00014872 0.0033 302.4713 0.2299

48 79 77 0.00012203 0.0035 282.5769 0.9443 70 0.00013431 0.0035 282.8895 0.9441

49 816 67 0.00014865 0.0027 373.7313 0.9731 61 0.00016321 0.0027 373.3741 0.9732

50 1351 59 0.00018299 0.0016 607.1933 0.2163 54 0.00019859 0.0017 592.4077 0.2211

51 148 61 0.00017286 0.0017 578.5157 0.0356 56 0.00018647 0.0018 559.2125 0.0369

52 21 65 0.00015463 0.0020 497.4630 0.3740 59 0.00017078 0.0020 501.3182 0.3717

53 233 67 0.00014710 0.0021 485.5741 0.2412 61 0.00016149 0.0021 484.8984 0.2414

54 134 70 0.00013704 0.0022 456.0729 0.5429 64 0.00014927 0.0022 450.8378 0.5470

55 357 71 0.00013390 0.0021 466.7511 0.3387 65 0.00014548 0.0022 459.7839 0.3428

56 193 74 0.00012518 0.0023 443.8036 0.4124 67 0.00013886 0.0022 448.9809 0.4088

57 236 76 0.00012015 0.0023 438.0646 0.0683 69 0.00013259 0.0023 440.2864 0.0680

58 31 81 0.00010898 0.0025 398.9678 0.6034 73 0.00012180 0.0025 406.0499 0.5970

59 369 81 0.00010912 0.0024 416.5716 0.8340 74 0.00011908 0.0024 413.4820 0.8362

60 748 78 0.00011550 0.0021 481.0083 0 71 0.00012685 0.0021 480.6770 0

International Journal of Computer Applications (0975 – 888)

Volume 48– No.18, June 2012

42

61 0 82 0.00010707 0.0022 444.7502 0.4065 75 0.00011659 0.0023 440.0930 0.4097

62 232 85 0.00010115 0.0023 429.8527 0.5359 77 0.00011205 0.0023 433.6545 0.5328

63 330 86 0.00009942 0.0023 437.3230 0.5660 78 0.00010990 0.0023 440.2042 0.5636

64 365 87 0.00009763 0.0022 445.3546 0.9357 79 0.00010770 0.0022 447.2760 0.9349

65 1222 81 0.00010917 0.0017 572.5192 0.6127 73 0.00012232 0.0017 590.2688 0.6014

66 543 81 0.00010925 0.0016 610.2101 0.0163 74 0.00011910 0.0017 602.3228 0.0165

67 10 85 0.00010071 0.0018 551.6600 0.0286 77 0.00011165 0.0018 558.7317 0.0282

68 16 89 0.00009357 0.0020 508.8922 0.6464 81 0.00010280 0.0020 508.7435 0.6465

69 429 89 0.00009352 0.0019 534.6428 0.5078 81 0.00010275 0.0019 534.4750 0.5079

70 379 90 0.00009192 0.0018 543.9800 0.0777 82 0.00010077 0.0018 542.2709 0.0779

71 44 94 0.00008581 0.0020 506.6552 0.2248 86 0.00009338 0.0020 500.6751 0.2271

72 129 98 0.00008038 0.0021 478.5080 0.8160 89 0.00008865 0.0021 480.4346 0.8147

73 810 95 0.00008436 0.0019 538.8064 0.4162 86 0.00009362 0.0018 545.7881 0.4122

74 290 97 0.00008162 0.0019 532.6786 0.4306 88 0.00009021 0.0019 536.5569 0.4283

75 300 99 0.00007903 0.0019 527.2417 0.6333 90 0.00008700 0.0019 528.4436 0.6325

76 529 99 0.00007902 0.0018 550.1894 0.3999 90 0.00008700 0.0018 551.5263 0.3992

77 281 101 0.00007659 0.0018 544.0097 0.2548 92 0.00008401 0.0018 542.7668 0.2553

78 160 105 0.00007195 0.0019 514.7588 0.7998 95 0.00007990 0.0019 521.0477 0.7959

79 828 102 0.00007540 0.0017 576.6483 0.8268 93 0.00008255 0.0017 573.8421 0.8283

80 1011 99 0.00007926 0.0015 664.0276 0.4884 91 0.00008536 0.0016 643.6806 0.4991

81 445 101 0.00007643 0.0015 654.1981 0.3639 92 0.00008382 0.0015 652.2555 0.3648

82 296 103 0.00007399 0.0016 643.6336 0.9346 94 0.00008084 0.0016 638.2868 0.9360

83 1755 98 0.00008059 0.0012 827.2104 0.7237 89 0.00008896 0.0012 834.5513 0.7206

84 1064 97 0.00008221 0.0011 935.6319 0.8513 88 0.00009098 0.0011 950.7763 0.8467

85 1783 95 0.00008559 0.00085593 1168.3 0.5210 87 0.00009260 0.00089357 1119.1 0.5363

86 860 96 0.00008362 0.00083622 1195.9 0.5604 87 0.00009285 0.00081149 1232.3 0.5496

87 983 96 0.00008379 0.00075414 1326 0.4133 88 0.00009038 0.00079807 1253 0.4312

88 707 97 0.00008201 0.00073805 1354.9 0.0241 89 0.00008824 0.00078709 1270.5 0.0256

89 33 100 0.00007680 0.00084479 1183.7 0.5197 91 0.00008439 0.00084479 1183.7 0.5197

90 868 100 0.00007703 0.00077027 1298.2 0.4275 91 0.00008464 0.00077027 1298.2 0.4275

91 724 101 0.00007547 0.00075472 1325 0.8268 92 0.00008273 0.00076031 1315.3 0.8290

92 2323 100 0.00007689 0.00061510 1625.8 0.8351 92 0.00008205 0.00067937 1472 0.8634

93 2930 99 0.00007850 0.00047102 2123.1 0.4975 93 0.00007875 0.00065918 1517 0.6183

94 1461 99 0.00007877 0.00039382 2539.2 0.2825 94 0.00007643 0.00064659 1546.6 0.4202

95 843 101 0.00007463 0.00044779 2233.2 0.0054 95 0.00007453 0.00063722 1569.3 0.0076

96 12 102 0.00007325 0.00043947 2275.4 0.1084 96 0.00007315 0.00063198 1582.3 0.1521

97 261 104 0.00006988 0.00048917 2044.3 0.5854 97 0.00007171 0.00062606 1597.3 0.6760

98 1800 104 0.00006997 0.00041980 2382.1 0.3045 98 0.00006960 0.00061388 1629 0.4120

99 865 106 0.00006658 0.00046604 2145.7 0.4877 99 0.00006798 0.00060573 1650.9 0.5807

100 1435 106 0.00006680 0.00040079 2495.1 0.0120 100 0.00006618 0.00059561 1678.9 0.0177

101 30 108 0.00006387 0.00044710 2236.7 0.0619 101 0.00006502 0.00059103 1691.9 0.0810

102 143 110 0.00006120 0.00048959 2042.5 0.0515 102 0.00006388 0.00058638 1705.4 0.0614

103 108 112 0.00005879 0.00052906 1890.1 0 103 0.00006280 0.00058215 1717.8 0

104 0 114 0.00005662 0.00056622 1766.1 0.8281 104 0.00006181 0.00057859 1728.3 0.8346

105 3110 113 0.00005762 0.00046092 2169.6 0.4372 105 0.00005976 0.00056476 1770.7 0.5055

106 1247 114 0.00005641 0.00045129 2215.9 0.3466 106 0.00005839 0.00055704 1795.2 0.4086

107 943 115 0.00005532 0.00044256 2259.6 0.2664 107 0.00005716 0.00055044 1816.7 0.3198

108 700 116 0.00005432 0.00043459 2301 0.3163 108 0.00005604 0.00054476 1835.7 0.3791

109 875 118 0.00005207 0.00046861 2134 0.1085 109 0.00005492 0.00053877 1856.1 0.1237

110 245 119 0.00005128 0.00046152 2166.7 0.2857 110 0.00005401 0.00053474 1870.1 0.3228

111 729 121 0.00004929 0.00049291 2028.8 0.6074 111 0.00005301 0.00052959 1888.3 0.6338

112 1897 121 0.00004932 0.00044388 2252.9 0.1800 112 0.00005173 0.00052149 1917.6 0.2079

113 447 123 0.00004748 0.00047481 2106.1 0.1675 113 0.00005086 0.00051723 1933.4 0.1810

114 386 124 0.00004679 0.00046786 2137.4 0.1883 114 0.00005003 0.00051330 1948.2 0.2046

115 446 126 0.00004514 0.00049652 2014 0.0588 115 0.00004922 0.00050940 1963.1 0.0603

116 122 128 0.00004368 0.00052411 1908 0.4048 117 0.00004745 0.00054282 1842.2 0.4157

117 990 129 0.00004298 0.00051575 1938.9 0.3867 118 0.00004660 0.00053735 1861 0.3992

118 948 131 0.00004148 0.00053930 1854.2 0.4421 119 0.00004579 0.00053212 1879.3 0.4377

119 1082 132 0.00004082 0.00053072 1884.2 0.0116 120 0.00004498 0.00052668 1898.7 0.0115

120 22 134 0.00003963 0.00055479 1802.5 0.0408 122 0.00004349 0.00055672 1796.2 0.0409

121 75 136 0.00003851 0.00057759 1731.3 0.2430 124 0.00004211 0.00058497 1709.5 0.2457

122 482 138 0.00003738 0.00059810 1672 0.9629 126 0.00004075 0.00061043 1638.2 0.9654

123 5509 134 0.00003966 0.00043622 2292.4 0.0427 123 0.00004258 0.00047135 2121.6 0.0460

124 100 136 0.00003841 0.00046096 2169.4 0.0046 124 0.00004200 0.00046870 2133.6 0.0047

International Journal of Computer Applications (0975 – 888)

Volume 48– No.18, June 2012

43

125 10 138 0.00003727 0.00048457 2063.7 0.4049 126 0.00004061 0.00049749 2010.1 0.4130

126 1071 139 0.00003672 0.00047740 2094.7 0.1623 127 0.00003994 0.00049285 2029 0.1671

127 371 141 0.00003563 0.00049886 2004.6 0.3257 129 0.00003863 0.00051880 1927.5 0.3363

128 790 143 0.00003455 0.00051822 1929.7 0.9587 130 0.00003806 0.00051457 1943.4 0.9578

129 6150 139 0.00003672 0.00036720 2723.3 0.7046 129 0.00003822 0.00044373 2253.6 0.7709

130 3321 139 0.00003666 0.00032992 3031 0.2916 130 0.00003727 0.00043605 2293.3 0.3660

131 1045 140 0.00003608 0.00032470 3079.8 0.1897 131 0.00003664 0.00043193 2315.2 0.2441

132 648 141 0.00003555 0.00031996 3125.4 0.8271 132 0.00003607 0.00042852 2333.6 0.9047

133 5485 140 0.00003613 0.00025293 3953.6 0.2543 133 0.00003494 0.00041827 2390.8 0.3844

134 1160 141 0.00003553 0.00024870 4020.9 0.3710 134 0.00003433 0.00041408 2415 0.5378

135 1864 142 0.00003489 0.00024423 4094.4 0.6341 135 0.00003367 0.00040906 2444.6 0.8143

136 4116 142 0.00003489 0.00020934 4777 136 0.00003278 0.00040126 2492.1

Since the relationship between the reliability function

)(itR and the failure distribution function)(ii tF are related

by)(1)(iii tFtR  , the quality of reliability prediction of the

models may be judged by examining the estimated failure

distribution functions of the models.

From Table 1, we can see that normally the failure rate for our

modified J-M model with imperfect debugging is greater than

or equal to the failure rate of the J-M model. It is also noted

that the MTTF is infinite for some intervals of times between

failures in J-M model. So this model assumes that there are no

more faults in the software although faults are present in the

software at that time. In our modified J-M model, the MTTF

is not infinite for every interval between failures. So this is

more realistic in practical sense as it implies that till then fault

is remaining in the software. This is the most practical

situation in software fault debugging process. When 1p

and 0r i.e. for perfectly debugging procedure, our

considered imperfect debugging modified J-M model

approaches to the J-M model.

Fig 1: Failure rate as a function of failure number

A plot of failure rate against failure number for the J-M model

and the modified J-M model is shown in Figure 1. From the

graph of Figure 1, we get the clear idea about the failure

behavior of the two models. The failure rate is maximum at

the beginning of the testing process. As the fault content of

the software is decreasing i.e. the failure number is increasing,

the failure rate of our model is decreasing. This practical

event occurs at the time of debugging.

4.1.2 Prediction analysis
In order to compare the quality of prediction of the two

models, we consider the sequences of probabilities for
ii tT  .

Let)(ˆ
iii tFu  . If each of the estimated

iF̂ is equal to the

true
iF , the sequence }{ iu should look like a realization of

independent uniform)1,0(U random variables [19,20,21].

We can examine the quality of each model by plotting the

sample distribution function of the
iu 's and comparing it with

the distribution function of)1,0(U , which is the line of unity

slope through the origin. We use the quantile-quantile plot [4]

which is a plot of the order set of n number of
iu 's against

ni / , where n is the sample size and i is the rank of the

sample point. The closeness of the plot to the line of unity

slope is an indication of the closeness of the
iu 's to uniformity

and so an indication of the quality of prediction of the model.

The closer the plot to the line of unity slope, the more likely

the
iu 's is from a random sample of the uniform distribution,

and so the better the model. The goodness-of-fit test can be

performed by formal statistical tests. In this paper, we have

used the Kolmogorov-Smirnov (KS) test. KS distance is the

maximum vertical deviation between the plot and the line of

unity slope.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.18, June 2012

44

Fig 2: Quantile-quantile plot of the data in Table 1

The quantile-quantile plot of the data in Table 1 is shown in

Figure 2. The KS distance is 0.165 for the J-M model, and

0.14 for the modified model. The results show that the

modified model yields a better prediction in this case.

4.2 Sensitivity Analysis of the Proposed

Model
To study the performance of our modified J-M model with

imperfect debugging, sensitivity analyses have been presented

graphically on the different values of p and r keeping q as

constant. First, we consider the fixed value of q at 05.0 and

the values of p and r are taken as follows:

 0.94 and 0.01; 0.92 and 0.03; 0.9 and 0.05p r p r p r     

 Fig 3: Failure rate against failure number for different values of p and r

A plot of failure rate versus failure number for the above

different values of p and r of the modified J-M model is

shown in Figure 3. From the graph, we can see that the failure

rate is maximum for 9.0p and 05.0r . But as p is

increasing and r is decreasing, we are able to remove more

and more faults perfectly. So the failure rate is decreasing

which can be found from the Figure 3.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.18, June 2012

45

Fig 4: Quantile-quantile plots for different values of p and r

Quantile-quantile plots for the different values of p and r on

the fixed value of q at 0.05 of our modified J-M model are

shown in Figure 4.

Now we show the KS distances for the different values of q

keeping it constant for the different values of p and r in Table

2.

Table 2. KS distances for different values of p and r for different value of q

From Table 2, we can see that for fixed value of q, as p is

decreasing and r is increasing, the KS distance is decreasing.

So we get better predictions as p is decreasing and r is

increasing for some fixed value of q. Again, for fixed value of

r, as p is increasing and q is decreasing, the KS distance is

increasing. It is also noted that for fixed value of p, as q is

decreasing and r is increasing, the KS distance is decreasing.

So in this case we also get better predictions. From Table 2, it

is clear that we get better predictions in our model for the

smaller value of (p-r). In reality, the value of (p-r) is less than

1 and it decreases in most of the cases of debugging process

during testing. So our model excellently predicts the software

reliability in practical sense.

5. CONCLUSION
We develop a modified J-M model which assumes the

imperfect debugging process in fault removal activity during

the testing phase. In our proposed model, we assume that

whenever a failure occurs, the detected fault is not perfectly

removed and there is a chance of raising new fault/s. We

consider that the perfect debugging probability, the imperfect

debugging probability and the probability of arising new fault

are independent of the testing time. A set of failure data is

given for illustration. From the experimental results, we have

seen that the failure rate is normally high for our modified J-

M model. So we need to increase the probability of perfect

debugging and to decrease the probability of raising new

fault/s during the fault removing process. Again, the

difference between the probability of perfect debugging and

the probability of raising new fault/s should be decreased to

get better software reliability prediction. The experimental

results also show that our proposed model yields a better

prediction than the J-M model.

6. ACKNOWLEDGEMENTS
The authors wish to acknowledge the financial support given

to this work through the research project (No.

25(0191)/10/EMR-II) by the Council of Scientific and

Industrial Research, New Delhi, India.

7. REFERENCES
[1] Lyu, M.R. 1996. Handbook of Software Reliability

Engineering. McGraw-Hill.

[2] Musa, J.D., Iannino, A., and Okumoto, K. 1990.

Software Reliability: Measurement, Prediction,

Application. McGraw-Hill.

[3] Jelinski, Z. and Moranda, P.B. 1972. Software reliability

research, Statistical Computer Performance Evaluation.

Academic Press: New York, 465-484.

For q=0.07 For q=0.05 For q=0.04

p R KS distance p r KS distance p r KS distance

0.92 0.01 0.140078 0.94 0.01 0.155263 0.95 0.01 0.161781

0.9 0.03 0.110993 0.92 0.03 0.115093 0.94 0.02 0.145678

0.88 0.05 0.093693 0.9 0.05 0.101993 0.93 0.03 0.129978

International Journal of Computer Applications (0975 – 888)

Volume 48– No.18, June 2012

46

[4] Littlewood, B. 1987. How good are software reliability

predictions?. Software Reliability: Achievement and

Assessment. Blackwell Scientific Publications. 154-166.

[5] Musa J.D. 1975. A theory of software reliability and its

application. IEEE T. Software Eng. 1(3), 312-327.

[6] Goel, A.L., and Okumoto, K. 1979. Time dependent

error detection rate model for software reliability and

other performance measures. IEEE T. Reliab. R-28(3),

206-211.

[7] Yamada, S., Ohba, M. and Osaki, S. 1983. S-shaped

reliability growth modeling for software error detection.

IEEE T. Reliab. R-32(5), 475-484.

[8] Ohba, M. 1984. Software reliability analysis models.

IBM J. Res. Dev. 28(4), 428-443.

[9] Goel, A.L. 1985. Software reliability models:

assumptions, limitations and applicability. IEEE T.

Software Eng. SE-11(12), 1411-1423.

[10] Kapur, P.K., and Garg, R.B. 1990. Optimal release

policy for software reliability growth models under

imperfect debugging. Oper. Res. RAIRO. 24(3), 295-

305.

[11] Chang, Y.C., and Liu, C.T. 2009. A generalized JM

model with applications to imperfect debugging in

software reliability. Appl. Math. Model. 33, 3578-3588.

[12] Shyur, H.J. 2003. A stochastic software reliability model

with imperfect-debugging and change-point. J. Syst.

Software. 66(2), 135-141.

[13] Kapur, P.K., Singh, O.M.P., Shatnawi, O., and Gupta, A.

2006. A discrete NHPP model for software reliability

growth with imperfect fault debugging and fault

generation. Int. J. Perform. Eng. 2(4), 351-368.

[14] Prasad, R.S., Raju, O.N., and Kantam, R.R.L. 2010.

SRGM with imperfect debugging by genetic algorithms.

Int. J. Software Eng. Appl. 1(2), 66-79.

[15] Raju, O.N. 2011. Software reliability growth models for

the safety critical software with imperfect debugging. Int.

J. Comput. Sci. Eng. 3(8), 3019-3026.

[16] Xie, M. Dai, Y.S. and Poh, K.L. 2004. Computing

System Reliability Models and Analysis. Kluwer

Academic Publisher.

[17] Kremer, W. 1983. Birth-death and bug counting. IEEE T.

Reliab. R-32(1), 37-47.

[18] Musa, J.D. 1980. Software Reliability Data. Data &

Analysis Center for Software.

[19] Dawid, A.P. 1984. Statistical theory: the prequential

approach. J. Roy. Stat. Soc. A. 147, 278-292.

[20] Pham, H. 2006. System Software Reliability. Springer.

[21] Bittanti, S. 1988. Software Reliability Modelling and

Identification (Lecture Notes in Computer Science).

Springer-Verlag.

