
International Journal of Computer Applications (0975 – 888)

Volume 48– No.16, June 2012

28

Two Parallel Strategies for Real-time Spatial Video

Denoising for Multi-core Processors

Banpot Dolwithayakul
Department of Computing,

Faculty of Science
Silpakorn University,

Nakhon-Pathom, Thailand

Chantana Chantrapornchai
Department of Computing,

Faculty of Science
Silpakorn University

Nakhon-Pathom, Thailand

Noppadol Chumchob
Department of Mathematics,

Faculty of Science
Silpakorn University, Nakhon-

Pathom Thailand and
Centre of Excellence in
Mathematics, CHE, Si

Ayutthaya Rd., Bangkok,
Thailand, 10400

ABSTRACT

Video denoising is usually a time consuming process

especially for large video files. With the advancement of the
processor technology, it is possible to perform video
denoising in real-time on multi-core processors. In this paper,
we study parallel techniques for denoising real-time video on
multi-core processor which work on both shared memory
model and distributed memory model. We investigate two
approaches: a block approach, which assigns a group of
threads to each block of video frames; and a distributor

approach, which uses one thread to distribute the frame data
to each thread. Our experiments focus on the image denoising
technique based on the total variation but the approach can be
integrated with other image denoising algorithm like discrete
wavelet transform (DWT) or diffusion technique. We found
that by using the distributor strategy, we can achieve speedup
which is 1.27 times faster than the block strategy and the
video frame rate can be increased by 7.43%. Moreover, we
also apply the prefetching technique which further enhance

frame rate by 22.02% and frame rate control to stabilize frame
rate and retain the original video length during denoising and
playing in real-time. Our method also has good denoised
quality which is better than previous work in [1] in average
case.

General Terms

Algorithms, Framework, Image Processing, Video Processing,
High Performance Computing, Parallel Computing

Keywords

video denoising, parallel computing, OpenMP, ROF model,

total variation.

1. INTRODUCTION
In many real world applications, images and videos tend to
pose some noises from sensors during retrieval, encoding and
transmission. Image denoising, which involves eliminating
noises to recover the original digital image, thus, plays a very
important role for restoring or improve degraded images or

video quality.

It is commonly known that denoising an image is an ill-
conditioned problem. As such, it becomes necessary to
impose a constraint on the solution via an appropriate
regularization for penalizing unwanted and irregular solutions

using some prior knowledge, such as smoothness of

boundaries while preserving important details like edge and
texture.

However, most of denoising techniques are time consuming.

A lot of memory and computation power are required.
Applying image denoising techniques with video sequences
will be even worse since a lot of image frames needs to be
processed in real-time applications like in medical
equipments, multimedia live streaming etc. Thus, it will be
very hard for a single processor to denoise a video in a
satisfactory frame rate.

The presence of the mentioned constraint is the primary

reason why variational methods are more appropriate and
successful compared to other techniques for removing
additive noise while preserving edge of the images.
Particularly, the first total variation (TV)-based image
denoising model by Rudin, Osher, and Fatemi [2] (also known

as the ROF model) is among the most famous ones to offer
superior image restoration quality. The ROF model uses
several solving techniques, one of which is the lagged-
diffusion fixed point iterative method[3,4] which solves this
problem effectively and it is scalable by the number of fixed
point iterations. With this method, it is possible to denoise an
image without obtaining the optimal result but having the
acceptable restored image quality which is suitable for real-
time video denoising efficiently.

In this paper, we study proper parallel strategies for real-time
spatial video denoising as a framework which is compatible
with many image denoising algorithms for example total
variation(TV), diffusion method or discrete wavelet
transform(DWT). We select the total variation with a fixed

point iterative method as a testing algorithm which works
very good on the additive noise model. Refer to [5] and
references therein for a review of some video denoising
techniques.

The rest of this paper will be organized as follows: Section 2
presents some mathematic backgrounds related to video

denoising that we use and related work in the field. We
present our parallel methods in Section 3. Finally, Section 4
demonstrates the efficiency of our methods.

2. BACKGROUNDS
This section consists of two parts. The first part discusses

video denoising categories and challenges in the video

denoising and the second part reviews the ROF model.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.16, June 2012

29

2.1 Video Denoising Methods

On this research, we choose to use the spatial video denoising
technique which tends to be highly parallelizable and suitable
for real-time denoising on the streaming video.

Thus, it is an easy implementation to begin with and can be

expanded from the image denoising [5].

In the real-time parallel computation, the following challenges
are commonly encountered

2.1.1 Real-time streaming data

By working with streaming and real-time data, we have to
minimize the latency from starting of the input and starting of

the output. By fetching a lot of frames and store to the buffers
first is not a good idea because a lot of latency will be
occurred. All incoming frame need to be processed almost
immediately, making the fetching any nth frame from the
streaming data impossible. Thus, all frames must be fetched
sequentially.

2.1.2 Order of frames

When distributing each frame to different threads, the order of
the frame must be retained after the computation of each

thread is done.

2.1.3 Frame rate

The real time video denoising must meet the satisfactory

frame rate which is normally higher than 15 frames per
second. Normally, the human visual system can process 10-12
separate images per second[6]. Thus with the good frame rate,
the latency of the video will not be noticed.

2.1.4 Thread utilization

Every available thread has to work efficiently by minimizing
the idle threads during computation.

In this paper, we are going to design a strategy that will utilize
the threads efficiently while minimizing the idle time.

2.1.5 Frame rate control

The output video has to have the same length of the original
video. Users should feel no latency, delay or slow frames
delivery.

2.2 ROF Model

Let
2 0: {0}u V    

 be the image to be

recovered (unknown) and :z V be the noisy image

(known), where  is an image domain. Assume that noises in

each frame is additive and zero-mean Gaussian type. The

ROF model can be represented as follows:

 21
2

min{ () () ()},
u

J u u z d TV u


   (1)

where the integral term is the fitting or data term and

 2 2[] | |TV u u d u u d 
 

        x y
(2)    

represents the TV regularization, 0  is the regularization

parameter, and 0  is a small constant to avoid the division

by zero, typically  =10-4. Without loss of generality we

assume that [0,1] [0,1]  , [0,255]V  and ux and uy are the
partial derivative respect to x- and y-directions, respectively.

According to the calculus of variations, the minimizer of the

energy functional J in Equation (1) satisfies the Euler-

Lagrange equation given by the following second order and
nonlinear partial differential equation (PDE)

 ·
| |

u
u z

u 


 

      

(3)

subject to the homogeneous Neumann’s boundary conditions

 0nu  (4)  

where n is the outward unit vector normal to the image

boundary  .

To solve Equation (3), an iterative algorithm is unavoidable.

On a multi-core processor, performing such algorithm
requires many iteration loops and is, therefore, a time-
consuming task. This drawback delays the video denoising
process. Generally, the execution time can be reduced in two
ways: (1) by reducing the number of iterations or reducing the
time that is needed per iteration. (2) by utilizing each thread

effieiently. Multi-core processors are well suited for
acceleration of the video denoising time.

To this end, we follow closely our previous work in [5] for
solving the discrete system of Equation (3) resulting from the
so-called cell-centerd finite difference discretization. This
previous work uses a coupled outer-inner iteration method,

also known as lagged diffusivity fixed point approach, with
the inner (linear) solver provided by an efficient parallel
Gauss-Seidel (GS) method in reducing the run time used per
an outer iteration.

2.3 Lagged-diffusion fixed point method

We use homogeneous Neumann boundary conditions as
follows:

 ,1 ,2 , , 1 1, 2, , 1,, , ,i i i n i n j j n j n ju u u u u u u u     (5)

There are several methods for solving Equation (3), for
example, the time marching scheme which uses a time

variable t to transform Equation (3) into the parabolic PDE.
The time marching scheme is simple to compute in each
iteration. However, convergence of this method is not fast
enough to use practically. Next is the Primal-Dual [7] method
which use dual matrix to solve Equation (3). However, this
method consumes too much memory for video in practice
because of the usage of additional matrices. Another method
is called fixed-point method which is usually a faster solver.

The fixed point method is originally proposed by Vogel and
Oman[13, 14] for the total variation denoising problem which
can be written as follows:

2
,

[]
[] [1] [1]

, , , ,(() () () ()) ()
i ji j i j i j i jh

u u z
       

(6)

where

, , , 1, , 1 ,

, , , 1, , 1

1, 1, , 1 , 1

() () (2 [] [] [])() ,

() () [] (() ())

 [] () [] ()

i j i j i j i j i j i j

i j i j i j i j i j

i j i j i j i j

u D u D u D u u

u D u u u

D u u D u u

 

 

   

   

  

 

(7)

International Journal of Computer Applications (0975 – 888)

Volume 48– No.16, June 2012

30

and

 ,

1
([])

| |
i jD u

u 




(8)

In Equation (6) we can also write in the matrix-vector form as

Equation (
[] [1][]  N u u z

(9)

We freeze the coefficient globally by keeping every point

unchanged across all k inner iteration to solve the linear
system to fix  . For each outer step, the linear system solver

like Jacobi, Gauss-Seidel, SOR including modern linear
system solver like preconditioned conjugate gradient (PCG)
can be used to solve the inner step.

From our previous experiments, we found that convergence of
Jacobi method is too slow[8]. For SOR and PCG, they are
computationally more expensive than the Gauss-Seidel
method. Thus, Gauss-Seidel is a proper method to obtain
satisfactory convergence.

2.4 Related Work

In this section, we present some literature reviews as they are
related to our work.

Video denoising methods can be divided in three categories as

follows:

2.4.1 Spatial video denoising method. It aims to individually
remove noises in each frame.

2.4.2 Temporal video denoising method. It aims to find the
dependency of noises between frames and then remove noises
between frames.

2.4.3 Spatial-Temporal video denoising method. It is a

combination of spatial and temporal video denoising methods.

There are some researches in all types of video denoising
methods especially spatial video denoising and spatiotemporal
video denoising. For the example in [1], A. Sarhan introduced

spatial real-time video denoising model with two types of
DWT algorithm. The proposed model is adaptive scheme for
denoising noisy video which contaminated by AWGN. The
author implemented two algorithms, 2D Discrete Wavelet
Transform(2D DWT) 2D Dual Tree Complex Wavelet
Transform(2D DTCWT) in [1]. where the second one is more
efficient for removing noise but it is slow to compute. The
author used the noise level estimator to estimate the noise on
each frame and decided the best algorithm to denoise that

frame. This model improved computation time up to 75.57%
in color video compared with using DTCWT algorithm only
while retain the good average PSNR result. However, this
proposed model is only working on the single-core processor
only and the results when converted to frame-per-second is
around 0.3 – 1.2 FPS which is not fast enough.

In 2009, there is a research proposed implementing total

variation regularization filter technique on video with other
denoising technique[9]. The authors implemented their
strategy on degraded video compressed with MPEG-4 codec
which has mixed types of noise and block artifacts from lossy
MPEG-4 encoding. By using deblocking[10] technique and
applying the regularization filter, the authors found this

technique can be used on a real-time environment for high
denoised video quality denoising which does not require the
optimal solution. The PSNR value is improved to 34.35 on
Akiyo video[11]. However, the author did not mention about
time used, parallelization, and the frame rate.

The video and image processing field in the past few years,

there are many researches which use multi-core processor for

process the video. Most of the research aimed for
implementing on the multi-core processor for encoding and
decoding the video sequence. For example in [12], the author
used multi-core Xeon processor to speed up the video H.264
encoding by using the master-slave scheme which improved
the speed over single thread encoder by 29%.

Though, the past researches we reviewed are interesting, none

of them is working in the parallel platform like on the multi-
core processor. In this research, we propose the scheme for
threads and video frames management for multi-core video
denoising which retain correctness of the frame order and
utilizing each processor core effectively. We focus on threads

management and frame data management rather than the
algorithm for denoising. We have chosen Total Variation
(TV) for our denoising algorithm which can remove AWGS
efficiently while preserving edges and details[13]. However,
our model is flexible enough to allow switching or adding
another image denoising algorithm.

3. PROPOSED STRATEGIES
In this section we divided into 4 parts. Section 3.1 presents

the block strategy which we design for the parallel video
denoising. Then we improve the strategy in Section 3.2, called
the distributor strategy to effectively utilize the threads. Next,
we enhance with some technique like the prefetching (Section
3.3) to increase frame rate and frame rate control (Section 3.4)
to make video smoother and retain the same length with
original video by skipping some frames which cannot be
denoised in time.

3.1 Block Strategy
We assume the streaming data for our real-time video

denoising. The video frames have to arrive in order. Our very
first model for parallel real-time denoising is to retain the
frame order after denoising. We divide the computation into
substeps which will denoise one block of frames at a time. We
have each thread waiting for the stream data in a sequence,
where nth threads except the first thread will wait for the

fetched signal from the (n-1)th thread, then it will start
fetching the next frame. After a thread gets a frame from the
video, it will send the fetched signal to the next thread and to
start its computation.

When a thread finishes the computation for its frame, it will
put that the denoised frame back to the video in the right

sequence. This has to be done by the special thread
synchronization.

We illustrate the diagram for computation steps of each thread
as Figure 1.

Figure 1 shows the diagram of our first strategy for the

parallel real-time video denoising. This strategy will retain the
frame order after the video denoising. The implementation is
simple and we expect less thread synchronization on each step
comparing with the scheme such as the pipelining.

However, it is found that the proposed method still has a lot of

idle threads from waiting to fetch a frame and thread
synchronization. We propose a new strategy by introducing
the frame distributor. We describe the new strategy in the next
section.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.16, June 2012

31

Fetch the (nk+n)
th

frame to buffer

Denoise the current

(nk+n)
th
 frame

Thread

Synchronization

Put the denoised

frame back to video

Has more frames

End thread execution

No frame leftMore frame?

Wait for the (n-1)
th

thread fetch a frame.

Send fetched

signal to the

(n+1)
th
 thread

Fig 1: Block strategy for n
th

 thread on k
th

 substep

3.2 Distributor Strategy
Our idea is to eliminate the thread synchronization and idle

threads by having each thread executing independently. The
frame distributor is an extra thread that reads the streaming
video frame and distributes frame to each thread. After a
thread finished its computation, it will send back the
computation results to the frame distributor and the thread

will start the next computation. The frame distributor will
arrange the denoised frames, put the back to the video while
retaining the order of frames.

We illustrate the diagram for our distributor strategy as Figure
2, we use a thread as distributor to dynamically distribute
frame to each worker thread. When computation starts, the

each worker thread will request a frame from the frame
distributor and frame distributor will pick an undenoised
frame to send it back. After a thread finished computation, it
will send denoised frame back to frame distributor and request
a new undenoised frame until all frames are denoised.

In the implementation, the messages, the frame data and the

signals between the worker threads and the distributor thread
on OpenMP can be implemented by using shared variables
and setting the pointer to a frame for each thread.

3.3 Prefetching Strategy
We also apply the prefetching strategy to the previous

distributor strategy to enhance the strategy’s performance.
During the execution, the distributor thread will create n
frames buffer where n is total number of threads. The
distributor thread will read a frame and store it to a buffer of
the kth thread in advance. Figure 3 shows the flowchart. It is

seen that we create a prefetch buffer for storing the frame. We
vary several number of frames to be prefetched which is to
determine the proper prefetch frame in each case. This will
be shown in our experimental results.

In Figure 3 we show our modified model with the prefetching
technique indicated by the rectangles. After the frame

distributor sends a frame to worker threads. There will be
small idle time. We make the frame distributor fetch the next
frame and store in the buffer instead of fetching video on-the-
fly style which causes some I/O latency.

Request a Frame

Worker Threads Distributor

Standby for

requests

Fetch the next

frame from video

Send frame to

the worker.

Get a frame from

the distributor

Denoised the

received frame.

Send denoised

frame back to

distributor

Manage writing

output video

Last Frame?

No

Send finish signal

to all threads

Yes

Wait for noisy frame

Fig 2: Distributor strategy for n

th
 thread on k

th
 substep

Request a frame

Worker Threads Distributor

Standby for

requests

Send a frame to

worker.
Get a frame from

distributor

Denoised the

received frame.

Send the

denoised frame

back to

distributor

Manage writing

output video

Wait for the

denoised frames

Last Frame?

No

Send finish signal

to all threads

Yes

Create n buffer

and prefetch the

first n frame

Fetch the next

frame

Wait for noisy frame

Fig 3: Distributor strategy with prefetching

3.4 Frame Rate Control Strategy
We observe that output frame rate is still not stable with our
previous strategy. We apply a ―frame skip‖ frame rate control
technique by attaching an expiration timestamp to each frame
before the distributor sends a frame to a worker thread. The
worker thread will check the timestamp before sending the

frame back to the frame distributor and the frame distributor
will recheck before putting the frame back for output. If the
time on timer greater than the timestamp on that frame. That
frame will be discarded.

We compute the timestamp as Equation (10)

1

end start

N
T T

R

 
   

 
 (10)

International Journal of Computer Applications (0975 – 888)

Volume 48– No.16, June 2012

32

where Tend and Tstart is the expiration timestamp value and

initial timestamp value respectively. N is the frame number
and R is the original video frame rate in frames per second.

Our parallel real-time video denoising scheme can be shown

as Figure 4. We make some modification as shown in the box.
The job distributor checks the timestamp of the incoming
frame to discard delayed frame instead of waiting for them. If
any denoised frame does not come in time, the frame
distributor will ignore and we need to make some
modification to output system to fulfill this strategy.
Moreover, the frame distributor needs to check the timestamp
of the outgoing frame. Only unexpired frames will be sent out

to worker threads.

Request Frame

Worker Threads Distributor

Standby for

requests

Send unexpired

frame to worker.
Get frame from

distributor

Denoised the

received frame.

Send denoised

frame back to

distributor

Manage writing

output video

Wait for

denoised frames

Last Frame?

No

Send finish signal

to all threads

Yes

Create n buffer

and prefetch first

n frame

Fetch next frame

Wait for noisy frame

Expire <

Timer?

No

Discard FrameYes

Start Timer

Generate Expire

Stamp

Fig 4: The distributor strategy with the frame rate control.

We also need to make some modification to output system to
check the availability of denoised frame before showing a
frame to screen as shown Figure 5. Every 1/FPS second the
output system will check for availability of next frame where
FPS is the original frame rate of original video. If the current

denoised frame isn’t available, the output system will use the
previous frame to show on the screen and will not wait for
that frame anymore to retain the video length as original.

4. EXPERIMENTAL RESULTS
We test our strategies on Intel® Core 2 Quad with four 2.5

GHz of processor cores, 4,096 MB of main memory. Our
experiment platform is 64-bit version of Fedora 16 Linux,
OpenCV library 2.3.1 for reading and writing video, GNU C
Compiler(GCC) 4.5.5 for compiler and OpenMP library.

The experiments use the test video clips from [11] named
―Miss America‖ with the frame rate at 15 frames per

second[11], ―Harbour‖ with the frame rate at 30 frames per
second[11],. We also used video named ―salesman‖ which has
449 frames QCIF format [15], for time and PSNR comparison
with [1]. We generate 25% of Addtitive White Gaussian
Noise (AWGN) randomly on each color channel individually
to every video frames The original video and noisy video will
be displayed in Figure 6.

Wait for the n
th

frame

Display the n
th

frame

(n+1)
th
 frame

ready?

Display the

(n+1)
th
 frame

Use the n
th
 frame

instead and

n=n+1

Yes

No

Wait for 1/FPS

second

More Frames?

Yes

End

No

n=n+2

Fig 5: The modified output player with the frame rate

control.

a. b.

c. d.

e. f.

Fig 6: The sample video for experiments. The 30
th

 frame of

original Miss America(a), Miss America with 25%

AWGN(b), original Harbor(c), harbor with 25%

AWGN(d), salesman(e) and salesman with 25% AWGN(f)

In this paper, there are two types of evaluations. The first one

is the performance for each scheme by measuring the frame
rate in frame-per-second(FPS). Furthermore, we also measure
denoised video quality using the PSNR value on some frames.

4.1 Performance Evaluation

4.1.1 Distributor strategy performance

We measure the frame rate for the block strategy and the
distributor strategy from Harbor video varying the number of
threads from 2 to 16 threads as in Figure 7.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.16, June 2012

33

Fig 7: The number of frames per second on each strategy

type varying the number of threads for Miss America

video

Figure 7 shows that the job distributor works better than the

block strategy when number of threads is more than four. In
this method, we use one of threads to be the frame distributor
(for example: 4-threads computation has 3 worker threads and
1 distributor thread). Actually, this also happens for the case
of Harbor and Salesman. We also inspect the number of
frames processed by each thread in the distributor model.
Each thread processes about the same number of frames.

The main reason that the distributor approach works well is

that the block approach needs all the threads to finish for its
frame before moving to the next iteration (Figure 1 at thread
synchronization step). This incurs the waiting time. Also, if
we use too small number of threads, for example for the case
of two threads, the performance is obviously lower than the
block strategy. We can see that when the number of threads is

low, the block strategy will work slightly better than the
distributor strategy. This is caused by the fact that some
overhead between the frame distributor and worker threads
are more than the synchronization time in the block strategy.

We find that the distributor strategy boosted the frame rate up

to 17.34 FPS and produces up to 7.43% better frame rate than
block strategy on 16-threads computation.

4.1.2 Performance with prefetching strategy

We apply the prefetching strategy to our distributor strategy

as mentioned in Section 4.1.1. The comparison between
distributor strategy with and without one frame prefetching on
16-threads computation on Miss America video is depicted in
Figure 8.

From Figure 8, we can see that our enhanced prefetching

strategy can slightly increase FPS in the denoising process in
all the test cases.

The more number of threads used, the more benefits are

obtained from the prefetching strategy. It is found that our
prefetching strategy can boost FPS by up to 4.38% on the 16
threads computation.

We also vary the number of prefetched frames from 1 to 8
frames. We found that the more number of prefetched frames

may affect the performance. If we prefetch the proper number
of frames at a time, we will get the good performance boost. If
we prefetch too many frames at a time, the frame distributor
will get busy with I/O rather than distributing frames to
workers which will reduce the overall performance. The
frame rate results of our strategy with prefetching technique is
shown in Figure 9.

Fig 8: Frame rate comparison between the distributor

strategy with and without the prefetching strategy

Fig 9: Frame rate for distributor strategy varying the

number of prefetched frames.

From Figure 9 we can see that number of prefetched frame
slightly affect the frame rate of video denoising. The best
result is prefetching 8 frames at a time which can increase the
frame rate up to 22.02% comparing to the distributor strategy

without prefetching strategy.

We also double the size of each video and vary the number of
prefetched frames each time. The results are shown as in
Figure 10.

From Figure 10, we also find that the video size affects the

prefetching’s performance. All of our normal size videos have
the best performance when the number of frames to be
prefetch to 8 frames. However, when we increase the size of
video at double, the best number of frame to be prefetched is
4 frames. It is clear that the performance in frame rates is
affected linearly by the size of prefetched buffers and video.

Fig 10: Frame rate of the distributor strategy varying the

number of prefetched frames (double size video)

International Journal of Computer Applications (0975 – 888)

Volume 48– No.16, June 2012

34

For example, the double-size video needs the half number of
prefetched frames to obtain the peak performance and the
frame rate drops about 3 times of that of the normal size. For
the example, the case of Miss America, in Figure 9, the peak
frame rate is 20 when the number of prefetched frames is four,
but in Figure 10, the frame rate drops to 7.5 when the number
of prefetched frames is 8. We also have the hypothesis that

prefetching a lot of large frames at once will make frame
distributor busy waiting for I/O and cannot distribute the
frames to worker threads efficiently.

4.1.3 Frame Rate Control

We notice the unstable frame rate during the denoised video
playback. This is caused by the fact that some frames are

processed too slow which makes the output video player
keeps waiting and make the overall video length seem to be
slow and longer than it should be. We measure the MSE and
the total MSE compared with the baseline 30 FPS from every
30 frames for Harbor video as in Table 1.

Table 1. Total original video length and denoised video
length and error without the frame rate control.

Video Name Original

length (s)

Denoised

length (s)

Error(%)

Miss America 5.00 5.61 12.20

Harbour 20.00 32.10 60.50

Salesman 29.93 33.47 11.83

From Table 1, the column ―Original length‖ shows the length
that video should be played properly. The second and third

columns are the actual total time of original video and actual
output time for the denoised video in seconds. The last
column is the error rate computed by the difference of original
length and denoised length in percent.

We noticed that Harbour video has a large error rate because

the original video has the frame rate at 30 FPS in which our
current hardware still cannot compute at that rate. However,
in the near future denoising in 30 FPS will be possible as the
advancement of the processor hardware.
We apply our frame rate control strategy to our strategy. The
results are shown as Table 2. The ―Frames Discarded‖ column
shows the number of frames which is skipped by the output
system because the slow denoising process cannot deliver the

frames in time. The ―Denoised Length‖ column shows the
total denoised video time playback time, ―Error (%)‖ is
computed by the difference with the original video time
playback time in percent and ―% Improved‖ is the
improvement of the error in the total video length compared
with the error in Table 1.

Table 2. Average frame rate and the error for Harbor
with the frame rate control.

4.2 Denoised Image Quality Evaluation
The denoised frame is shown in Figure 11.

(a) (b) (c)

Fig 11: Denoised frame of the 30
th

 frame of Miss

America(a), Harbor(b) and Salesman (c)

From Figure 11, we can see that the denoised frame is visually
satisfactory. We measure the denoised frame quality by using
the average peak signal-to-noise ratio(PSNR) value for red,
green and blue channels compared with the original frame.
We describe PSNR value as in Equation (11)

  2

1010·log IMAX

MSE
PSNR

 
  

 

 

where MAX is the maximum pixel value on the images, MSE
is the mean square error which is described as in Equation
(12),

1 1
2

0 0

1
[(,) (,)]

m n

i j

MSE I i j K i j
mn

 

 

 
 (12)

From Equation (12), m and n are image height and width in

pixel respectively. I is the original image and K is the
compared image. We measure the PSNR value for some
frames and show the results in the Tables 3-4. It is shown that
the denoised frame has a better quality in every case. The best
case in the Table 3 is the improvement by 48.01%.

Table 3. PSNR values for video frames for Miss America
and Harbour.

Frame

Number

PSNR
Miss America Harbour

Noisy

Frame

Denoised

Frame

Noisy

Frame

Denoised

Frame

15 38.72 56.83 38.70 50.10

30 38.74 55.52 38.58 51.46

45 38.70 56.70 38.70 51.29

60 38.73 55.73 38.76 51.39

Avg. 38.72 56.19 38.68 51.06

Table 4. PSNR values for video frames for Salesman
compared with the proposed scheme in [1].

Algorithm PSNR

Min Max Average

Our TV+FP 33.90 43.07 34.80

2D-DWT 29.84 46.79 33.33

2D DTCWT 30.45 47.53 33.89

System in
[1]

30.46 48.18 33.63

Table 4 shows that our usage of the total variation image
denoising with the lagged diffusion fixed point method can
improve the PSNR from denoising AWGN noisy frames up to
43.07 or 3.48% more than [1] on average and better than
using 2D-DWT and 2D DTCWT which is mentioned in [1] in

all cases.

Video

Name

Frames

Discard

ed (s)

Denoised

Length

(s)

Error

(%)

%

Improve

d Miss
America

4 5.04 0.80 11.4

Harbour 173 21.01 5.05 55.45

Salesman 9 30.36 1.20 10.63

International Journal of Computer Applications (0975 – 888)

Volume 48– No.16, June 2012

35

From results in Table 3 and Table 4, we conclude that our
denoised video quality has a better minimum and average
PSNR values on the Salesman video compared with the
previous work in [1]. Also, the maximun PSNR value of our
approach is about the same as the work in [1]

5. CONCLUSIONS
In this paper, we design the strategies for the parallel real-time
video denoising which attempt to retain the frame order while
utilizing the threads. We focus on eliminating the additive

Gaussian noise by using the total variation with fixed-point
iterative method which is robust, memory efficient and fast
convergence rate. We present two approaches: the block
approach and the distributor approach. From our experiments
on the sample videos we found that our distributor strategy
has more 1.20 FPS or 7.43% better frame rate over the block
strategy and the better thread utilization by eliminating the
thread synchronization and idle threads on the computation

step.

Furthermore, we also enhanced the distributor’s strategy
performance by adding the prefetching buffer to make the
distributor thread store some frames on its buffers before
sending the frame to working threads. We found this
enhancement can further boost the frame rate by 22.02%

compared with the original distributor strategy. We tried to
vary the video size and we found that the prefetched buffer
size should be proportional to the video size. The performance
obtained is also varied linearly depending on the video size as
well. The double-size video needs the half number of
prefetched frames to obtain the peak performance and the
frame rate drops about 3 times of that of the normal size. We
also apply frame rate control strategy by adding frame-skip

technique to delayed denoised frames. The total playback time
of the video is more accurate and closer to that of the original
video.

However, there are still some issues on the denoising that will
need to be addressed in the future research. First, we need to

improve the algorithm by considering load balancing in the
job distributor model. We found that each frame use
difference computation time for denoising caused by the
difference in quantity of noises and features on each frame,
we are going to apply the adaptive scheme on our approach.
Also, we need to improve the denoising algorithm to eliminate
other types of noises rather than the Gaussian white noise.
The other noise may come from video encoding like MPEG
encoding [14,15]. Next, the frame rate still is not good for

much larger videos like high-definition(HD) videos. In the
future, we have a plan to modify this strategy to use with the
more powerful processor architecture like CUDA[16] or
OpenCL[17] which uses a lot of threads and cores for the
computation. We expect a more sastisfiable frame rate on
CUDA with the HD video from the application of our strategy
in the near future.

6. ACKNOWLEDGMENTS
This work is supported in part by the Thailand Research Fund
through the Royal Golden Jubilee Ph.D. Program contract no.
PHD/0275/2551.

7. REFERENCES
[1] A. Sarhan, M. T. Faheem, R. O. Mahmoud, ―A Proposed

Intelligent Denoising Technique for Spatial Video
Denoising for Real-Time Applications‖, Intl J. Mobile
Comp and Mobile Comm (IJMCMC), vol. 2 2010.

[2] L. I. Rudin, S. Osher, E. Fatami, ―Nonlinear total
variation based noise removal algorithms‖, Physica D.,
vol. 60, pp. 259—268, 1992.

[3] C. R. Vogel, M. E. Oman, ―Fast, robust total variation-
based reconstruction of noisy, blurred images‖, IEEE
Trans. Image Process, vol.7, pp. 813—824, 1998.

[4] C. R. Vogel, M. E. Oman, ―Iterative Methods for Total
Variation Denoising‖ , SIAM J. Sci. Comput., vol.17,
pp.227—238, 1996.

[5] B. Dolwithayakul, C. Chantrapornchai, N. Chumchob,
―GPU-Based Total Variation Image Restoration using
Sliding Window Gauss-Seidel Algorithm‖, Proceeding of
Intelligent Signal Processing and Communication
Systems (ISPACS 2011), pp. 1—6 , 2011.

[6] Paul R., M. Meyer, ―Restoration of motion picture film,‖
Conservation and Museology, Butterworth-Heinemann,
2000.

[7] T. F. Chan, G. H. Gohub, P. Mulet, ―A nonlinear primal-
dual method for total variation based image restoration‖,
SIAM J. Sci. Comput., vol.20, pp. 1964—1977, 1999.

[8] R. Bagnara, ―A unified proof for the convergence of
Jacobi and Gauss-Seidel methods.‖, J. SIAM Review,
vol.37(1), pp.93—97, 1995.

[9] A. Ogier, P. Hellier, C. Barillot, ―Restoration of 3D
medical image with total variation scheme on wavelet
domain (TVW)‖, Proceeding of the SPIE, vol. 6144, pp.
465—473, 2006.

[10] P. Piastowski, ―Image processing to reduce blocking
artifacts,‖ US Patent Application US20060274959, 2006.

[11] Xiph.org, ―Xiph.org Test Media‖, Available via
http://media.xiph.org/video/derf/, Accessed 14 May
2012.

[12] ITU-T, ―H.262 Information technology – Generic coding
of moving pictures and associated audio information:
Video‖, International Telecommunication Union-
Telecommunication Standardization Sector, 2000.

[13] C. Dolar, M. M. Richter, H. Schroder, ―Total variation
regularization filtering for video signal processing‖,
Proceeding of 13th IEEE International Symposium on
Consumer Electronics(ISCE2009), pp. 1—5, 2009.

[14] Chiariglione.org, ―MPEG standards – Full list of
standards developed or under development‖, MPEG,
Retrieved 31 Oct. 2009

[15] J. Ive, ―Image formats for HDTV‖, European
Broadcasting Union Technical Review, 2004.

[16] NVIDIA® Corporation, ―NVIDIA CUDA compute
unified device architecture programming guide version
2.1‖, 2008.

[17] A. Munshi, ―OpenCL Parallel Computing on the GPU
and CPU‖, International Conference and Exhibition on
Computer Graphics and Interactive Technique
(SIGGRAPH 2008), 2008

[18] A. Marquina, S. Osher, ―Explicit algorithm for a new
time dependent model based on level set motion for
nonlinear deblurring and noise removal‖, SIAM J. Sci.
Compute., vol.22, pp. 387—405, 2000.

[19] J. Gu., Y. Sun, ―Optimizing a parallel video encoder with
message passing and a shared memory architecture‖,
Tsinghua Science and Technology, vol.16(4), pp.393—
398, 2011.

