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ABSTRACT 

Video denoising is usually a time consuming process 

especially for large video files.  With the advancement of the 
processor technology, it is possible to perform video 
denoising in real-time on multi-core processors. In this paper, 
we study parallel techniques for denoising real-time video on 
multi-core processor which work on both shared memory 
model and distributed memory model. We investigate two 
approaches: a block approach, which assigns a group of 
threads to each block of video frames; and a distributor 

approach, which uses one thread to distribute the frame data 
to each thread. Our experiments focus on the image denoising 
technique based on the total variation but the approach can be 
integrated with other image denoising algorithm like discrete 
wavelet transform (DWT) or diffusion technique. We found 
that by using the distributor strategy, we can achieve speedup 
which is 1.27 times faster than the block strategy and the 
video frame rate can be increased by 7.43%. Moreover, we 
also apply the prefetching technique which further enhance 

frame rate by 22.02% and frame rate control to stabilize frame 
rate and retain the original video length during denoising and 
playing in real-time. Our method also has good denoised 
quality which is better than previous work in [1] in average 
case. 
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1. INTRODUCTION 
In many real world applications, images and videos tend to 
pose some noises from sensors during retrieval, encoding and 
transmission. Image denoising, which involves eliminating 
noises to recover the original digital image, thus, plays a very 
important role for restoring or improve degraded images or 

video quality.  

It is commonly known that denoising an  image is an ill-
conditioned problem. As such, it becomes necessary to 
impose a constraint on the solution via an appropriate 
regularization for penalizing unwanted and irregular solutions 

using some prior knowledge, such as smoothness of 

boundaries while preserving important details like edge and 
texture.  

However, most of denoising techniques are time consuming. 

A lot of memory and computation power are required. 
Applying image denoising techniques with video sequences 
will be even worse since a lot of image frames needs to be 
processed in real-time applications like in medical 
equipments, multimedia live streaming etc. Thus, it will be 
very hard for a single processor to denoise a video in a 
satisfactory frame rate.   

The presence of the mentioned constraint is the primary 

reason why variational methods are more appropriate and 
successful compared to other techniques for removing 
additive noise while preserving edge of the images. 
Particularly, the first total variation (TV)-based image 
denoising model by Rudin, Osher, and Fatemi [2] (also known 

as the ROF model) is among the most famous ones to offer 
superior image restoration quality. The ROF model uses 
several solving techniques, one of which is the lagged-
diffusion fixed point iterative method[3,4] which solves this 
problem effectively and it is scalable by the number of fixed 
point iterations. With this method, it is possible to denoise an 
image without obtaining the optimal result but having the 
acceptable restored image quality which is suitable for real-
time video denoising efficiently. 

In this paper, we study   proper parallel strategies for real-time 
spatial video denoising as a framework which is compatible 
with many image denoising algorithms for example total 
variation(TV), diffusion method or discrete wavelet 
transform(DWT).  We select the total variation with a fixed 

point iterative method as a testing algorithm which works 
very good on the additive noise model. Refer to [5] and 
references therein for a review of some video denoising 
techniques. 

The rest of this paper will be organized as follows:  Section 2 
presents some mathematic backgrounds  related to video 

denoising that we use and  related work in the field. We 
present our parallel methods in Section 3. Finally, Section 4 
demonstrates the efficiency of our methods. 

2. BACKGROUNDS 
This section consists of two parts. The first part discusses 

video denoising categories and challenges in the video 

denoising and the second part reviews the ROF model. 
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2.1 Video Denoising Methods 

On this research, we choose to use the spatial video denoising 
technique which tends to be highly parallelizable  and suitable 
for real-time denoising on the streaming video. 

Thus, it is an easy implementation to begin with and can be 

expanded from the image denoising [5].  

In the real-time parallel computation, the following challenges 
are commonly encountered 

2.1.1 Real-time streaming data 

By working with streaming and real-time data, we have to 
minimize the latency from starting of the input and starting of 

the output. By fetching a lot of frames and store to the buffers 
first is not a good idea because a lot of latency will be 
occurred. All incoming frame need to be processed almost 
immediately, making the fetching any nth frame from the 
streaming data  impossible. Thus, all frames must be fetched 
sequentially. 

2.1.2 Order of frames 

When distributing each frame to different threads, the order of 
the frame must be retained after the computation of each 

thread is done. 

2.1.3 Frame rate 

The real time video denoising must meet the satisfactory 

frame rate which is normally higher than 15 frames per 
second. Normally, the human visual system can process 10-12 
separate images per second[6]. Thus with the good frame rate,    
the latency of the video will not be noticed. 

2.1.4 Thread utilization 

Every available thread has to work efficiently by minimizing 
the idle threads during computation. 

In this paper, we are going to design a strategy that will utilize 
the threads efficiently while minimizing the idle time. 

2.1.5 Frame rate control 

The output video has to have the same length of the original 
video. Users should feel no latency, delay or slow frames 
delivery. 

2.2 ROF Model 

Let 
2 0: {0}u V    

 be the image to be 

recovered (unknown) and :z V  be the noisy image 

(known), where   is an image domain. Assume that noises in 

each frame is additive and zero-mean Gaussian type. The 

ROF model can be represented as follows: 

 21
2

min{ ( ) ( ) ( )},
u

J u u z d TV u


   (1)

where  the integral term is the fitting or data term and   
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represents the TV regularization, 0  is the regularization 

parameter, and 0   is a small constant to avoid the division 

by zero, typically  =10-4. Without loss of generality we 

assume that [0,1] [0,1]  , [0,255]V  and ux and uy are the 
partial derivative respect to x- and y-directions, respectively.  
 

According to the calculus of variations, the minimizer of the 

energy functional J in Equation (1) satisfies the Euler-

Lagrange equation given by the following second order and 
nonlinear partial differential equation (PDE) 

 ·
| |

u
u z

u 


 

      

(3)

subject to the homogeneous Neumann’s boundary conditions 

 0nu  (4)  

where n  is the outward unit vector normal to the image 

boundary  . 

To solve Equation (3), an iterative algorithm is unavoidable. 

On a multi-core processor, performing such algorithm 
requires many iteration loops and is, therefore, a time-
consuming task. This drawback delays the video denoising 
process. Generally, the execution time can be reduced in two 
ways: (1) by reducing the number of iterations or reducing the 
time that is needed per iteration. (2) by utilizing each thread 

effieiently. Multi-core processors are well suited for 
acceleration of the video denoising time.  

To this end, we follow closely our previous work in [5] for 
solving the discrete system of Equation (3) resulting from the 
so-called cell-centerd finite difference discretization. This 
previous work uses a coupled outer-inner iteration method, 

also known as lagged diffusivity fixed point approach, with 
the inner (linear) solver provided by an efficient parallel 
Gauss-Seidel (GS) method in reducing the run time used per 
an outer iteration.  

2.3 Lagged-diffusion fixed point method 

We use homogeneous Neumann boundary conditions as 
follows: 

 ,1 ,2 , , 1 1, 2, , 1,, , ,i i i n i n j j n j n ju u u u u u u u     (5)

There are several methods for solving Equation (3), for 
example, the time marching scheme which uses a time 

variable t to transform Equation (3) into the parabolic PDE. 
The time marching scheme is simple to compute in each 
iteration. However, convergence of this method is not fast 
enough to use practically. Next is the Primal-Dual [7] method 
which use dual matrix to solve Equation (3). However, this 
method consumes too much memory for video in practice 
because of the usage of additional matrices. Another method 
is called fixed-point method which is usually a faster solver. 

The fixed point method is originally proposed by Vogel and 
Oman[13, 14] for the total variation denoising problem which 
can be written as follows: 

2
,

[ ]
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and 

                     ,

1
( [ ])

| |
i jD u

u 


                                    

(8) 

In Equation (6) we can also write in the matrix-vector form as 

Equation (
[ ] [ 1][ ]  N u u z

                                       
(9) 

We freeze the coefficient globally by keeping every point 

unchanged across all k inner iteration to solve the linear 
system to fix  . For each outer step, the linear system solver 

like Jacobi, Gauss-Seidel, SOR including modern linear 
system solver like preconditioned conjugate gradient (PCG) 
can be used to solve the inner step. 

From our previous experiments, we found that convergence of 
Jacobi method is too slow[8].  For SOR and PCG, they are 
computationally more expensive than the Gauss-Seidel 
method. Thus, Gauss-Seidel is a proper method to obtain 
satisfactory convergence. 

2.4 Related Work   

In this section, we present some literature reviews as they are 
related to our work.  

Video denoising methods can be divided in three categories as 

follows: 

2.4.1 Spatial video denoising method. It aims to individually 
remove noises in each frame.  

2.4.2 Temporal video denoising method. It aims to find the 
dependency of noises between frames and then remove noises 
between frames.  

2.4.3 Spatial-Temporal video denoising method.  It is a 

combination of spatial and temporal video denoising methods. 

There are some researches in all types of video denoising 
methods especially spatial video denoising and spatiotemporal 
video denoising. For the example in [1], A. Sarhan introduced 

spatial real-time video denoising model with two types of 
DWT algorithm. The proposed model is adaptive scheme for 
denoising noisy video which contaminated by AWGN. The 
author implemented two algorithms, 2D Discrete Wavelet 
Transform(2D DWT) 2D Dual Tree Complex Wavelet 
Transform(2D DTCWT) in [1]. where the second one is more 
efficient for removing noise but it is slow to compute. The 
author used the noise level estimator to estimate the noise on 
each frame and decided the best algorithm to denoise that 

frame. This model improved computation time up to 75.57% 
in color video compared with using DTCWT algorithm only 
while retain the good average PSNR result. However, this 
proposed model is only working on the single-core processor 
only and the results when converted to frame-per-second is 
around 0.3 – 1.2 FPS which is not fast enough. 

In 2009, there is a research proposed implementing total 

variation regularization filter technique on video with other 
denoising technique[9]. The authors implemented their 
strategy on degraded video compressed with MPEG-4 codec 
which has mixed types of noise and block artifacts from lossy 
MPEG-4 encoding. By using deblocking[10] technique and 
applying the regularization filter, the authors found this 

technique can be used on a real-time environment  for high 
denoised video quality denoising which does not require the  
optimal solution. The PSNR value is improved to 34.35 on 
Akiyo video[11]. However, the author did not mention about 
time used, parallelization, and the frame rate. 

The video and image processing field in the past few years, 

there are many researches which use multi-core processor for 

process the video. Most of the research aimed for 
implementing on the multi-core processor for encoding and 
decoding the video sequence.  For example in [12], the author 
used multi-core Xeon processor to speed up the video H.264 
encoding by using the master-slave scheme which improved 
the speed over single thread encoder by 29%.  

Though, the past researches we reviewed are interesting, none 

of them is working in the parallel platform like on the multi-
core processor. In this research, we propose the scheme for 
threads and video frames management for multi-core video 
denoising which retain correctness of the frame order and 
utilizing each processor core effectively. We focus on threads 

management and frame data management rather than the 
algorithm for denoising. We have chosen Total Variation 
(TV) for our denoising algorithm which can remove AWGS 
efficiently while preserving edges and details[13]. However, 
our model is flexible enough to allow switching or adding 
another image denoising algorithm.  

3. PROPOSED STRATEGIES 
In this section we divided into 4 parts.  Section 3.1 presents 

the block strategy which we design for the parallel video 
denoising. Then we improve the strategy in Section 3.2, called  
the distributor strategy to effectively utilize the  threads. Next, 
we enhance with some technique like the prefetching (Section 
3.3) to increase frame rate and frame rate control (Section 3.4) 
to make video smoother and retain the same length with 
original video by skipping some frames which cannot be 
denoised in time. 

3.1 Block Strategy 
We assume the streaming data for our real-time video 

denoising.  The video frames have to arrive in order. Our very 
first model for parallel real-time denoising is to retain the 
frame order after denoising. We divide the computation into 
substeps which will denoise one block of frames at a time. We 
have each thread waiting for the stream data in a sequence, 
where nth threads except  the first thread will wait for the 

fetched signal from the (n-1)th thread, then it will start 
fetching the next frame. After a thread gets a frame from the 
video, it will send the fetched signal to the next thread and to 
start its computation. 

When a thread finishes the computation for its frame, it will 
put that the denoised frame back to the video in the right 

sequence.  This has to be done by the special thread 
synchronization. 

We illustrate the diagram for computation steps of each thread 
as Figure 1. 

Figure 1 shows the diagram of our first strategy for the 

parallel real-time video denoising. This strategy will retain the 
frame order after the video denoising. The implementation is 
simple and we expect less thread synchronization on each step 
comparing with the scheme such as the pipelining. 

However, it is found that the proposed method still has a lot of 

idle threads from waiting to fetch a frame and thread 
synchronization. We propose a new strategy by introducing 
the frame distributor. We describe the new strategy in the next 
section. 
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Fetch the (nk+n)
th
 

frame to buffer

Denoise the current  

(nk+n)
th
  frame

Thread 

Synchronization

Put the denoised 

frame back to video

Has more frames

End thread execution

No frame leftMore frame?

Wait for the (n-1)
th
 

thread fetch a frame.

Send fetched 

signal to the 

(n+1)
th
 thread

 

Fig 1: Block strategy for n
th

 thread on k
th

 substep  

3.2 Distributor Strategy 
Our idea is to eliminate the thread synchronization and idle 

threads by having each thread executing independently. The 
frame distributor  is an extra thread that reads the streaming 
video frame and distributes frame to each thread. After a 
thread finished its computation, it will send back the 
computation results to the frame distributor and  the  thread 

will start the next  computation. The frame distributor will 
arrange the denoised frames, put the back to the video while 
retaining the order of frames. 

We illustrate the diagram for our distributor strategy as Figure 
2, we use a thread as distributor to dynamically distribute 
frame to each worker thread. When computation starts, the 

each worker thread will request a frame from the frame 
distributor and frame distributor will pick an undenoised 
frame to send it back. After a thread finished computation, it 
will send denoised frame back to frame distributor and request 
a new undenoised frame until all frames are denoised.  

In the implementation, the messages, the frame data and the 

signals between the worker threads and the distributor thread 
on OpenMP can be implemented by using shared variables 
and setting the pointer to a frame for each thread.  

3.3  Prefetching  Strategy 
We also apply the prefetching strategy to the previous 

distributor strategy to enhance the strategy’s performance. 
During the execution, the distributor thread will create n 
frames buffer where n is total number of threads. The 
distributor thread will read a frame and store it to a buffer of 
the  kth thread in advance.  Figure 3 shows the flowchart. It is 

seen that we create a prefetch buffer for storing the frame. We 
vary several number of frames to be prefetched which is to 
determine the proper prefetch frame in each case. This   will  
be shown in our experimental results.   

In Figure 3 we show our modified model with the prefetching 
technique indicated by the rectangles. After the frame 

distributor sends a frame to worker threads. There will be 
small idle time. We make the frame distributor fetch the next 
frame and store in the buffer instead of fetching video on-the-
fly style which causes some I/O latency.  

 

Request a Frame

Worker Threads Distributor
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Fetch the next 

frame from video

Send frame to 
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Get a frame from 
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Send denoised 
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Fig 2: Distributor strategy for n

th
 thread on k

th
 substep 
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Fig 3: Distributor strategy with prefetching 

3.4 Frame Rate Control Strategy 
We observe that output frame rate is still not stable with our 
previous strategy. We apply a ―frame skip‖ frame rate control 
technique by attaching an expiration timestamp to each frame 
before the distributor sends a frame to a worker thread. The 
worker thread will check the timestamp before sending the 

frame back to the frame distributor and the frame distributor 
will recheck before putting the frame back for output. If the 
time on timer greater than the timestamp on that frame. That 
frame will be discarded. 

We compute the timestamp as Equation (10) 

              
1

end start

N
T T

R

 
   

 
                                   (10) 
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where Tend and Tstart is the expiration timestamp value and 

initial timestamp value respectively. N is the frame number 
and R is the original video frame rate in frames per second. 

Our parallel real-time video denoising scheme can be shown 

as Figure 4. We make some modification as shown in the box.  
The job distributor checks the timestamp of the incoming 
frame to discard delayed frame instead of waiting for them. If 
any denoised frame does not come in time, the frame 
distributor will ignore and we need to make some 
modification to output system to fulfill this strategy. 
Moreover, the frame distributor needs to check the timestamp 
of the outgoing frame. Only unexpired frames will be sent out 

to worker threads. 

Request Frame

Worker Threads Distributor

Standby for 

requests

Send unexpired 

frame to worker.
Get frame from 

distributor

Denoised the 

received frame.

Send denoised 

frame back to 

distributor

Manage writing 

output video

Wait for 

denoised frames

Last Frame?

No

Send finish signal 

to all threads

Yes

Create n buffer 

and prefetch first 

n frame

Fetch next frame

Wait for noisy frame

Expire < 

Timer?

No

Discard FrameYes

Start Timer

Generate Expire 

Stamp

Fig 4: The distributor strategy with the frame rate control. 

We also need to make some modification to output system to 
check the availability of denoised frame before showing a 
frame to screen as shown Figure 5. Every 1/FPS second the 
output system will check for availability of next frame where 
FPS is the original frame rate of original video. If the current 

denoised frame isn’t available, the output system will use the 
previous frame to show on the screen and will not wait for 
that frame anymore to retain the video length as original.  

4. EXPERIMENTAL RESULTS 
We test our strategies on Intel® Core 2 Quad with four 2.5 

GHz of processor cores, 4,096 MB of main memory. Our 
experiment platform is 64-bit version of Fedora 16 Linux, 
OpenCV library 2.3.1 for reading and writing video, GNU C 
Compiler(GCC) 4.5.5 for compiler and OpenMP library.  

The experiments use the test video clips from [11] named 
―Miss America‖ with the frame rate at 15 frames per 

second[11], ―Harbour‖ with the frame rate at 30 frames per 
second[11],. We also used video named ―salesman‖ which has 
449 frames QCIF format [15], for time and PSNR comparison 
with [1]. We generate 25% of Addtitive White Gaussian 
Noise (AWGN) randomly on each color channel individually 
to every video frames  The original video and noisy video will 
be displayed in Figure 6. 

 

Wait for the n
th
 

frame

Display the n
th
 

frame

(n+1)
th
 frame 

ready?

Display the 

(n+1)
th
 frame

Use the n
th
 frame 

instead and 

n=n+1

Yes

No

Wait for 1/FPS 

second

More Frames?

Yes

End

No

n=n+2

 
Fig 5: The modified output player with the frame rate 

control. 

  
a. b. 

  
c. d. 

  
e. f. 

Fig 6: The sample video for experiments. The 30
th

 frame of 

original Miss America(a), Miss America with 25% 

AWGN(b), original Harbor(c), harbor with 25% 

AWGN(d), salesman(e) and salesman with 25% AWGN(f) 

 

In this paper, there are two types of evaluations. The first one 

is the performance for each scheme by measuring the frame 
rate in frame-per-second(FPS). Furthermore, we also measure 
denoised video quality using the PSNR value on some frames. 

4.1 Performance Evaluation 

4.1.1 Distributor strategy performance 

We measure the frame rate for the block strategy and the 
distributor strategy from Harbor video varying the number of 
threads from 2 to 16 threads as in Figure 7.  
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Fig 7: The number of frames per second on each strategy 

type varying the number of threads for Miss America 

video 

Figure 7 shows that the job distributor works better than the 

block strategy when number of threads is more than four. In 
this method, we use one of threads to be the frame distributor 
(for example: 4-threads computation has 3 worker threads and 
1 distributor thread). Actually, this also happens for the case 
of Harbor and Salesman. We also inspect the number of 
frames processed by each thread in the distributor model. 
Each thread processes about the same number of frames.  

The main reason that the distributor approach works well is 

that the block approach needs all the threads to finish for its 
frame before moving to the next iteration (Figure 1 at thread 
synchronization step). This incurs the waiting time. Also, if 
we use too small number of threads, for example for the case 
of two threads, the performance is obviously lower than the 
block strategy. We can see that when the number of threads is 

low, the block strategy will work slightly better than the 
distributor strategy. This is caused by the fact that some 
overhead between the frame distributor and worker threads 
are more than the synchronization time in the block strategy.  

We  find that the distributor strategy boosted the frame rate up 

to 17.34 FPS and produces up to 7.43% better frame rate than 
block strategy on 16-threads computation.  

4.1.2 Performance with prefetching strategy 

We apply the prefetching strategy to our distributor strategy 

as mentioned in Section 4.1.1. The comparison between 
distributor strategy with and without one frame prefetching on 
16-threads computation on Miss America video is depicted in 
Figure 8.  

From Figure 8, we can see that our enhanced prefetching 

strategy can slightly increase FPS in the denoising process in 
all the test cases.  

The more number of threads used, the more benefits are 

obtained from the prefetching strategy. It is found that our 
prefetching strategy can boost FPS by up to 4.38% on the 16 
threads computation. 

We also vary the number of prefetched frames from 1 to 8 
frames. We found that the more number of prefetched frames 

may affect the performance. If we prefetch the proper number 
of frames at a time, we will get the good performance boost. If 
we prefetch too many frames at a time, the frame distributor 
will get busy with I/O rather than distributing frames to 
workers which will reduce the overall performance.  The 
frame rate results of our strategy with prefetching technique is 
shown in Figure 9. 

 

 
Fig 8: Frame rate comparison between the distributor 

strategy with and without the prefetching strategy 

 

 

Fig 9: Frame rate for distributor strategy varying the 

number of prefetched frames. 

From Figure 9 we can see that number of prefetched frame 
slightly affect the frame rate of video denoising. The best 
result is prefetching 8 frames at a time which can increase the 
frame rate up to 22.02% comparing to the distributor strategy 

without prefetching strategy. 

We also double the  size of each video and vary the number of 
prefetched frames each time. The results are shown as in 
Figure 10. 

From Figure 10, we also find that the video size affects the 

prefetching’s performance. All of our normal size videos have 
the best performance when the number of frames to be 
prefetch to 8 frames. However, when we increase the size of 
video at double, the best number of frame to be prefetched is  
4 frames. It is clear that the performance in frame rates is 
affected linearly by the size of prefetched buffers and video.  

 
Fig 10: Frame rate of the distributor strategy varying the 

number of prefetched frames (double size video) 
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For example, the double-size video  needs the half number of 
prefetched frames to obtain the peak performance and  the 
frame rate drops about 3 times of that of the normal size. For 
the example, the case of Miss America, in Figure 9, the peak 
frame rate is 20 when the number of prefetched frames is four, 
but in Figure 10, the frame rate drops to 7.5 when the number 
of prefetched frames is 8.  We also have the hypothesis that 

prefetching a lot of large frames at once will make frame 
distributor busy waiting for I/O and cannot distribute the 
frames to worker threads efficiently. 

4.1.3 Frame Rate Control 

We notice  the unstable frame rate during the denoised video 
playback. This is caused by the fact that some frames are 

processed too slow which makes the output video player 
keeps waiting and make the overall video length seem to be 
slow and longer than it should be. We measure the MSE and 
the total MSE compared with the baseline 30 FPS from every 
30 frames for Harbor video as  in Table 1. 

Table 1. Total original video length and denoised video 
length and error without the frame rate control. 

Video Name Original 

length (s) 

Denoised 

length (s) 

Error(%) 

Miss America 5.00 5.61 12.20 

Harbour 20.00 32.10 60.50 

Salesman 29.93 33.47 11.83 

From Table 1, the column ―Original length‖ shows the length 
that video should be played properly. The second and third 

columns are the actual total time of original video and actual 
output time for the denoised video in seconds. The last 
column is the error rate computed by the difference of original 
length and denoised length in percent.  

We noticed that Harbour video has a large error rate because 

the original video has the frame rate at 30 FPS in which our 
current hardware still cannot compute at that rate. However, 
in the near future denoising in 30 FPS will be possible as the 
advancement of the processor hardware. 
We apply our frame rate control strategy to our strategy. The 
results are shown as Table 2. The ―Frames Discarded‖ column 
shows the number of frames which is skipped by the output 
system because the slow denoising process cannot deliver the 

frames in time.   The ―Denoised Length‖ column shows the 
total denoised video time playback time, ―Error (%)‖ is 
computed by the difference with the original video time 
playback time in percent and ―% Improved‖ is the 
improvement of the error in the total video length compared 
with the error in Table 1.  

Table 2. Average frame rate and  the error for Harbor 
with the frame rate control. 

 

 

 

4.2 Denoised Image Quality Evaluation 
The denoised frame is shown in Figure 11. 

 
(a)                    (b)  (c) 

Fig 11: Denoised frame of the 30
th

 frame of Miss 

America(a), Harbor(b) and Salesman (c)   

From Figure 11, we can see that the denoised frame is visually 
satisfactory. We measure the denoised frame quality by using 
the average peak signal-to-noise ratio(PSNR) value for red, 
green and blue channels compared with the original frame. 
We describe PSNR value as in Equation (11) 

  2

1010·log IMAX

MSE
PSNR
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where MAX is the maximum pixel value on the images, MSE 
is the mean square error which is described as in Equation 
(12),  
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         (12) 

From Equation (12), m and n are image height and width in 

pixel respectively. I is the original image and K is the 
compared image. We measure  the PSNR value for some 
frames and show the results in the Tables 3-4. It is shown that 
the denoised frame has a better quality in every case. The best 
case in the Table 3 is the improvement by 48.01%. 

Table 3. PSNR values for video frames for Miss America 
and Harbour. 

Frame 

Number 

PSNR 
Miss America Harbour 

Noisy 

Frame 

Denoised 

Frame 

Noisy 

Frame 

Denoised 

Frame 

15 38.72 56.83 38.70 50.10 

30 38.74 55.52 38.58 51.46 

45 38.70 56.70 38.70 51.29 

60 38.73 55.73 38.76 51.39 

Avg. 38.72 56.19 38.68 51.06 

Table 4. PSNR values for video frames for Salesman 
compared with the proposed scheme in [1]. 

Algorithm PSNR 

Min Max Average 

Our TV+FP 33.90 43.07 34.80 

2D-DWT 29.84 46.79 33.33 

2D DTCWT 30.45 47.53 33.89 

System in 
[1] 

30.46 48.18 33.63 

 
Table 4 shows that our usage of the total variation image 
denoising with the lagged diffusion fixed point method can 
improve the PSNR from denoising AWGN noisy frames up to 
43.07 or 3.48% more than [1] on average and better than 
using 2D-DWT and 2D DTCWT which is mentioned in [1] in 

all cases. 

Video 

Name 

Frames 

Discard

ed (s) 

Denoised 

Length 

(s) 

Error 

(%) 

% 

Improve

d Miss 
America 

4 5.04 0.80 11.4 

Harbour 173 21.01 5.05 55.45 

Salesman 9 30.36 1.20 10.63 
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From results in Table 3 and Table 4, we conclude that our 
denoised video quality has a better minimum and average 
PSNR values on the Salesman video compared with the 
previous  work in [1]. Also, the maximun PSNR value of our 
approach is about the same as the work in [1] 

5. CONCLUSIONS 
In this paper, we design the strategies for the parallel real-time 
video denoising which attempt to retain the frame order while 
utilizing the threads. We  focus on eliminating the additive 

Gaussian noise by using the total variation with fixed-point 
iterative method which is robust, memory efficient and fast 
convergence rate. We present two approaches: the block 
approach and the distributor approach. From our experiments 
on the sample videos we found that our distributor strategy 
has more 1.20 FPS or 7.43% better frame rate over the block 
strategy and the better thread utilization by eliminating the 
thread synchronization and idle threads on the computation 

step. 

Furthermore, we also enhanced the distributor’s strategy 
performance by adding the prefetching buffer to make the 
distributor thread store some frames on its buffers before 
sending the frame to working threads. We found this 
enhancement can further boost the frame rate by 22.02% 

compared with the original distributor strategy. We tried to 
vary the video size and we found that the prefetched buffer 
size should be proportional to the video size. The performance 
obtained is also varied linearly depending on the video size as 
well. The double-size video needs the half number of 
prefetched frames to obtain the peak performance and the 
frame rate drops about 3 times of that of the normal size. We 
also apply frame rate control strategy by adding frame-skip 

technique to delayed denoised frames. The total playback time 
of the video is more accurate and closer to that of the original 
video. 

However, there are still some issues on the denoising that will 
need to be addressed in the future research. First, we need to 

improve the algorithm by considering load balancing in the 
job distributor model. We found that each frame use 
difference computation time for denoising caused by the 
difference in quantity of noises and features on each frame, 
we are going to apply the adaptive scheme on our approach. 
Also, we need to improve the denoising algorithm to eliminate 
other types of noises rather than the Gaussian white noise. 
The other noise may come from video encoding like MPEG 
encoding [14,15]. Next, the frame rate still is not good for 

much larger videos like high-definition(HD) videos. In the 
future, we have a plan to modify this strategy to use with the 
more powerful processor architecture like CUDA[16] or 
OpenCL[17] which uses a lot of threads and cores for the 
computation. We expect a more sastisfiable frame rate on 
CUDA with the HD video from the application of our strategy 
in the near future. 
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