
International Journal of Computer Applications (0975 – 888)
Volume 48– No.13, June 2012

28

A Novel Approach for Automated Test Path

Generation using TABU Search Algorithm

A.V.K. Shanthi
Research Scholar, Sathyabama University,

Chennai, India

G. MohanKumar, PhD.
Prinicipal, Park Engineering College

Coimbatore,

ABSTRACT
Software testing is the last phase of the development cycle.
The important role in software development is software
Testing. In today’s software industry, the design of
software tests is mostly based on the tester’s expertise,
while test automation tools are limited to execution of

preplanned tests only. Testing effort can be classified into
three parts, they are test case generation, test execution and
test evaluation. This paper presents a novel approach to
generate the automated test paths. Due to the delay in the
development of software, testing has to be done in a short
time. This led to automation of testing because its
efficiency and also requires less man power. In this
proposed approach, by using one of the most standard

Unified Modeling Language (UML) Activity Diagram,
construct the Activity Dependency table(ADT), then
generate the Test paths. Then the test path are prioritized
by using the Tabu search algorithm. The prioritized test
path can be used in system testing, regressing testing and
integration testing. Then also form the Cyclomatic

diagram to check the efficiency of the test scenario.

General Terms
Design, Development, Execution and Evaluation.

Keywords
Software Testing, Test Cases, UML (Unified Modeling
Language), Activity Diagram, Tabu Search algorithm,
Activity Dependency Table (ADT), Prioritization.

1. INTRODUCTION
To improve software productivity and quality, software
engineers are increasingly applying data mining algorithms
to various software engineering tasks. However mining
software engineering data poses several challenges,
requiring various algorithms to effectively mine sequences,
graphs and text from such data. Software engineering data

includes code bases, execution traces, historical code
changes, mailing lists and bug data bases. They contains a
wealth of information about a projects-status, progress and
evolution. Using well established data mining techniques,
practitioners and researchers can explore the potential of
this valuable data in order to better manage their projects
and do produce higher-quality software systems that are
delivered on time and with in budget. Data mining can be

used in gathering and extracting latent security
requirements, extracting algorithms and business rules
from code, mining legacy applications for requirements
and business rules for new projects etc. When considering
about the software testing, testing plays a important role.
Testing effort can be classified into three parts, they are
test case generation, test execution and test evaluation.

This is the most common style of automated testing.

 Create a test case.

 Run it and inspect the output

 If program fails, report bug and try later.

 If program passes, save the resulting outputs.

 In the future:

» Run the program and compare the output to the saved

results.

» Report an exception when the current output and the

saved output don’t match.

Most commonly, we run these tests on the finished

program, testing underlying functions by issuing

commands through the program’s GUI. Therefore, these are

typically called GUI-level test tools.

But it leads to Various problems such as:

 Underestimated cost

 Your most technically skilled staff are tied up

in automation

But especially,

Low power of regression testing

And,

Low attention to maintainability.

To improve maintainability in the face of a constantly

changing user interface, split the design of the test cases

from the automation of the features.

 . Describe the test cases as data that can be

fed to the program

 . Describe the methods to set the value of

each feature.

In this context, model-based testing appears as a promising
approach to control software quality as well as to reduce the
inherent costs of a test process, since test cases can be
generated from the software specification, concomitantly to
its development.

The problems concerning the testing techniques for feature,
and particularly, feature interaction have been investigated.

However, feature testing is as important as feature
interaction testing, because the costs to find and correcting
bugs during the feature interaction phase are higher, since
feature interaction testing phase involves more than one
feature.

This work focus on functional testing for banking
applications (features). Test paths are generated from UML
activity diagrams that represent a feature behavior. Due to
the nature of this application (small size and sequence of

actions and reactions), UML activity diagrams are
presented as good artifacts. The idea is to reuse activity
diagrams that are constructed by development teams to
specify use cases with basic and alternative scenarios.

In this paper, we use UML activity diagrams as design
specifications, and implemented the idea of automated test
case generation for software as an application software

International Journal of Computer Applications (0975 – 888)
Volume 48– No.13, June 2012

29

testing approach, to identify the most error prone paths in a
software construct. Here we have proposed a heuristic
technique for prioritization of test cases derived from the
activity diagram using Activity Dependence Table and
Tabu search algorithm.

We discuss the related work in the next section. Section 3
describes our proposed approach for automated test cases
generation. Section 4 presents our implementation. Finally,
we conclude the paper with discussions and future work.

2.RELATED WORK
In this section, we describes the representative researcher
survey [3-5] of test cases generation based on UML activity
diagrams. “Generating Test Cases from UML Activity
Diagram based on Gray-Box Method,” by Wang. L., Yuan,
J., et al [3] defines a method for generates test cases from
UML activity diagrams systematically, which modifies
Depth First Algorithm (DFS) for automated generation.
This paper does not fully handle fork-join structures. The

deficiency of this paper is that any fork node has only two
exit edges; evidently, these assumptions limit the applicable
scope of the proposed algorithm. Another problem in this
paper is that basic path defined, basic paths, can be found
by the DFS algorithm, while the detailed walkthrough of
the proposed algorithm shows that some test scenarios are
not generated, especially when the test scenarios are
derived from the fork-join parts of the activity diagrams .

“Using Anti-Ant-like Agents to Generate Test Threads
from the UML Diagrams,” by Li, H., Lam, C. P. [4]
describes the concept of the thin-thread tree, the condition
tree, and the data-object tree, as well their relationship with
the UML activity diagrams. The previous works dealing
with test scenario generations in activity diagrams did not
consider data objects and input values. The proposed
algorithms are incomplete. For example, for the example in
Figure 1, it generates only two test scenarios. If we regard

each activity as an atomic one, it should generate ten test
scenarios.

“An Automated Approach to Generating Usage Scenarios
from UML Activity Diagrams,” by Chandler, R., Lam, C.
P., Li, H., [5] defines the concept of UML activity diagram
is a notation suitable for modeling a concurrent system in
which multiple objects interact with each other. This paper
proposes a method to generate test cases from UML activity

diagrams that minimizes the number of test cases generated
while deriving all practically useful test cases. In this
method first builds an I/O explicit Activity Diagram from
an ordinary UML activity diagram and then transforms it to
a directed graph, from which test cases for the initial
activity diagram are derived. This conversion is performed
based on the single stimulus principle, which helps avoid
the state explosion problem in test generation for a

concurrent system.

Our related work is Automated Test case from UML
Diagram – Class Diagram using Data Mining
Approach.[11],[12] In this paper, we proposed a novel
approach to generate test path from UML activity diagram
using Tabu search algorithm.

3.TEST CASES GENERATION
In this section, we describe our test generation method.
First, we generated the activity diagram from the software
design. Write Parser in java to extract all possible
information from the activity diagram. In Activity diagram
each node represents an state. An activity diagram can

contain any number of decision, fork, join and etc., for
generating the test cases from the activity diagram we first
extract the necessary information from the diagram. Based
on the extracted information, an Activity Dependency
Table(ADT) is generated. With the help of ADT test cases

are generated, by applying the Tabu Search Algorithm,
most prioritized test case are generated. Steps involved in
the Generation of Test cases.

1. Draw the activity Diagram

2. Extract the necessary information

3. Generate the dependency table

4. From the dependency table generate the test

case.

5. Applying Tabu Search algorithm, to generate

the test path.

6. Constructing the cyclomatic diagram

7. Checking the test scenarios.

The Algorithm for generating test cases using Tabu search

method is given below.

1 Draw the Activity diagram.

2 From the Activity diagram generate the

dependency table.

3 Repeat the steps for all states.

a. Store the start state in the array.

b. By using the dependency the table get the

next state.

c. If next state is the decision state then,

(i) Copy the entire path into the next empty

location and store the value.

(ii) Continue in the true side until it reaches

end state.

(iii) For the false side just add the end state and

continue.

d. If the next state is the end state,

(i) Stop the process.

(ii) Check any other path is incomplete, if yes

then continue with there.

(iii) Else exit.

e. If the next state is the ordinary state, then add

the state at the end of the current path.

4 For assigning weightage, use dependency table.

a. Start the process with the start state assign the

value as one.

b. Using the dependency table check the next state.

c. Increment the value and assign it to the next.

d. If the current state is decision, then

(i) Increment the value and assign it to the true

side of the decision.

(ii) And also for the false side of the decision.

e. Repeat the step until it reaches the end state.

5 To calculate fitness value,

a. for each node calculate the number of incoming

node(a) and the number of outgoing nodes(b).

b. by multiplying a and b, f=a*b , we get fitness

value.

6 For Appling Tabu search algorithm, create three

variable called tabuin ,tabuout and best.

7 Calculate the initial test path value , store it in

the best and store the path in tabuin.

8 Calculate the neighborhood test path value.

9 Compare the current value with the best.

International Journal of Computer Applications (0975 – 888)
Volume 48– No.13, June 2012

30

a. if best is greater than the current value,

(i) store the current path in tabuout

(ii) then goto step no 10

b. if current value is greater than the best,

(i) store the current value in the best

(ii)add the current path to the tabuin

10 Repeat step 8 until all path have been covered.

11By using the tabuin we can get the prioritized test

path.

12Exit.

4. CASE STUDY
The proposed method is evaluated by the Activity diagram
(Figure 1) of Banking System – Cash Withdrawal or Cash
Deposit process, created by using rational rose software

Figure 1 : Activity Diagram

International Journal of Computer Applications (0975 – 888)
Volume 48– No.13, June 2012

31

Table 1: Activity Dependency Table(ADT)
Symbol Activity Name Dependency Input Expected output

A Start

B Enter the Choice A Choice Type of choice

C Check
withdrawal

B Choice True(withdrawal)
False(check deposit)

D Check deposit B Choice True(deposit)
false(enter choice
correctly)

E Enter the amount C Valid amount Check(balance)

F Check balance E Amount True(take cash)

False(check over
draft)

G Check over draft F Amount True(take cash)
False(limit exceeded)

H Enter the deposit
amount

D Valid amount Cash deposited

I Cash deposited H Cash End

J Take cash F
G

Cash End

From the collected information, the Activity dependency

table(Table.1) is generated. The table consists of the

following fields:- symbol, Activity Name , Dependency,

Input and Expected output, where Symbol is used to

indicate the state or the decision present in the diagram,

Dependency indicate the previous node of the activity.

Input and Expected output is also included in the Table 1.

Next, from the Activity Dependency Table the possible
test paths are generated. The test paths will began with
start state and terminates at the end state. From the start
state move along the ADT till it reaches the end state with
the help of dependency. The part of generating the test
paths are described in the above algorithm step 3. Then the
valid test paths are generated (Table 2).

Table 2: Test Path Obtained

Start enter the choice withdrawal
enter the amount balance take cash
end
Start enter the choice withdrawal
enter the amount balance over draft
cash withdrawal from over draft end
Start enter the choice withdrawal
enter the amount balance over draft

draft limit exceed end
Start enter the choice withdrawal
deposit enter the amount for deposit
cash deposited end
Start enter the choice withdrawal
deposit enter the choice correctly end

Once the test paths are obtained, apply the Tabu search
Algorithm, the test cases can be prioritized.. The method for
obtaining the most prioritized test path is described in the
above algorithm (step 4 to step11). Finally, the most
prioritized test path is obtained.(Table 3)

Table 3: The Most Prioritized Path

Start enter the choice withdrawal enter the amount balance over draft draft
limit exceed end

International Journal of Computer Applications (0975 – 888)
Volume 48– No.13, June 2012

32

Table 4: Test Path Table
Test

Path

Number Test Path Node

Node

Input Node Expected Output

Test

Path

Input

Test

Path

Output

1

Start enter choice

valid

amount

and

correct

balance

take cash

enter the choice choice check for withdrawal

check withdrawal choice true(withdrawal)

enter the amount valid amount check for balance

check balance amount true(balance)

take cash amount end

End

2

Start enter choice

deposit

amount
deposited

enter the choice choice check for withdrawal

check withdrawal choice false(withdrawal)

check deposit choice true(deposit)

enter the deposit

amount valid amount insert into the account

End

3

Start enter choice

invalid

choice

Warning

the user

enter the choice choice check for withdrawal

check withdrawal choice false(withdrawal)

check deposit choice false(deposit)

enter the correct

choice choice

End

4

Start enter choice

valid

amount

,low

balance

and high

overdraft

take cash

enter the choice choice check for withdrawal

check withdrawal choice true(withdrawal)

enter the amount valid amount check for balance

check balance amount false(balance)

check over draft amount true(over draft)

take cash amount end

End

5

Start enter choice

valid

amount

,low

balance

and no

overdraft

no

balance

enter the choice choice check for withdrawal

check withdrawal choice true(withdrawal)

enter the amount valid amount check for balance

check balance amount false(balance)

check over draft amount false(over draft)

End

The obtained test paths are evaluated by checking with
expected inputs and outputs (Table 4). Finally, The test
paths are validated by means of Cyclomatic diagram.
Generating the Cyclomatic diagram from the Activity
Dependency Table. From it, calculate the cyclomatic
complexity of the proposed test paths.

 V(G) = E – N + 2

where V(G) is the cyclomatic complexity E is the number
of edge, N is the number of node present in the diagram.

The test paths are validated using cyclomatic complexity
value. From the cyclomatic diagram (figure 2), the
Cylomatic complexity value is 5. and the number of test
paths generated by the proposed algorithm is also 5 .

International Journal of Computer Applications (0975 – 888)
Volume 48– No.13, June 2012

33

Figure 2. Cyclomatic diagram

5. DISCUSSION AND FUTURE WORK

In this paper we presented the test paths generation by

means of UML Activity diagram using Tabu search

Algorithm which best test paths are optimized and the test

paths are validated by prioritization. Our approach is

significant due to the following reasons. First, our

approach is capable to detect errors like errors in loop,

synchronization faults easier than the existing approaches.

Second, test case generated in our approach may help to

identify location of a fault in the implementation, thus

reducing testing effort. Third, our heuristic method for test

path generation inspires the developers to improve the

design quality, find faults in the implementation early, and

reduce software development time. Fourth, following our

approach, it is possible to build an automatic tool easily.

This automatic tool will reduce the cost of software

development and improve quality of the software

6. ACKNOWLEDGEMENT

The authors gratefully acknowledge to Mr.

V.Rajeshkanna , IV M.Sc., Software Engineering,
Sathyabama University for the valuable help in developing

the code in java.

7. REFERENCES

[1] M.Prasanna, S.N.Sivanandam, Venkatesan,
R.Sundarrajan, 15, 2005,"A SURVEY ON
AUTOMATIC TEST CASE GENERATION",
Academic Open Internet Journal.

 [2] M.Prasanna, K.R. Chandran, ” Automatic Test Case
Generation for UML Object diagrams using Genetic
Algorithm”, Int. J. Advance. Soft Comput. Appl., Vol.
1, No. 1, July 2009.

[3] Wang. L., Yuan, J., Yu, X., , Hu, J., Li , X., Zheng G.,
“Generating Test Cases from UML Activity Diagram
based on Gray-Box Method,” National Natural
Science Foundation of China, 2005.

[4] Li, H., Lam, C. P., “Using Anti-Ant-like Agents to

Generate Test Threads from the UML Diagrams,”
TestCom 2005, LNCS 3502, pp. 69 – 80, 2005.

[5] Chandler, R., Lam, C. P., Li, H., “An Automated
Approach to Generating Usage Scenarios from UML
Activity Diagrams,” Proceedings of the 12th Asia-
Pacific Software Engineering Conference, 2005.

[6] Chen, M., Qiu, X., Li, X., “Automatic Test Case
Generation for UML Activity Diagrams,” National

Natural Science Foundation of China, AST’06, 2006.

[7] Xu, D., Li, H., Lam, C.P., “Using Adaptive Agents to
Automatically Generate Test Scenarios from the UML
Activity Diagrams,” Proceedings of the 12th Asia-
Pacific Software Engineering Conference, 2005.

[8] Andriole, S. J., Software Validation, Verification,
Testing and Documentation, Petrocelli Books, 1986.

[9] Kang, S., Shin, J., Kim, M., “Interoperability test suite

derivation for communication protocols,” Computer
Networks Journal, Vol. 32, No. 3, 2000.

[10] Gao, J., Taso, H. S. J., Wu, Y., Testing and Quality
Assurance for Component-based Software, Artech
House Inc., 2003.

[11] A.V.K. Shanthi, Dr.G.Mohan Kumar, “Automated
Test Case From UML Diagram Using Data Mining
Approach”, CiiT International Journal of Software

Engineering and Technology, Vol3.No3, March 2011.

[12] A.V.K. Shanthi, Dr.G.Mohan Kumar, “Automated
Test Cases Generation For Object Oriented Software”,
Indian Journal of Computer Science and Engineering,
Vol:2, issue 4,Sep2011.

[13] Baikuntha Narayan Biswal, Pragyan Nanda, Durga
Prasad Mohapatra, 2008 IEEE, "A Novel Approach
for Scenario-Based Test Case Generation",
International Conference on Information

Technology.

[14] Chang-ai Sun, 2008 IEEE, "Transformation-based
Approach to Generating Scenario-oriented Test Cases
from UML Activity Diagrams for Concurrent
Applications", Annual IEEE International Computer
Software and Applications Conference.

[15] Bin Lei, Linzhang Wang, "Xuandong Li, UML
Activity Diagram Based Testing of Java Concurrent

Programs for Data Race and Inconsistency ", 2008
International Conference on Software Testing,
Verification, and Validation.

[16] P. Samuel, R. Mall, A.K. Bothra,2008 "Automatic test
case generation using unified modeling language
(UML) state diagrams ",Published in IET Software.

[17] Emanuela G. Cartaxo, Francisco G. O. Neto and
Patr ı́cia D. L. Machado, "Test Case Generation by

means of UML Sequence Diagrams and Labeled
Transition Systems", IEEE 2007.

International Journal of Computer Applications (0975 – 888)
Volume 48– No.13, June 2012

34

[18] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik,
Inyoung Ko, "Test Cases Generation from UML
Activity Diagrams ", Eighth ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed

Computing.

 [19] Supaporn Kansomkeat and Sanchai Rivepiboon,
"Automated-Generating Test Case Using UML
Statechart Diagrams ",SAICSIT 2003.

[20] Santosh Kumar Swain, Durga Prasad Mohapatra, and
Rajib Mall, "Test Case Generation Based on Use case

and Sequence Diagram", Int.J. of Software
Engineering, IJSE Vol.3 No.2 July 2010.

